You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenTTD-patches/bin/ai/library/pathfinder/rail/main.nut

390 lines
16 KiB
Plaintext

/* $Id$ */
/**
* A Rail Pathfinder.
*/
class Rail
{
_aystar_class = import("graph.aystar", "", 4);
_max_cost = null; ///< The maximum cost for a route.
_cost_tile = null; ///< The cost for a single tile.
_cost_diagonal_tile = null; ///< The cost for a diagonal tile.
_cost_turn = null; ///< The cost that is added to _cost_tile if the direction changes.
_cost_slope = null; ///< The extra cost if a rail tile is sloped.
_cost_bridge_per_tile = null; ///< The cost per tile of a new bridge, this is added to _cost_tile.
_cost_tunnel_per_tile = null; ///< The cost per tile of a new tunnel, this is added to _cost_tile.
_cost_coast = null; ///< The extra cost for a coast tile.
_pathfinder = null; ///< A reference to the used AyStar object.
_max_bridge_length = null; ///< The maximum length of a bridge that will be build.
_max_tunnel_length = null; ///< The maximum length of a tunnel that will be build.
cost = null; ///< Used to change the costs.
_running = null;
_goals = null;
constructor()
{
this._max_cost = 10000000;
this._cost_tile = 100;
this._cost_diagonal_tile = 70;
this._cost_turn = 50;
this._cost_slope = 100;
this._cost_bridge_per_tile = 150;
this._cost_tunnel_per_tile = 120;
this._cost_coast = 20;
this._max_bridge_length = 6;
this._max_tunnel_length = 6;
this._pathfinder = this._aystar_class(this._Cost, this._Estimate, this._Neighbours, this._CheckDirection, this, this, this, this);
this.cost = this.Cost(this);
this._running = false;
}
/**
* Initialize a path search between sources and goals.
* @param sources The source tiles.
* @param goals The target tiles.
* @param ignored_tiles An array of tiles that cannot occur in the final path.
* @see AyStar::InitializePath()
*/
function InitializePath(sources, goals, ignored_tiles = []) {
local nsources = [];
foreach (node in sources) {
local path = this._pathfinder.Path(null, node[1], 0xFF, this._Cost, this);
path = this._pathfinder.Path(path, node[0], 0xFF, this._Cost, this);
nsources.push(path);
}
this._goals = goals;
this._pathfinder.InitializePath(nsources, goals, ignored_tiles);
}
/**
* Try to find the path as indicated with InitializePath with the lowest cost.
* @param iterations After how many iterations it should abort for a moment.
* This value should either be -1 for infinite, or > 0. Any other value
* aborts immediatly and will never find a path.
* @return A route if one was found, or false if the amount of iterations was
* reached, or null if no path was found.
* You can call this function over and over as long as it returns false,
* which is an indication it is not yet done looking for a route.
* @see AyStar::FindPath()
*/
function FindPath(iterations);
};
class Rail.Cost
{
_main = null;
function _set(idx, val)
{
if (this._main._running) throw("You are not allowed to change parameters of a running pathfinder.");
switch (idx) {
case "max_cost": this._main._max_cost = val; break;
case "tile": this._main._cost_tile = val; break;
case "diagonal_tile": this._cost_diagonal_tile = val; break;
case "turn": this._main._cost_turn = val; break;
case "slope": this._main._cost_slope = val; break;
case "bridge_per_tile": this._main._cost_bridge_per_tile = val; break;
case "tunnel_per_tile": this._main._cost_tunnel_per_tile = val; break;
case "coast": this._main._cost_coast = val; break;
case "max_bridge_length": this._main._max_bridge_length = val; break;
case "max_tunnel_length": this._main._max_tunnel_length = val; break;
default: throw("the index '" + idx + "' does not exist");
}
return val;
}
function _get(idx)
{
switch (idx) {
case "max_cost": return this._main._max_cost;
case "tile": return this._main._cost_tile;
case "diagonal_tile": return this._cost_diagonal_tile;
case "turn": return this._main._cost_turn;
case "slope": return this._main._cost_slope;
case "bridge_per_tile": return this._main._cost_bridge_per_tile;
case "tunnel_per_tile": return this._main._cost_tunnel_per_tile;
case "coast": return this._main._cost_coast;
case "max_bridge_length": return this._main._max_bridge_length;
case "max_tunnel_length": return this._main._max_tunnel_length;
default: throw("the index '" + idx + "' does not exist");
}
}
constructor(main)
{
this._main = main;
}
};
function Rail::FindPath(iterations)
{
local test_mode = AITestMode();
local ret = this._pathfinder.FindPath(iterations);
this._running = (ret == false) ? true : false;
if (!this._running && ret != null) {
foreach (goal in this._goals) {
if (goal[0] == ret.GetTile()) {
return this._pathfinder.Path(ret, goal[1], 0, this._Cost, this);
}
}
}
return ret;
}
function Rail::_GetBridgeNumSlopes(end_a, end_b)
{
local slopes = 0;
local direction = (end_b - end_a) / AIMap.DistanceManhattan(end_a, end_b);
local slope = AITile.GetSlope(end_a);
if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) ||
(slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) ||
slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) {
slopes++;
}
local slope = AITile.GetSlope(end_b);
direction = -direction;
if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) ||
(slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) ||
slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) {
slopes++;
}
return slopes;
}
function Rail::_nonzero(a, b)
{
return a != 0 ? a : b;
}
function Rail::_Cost(path, new_tile, new_direction, self)
{
/* path == null means this is the first node of a path, so the cost is 0. */
if (path == null) return 0;
local prev_tile = path.GetTile();
/* If the new tile is a bridge / tunnel tile, check whether we came from the other
* end of the bridge / tunnel or if we just entered the bridge / tunnel. */
if (AIBridge.IsBridgeTile(new_tile)) {
if (AIBridge.GetOtherBridgeEnd(new_tile) != prev_tile) {
local cost = path.GetCost() + self._cost_tile;
if (path.GetParent() != null && path.GetParent().GetTile() - prev_tile != prev_tile - new_tile) cost += self._cost_turn;
return cost;
}
return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope;
}
if (AITunnel.IsTunnelTile(new_tile)) {
if (AITunnel.GetOtherTunnelEnd(new_tile) != prev_tile) {
local cost = path.GetCost() + self._cost_tile;
if (path.GetParent() != null && path.GetParent().GetTile() - prev_tile != prev_tile - new_tile) cost += self._cost_turn;
return cost;
}
return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile;
}
/* If the two tiles are more then 1 tile apart, the pathfinder wants a bridge or tunnel
* to be build. It isn't an existing bridge / tunnel, as that case is already handled. */
if (AIMap.DistanceManhattan(new_tile, prev_tile) > 1) {
/* Check if we should build a bridge or a tunnel. */
local cost = path.GetCost();
if (AITunnel.GetOtherTunnelEnd(new_tile) == prev_tile) {
cost += AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_tunnel_per_tile);
} else {
cost += AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_bridge_per_tile) + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope;
}
if (path.GetParent() != null && path.GetParent().GetParent() != null &&
path.GetParent().GetParent().GetTile() - path.GetParent().GetTile() != max(AIMap.GetTileX(prev_tile) - AIMap.GetTileX(new_tile), AIMap.GetTileY(prev_tile) - AIMap.GetTileY(new_tile)) / AIMap.DistanceManhattan(new_tile, prev_tile)) {
cost += self._cost_turn;
}
return cost;
}
/* Check for a turn. We do this by substracting the TileID of the current
* node from the TileID of the previous node and comparing that to the
* difference between the tile before the previous node and the node before
* that. */
local cost = self._cost_tile;
if (path.GetParent() != null && AIMap.DistanceManhattan(path.GetParent().GetTile(), prev_tile) == 1 && path.GetParent().GetTile() - prev_tile != prev_tile - new_tile) cost = self._cost_diagonal_tile;
if (path.GetParent() != null && path.GetParent().GetParent() != null &&
AIMap.DistanceManhattan(new_tile, path.GetParent().GetParent().GetTile()) == 3 &&
path.GetParent().GetParent().GetTile() - path.GetParent().GetTile() != prev_tile - new_tile) {
cost += self._cost_turn;
}
/* Check if the new tile is a coast tile. */
if (AITile.IsCoastTile(new_tile)) {
cost += self._cost_coast;
}
/* Check if the last tile was sloped. */
if (path.GetParent() != null && !AIBridge.IsBridgeTile(prev_tile) && !AITunnel.IsTunnelTile(prev_tile) &&
self._IsSlopedRail(path.GetParent().GetTile(), prev_tile, new_tile)) {
cost += self._cost_slope;
}
/* We don't use already existing rail, so the following code is unused. It
* assigns if no rail exists along the route. */
/*
if (path.GetParent() != null && !AIRail.AreTilesConnected(path.GetParent().GetTile(), prev_tile, new_tile)) {
cost += self._cost_no_existing_rail;
}
*/
return path.GetCost() + cost;
}
function Rail::_Estimate(cur_tile, cur_direction, goal_tiles, self)
{
local min_cost = self._max_cost;
/* As estimate we multiply the lowest possible cost for a single tile with
* with the minimum number of tiles we need to traverse. */
foreach (tile in goal_tiles) {
local dx = abs(AIMap.GetTileX(cur_tile) - AIMap.GetTileX(tile[0]));
local dy = abs(AIMap.GetTileY(cur_tile) - AIMap.GetTileY(tile[0]));
min_cost = min(min_cost, min(dx, dy) * self._cost_diagonal_tile * 2 + (max(dx, dy) - min(dx, dy)) * self._cost_tile);
}
return min_cost;
}
function Rail::_Neighbours(path, cur_node, self)
{
if (AITile.HasTransportType(cur_node, AITile.TRANSPORT_RAIL)) return [];
/* self._max_cost is the maximum path cost, if we go over it, the path isn't valid. */
if (path.GetCost() >= self._max_cost) return [];
local tiles = [];
local offsets = [AIMap.GetTileIndex(0, 1), AIMap.GetTileIndex(0, -1),
AIMap.GetTileIndex(1, 0), AIMap.GetTileIndex(-1, 0)];
/* Check if the current tile is part of a bridge or tunnel. */
if (AIBridge.IsBridgeTile(cur_node) || AITunnel.IsTunnelTile(cur_node)) {
/* We don't use existing rails, so neither existing bridges / tunnels. */
} else if (path.GetParent() != null && AIMap.DistanceManhattan(cur_node, path.GetParent().GetTile()) > 1) {
local other_end = path.GetParent().GetTile();
local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end);
foreach (offset in offsets) {
if (AIRail.BuildRail(cur_node, next_tile, next_tile + offset)) {
tiles.push([next_tile, self._GetDirection(other_end, cur_node, next_tile, true)]);
}
}
} else {
/* Check all tiles adjacent to the current tile. */
foreach (offset in offsets) {
local next_tile = cur_node + offset;
/* Don't turn back */
if (path.GetParent() != null && next_tile == path.GetParent().GetTile()) continue;
/* Disallow 90 degree turns */
if (path.GetParent() != null && path.GetParent().GetParent() != null &&
next_tile - cur_node == path.GetParent().GetParent().GetTile() - path.GetParent().GetTile()) continue;
/* We add them to the to the neighbours-list if we can build a rail to
* them and no rail exists there. */
if ((path.GetParent() == null || AIRail.BuildRail(path.GetParent().GetTile(), cur_node, next_tile))) {
if (path.GetParent() != null) {
tiles.push([next_tile, self._GetDirection(path.GetParent().GetTile(), cur_node, next_tile, false)]);
} else {
tiles.push([next_tile, self._GetDirection(null, cur_node, next_tile, false)]);
}
}
}
if (path.GetParent() != null && path.GetParent().GetParent() != null) {
local bridges = self._GetTunnelsBridges(path.GetParent().GetTile(), cur_node, self._GetDirection(path.GetParent().GetParent().GetTile(), path.GetParent().GetTile(), cur_node, true));
foreach (tile in bridges) {
tiles.push(tile);
}
}
}
return tiles;
}
function Rail::_CheckDirection(tile, existing_direction, new_direction, self)
{
return false;
}
function Rail::_dir(from, to)
{
if (from - to == 1) return 0;
if (from - to == -1) return 1;
if (from - to == AIMap.GetMapSizeX()) return 2;
if (from - to == -AIMap.GetMapSizeX()) return 3;
throw("Shouldn't come here in _dir");
}
function Rail::_GetDirection(pre_from, from, to, is_bridge)
{
if (is_bridge) {
if (from - to == 1) return 1;
if (from - to == -1) return 2;
if (from - to == AIMap.GetMapSizeX()) return 4;
if (from - to == -AIMap.GetMapSizeX()) return 8;
}
return 1 << (4 + (pre_from == null ? 0 : 4 * this._dir(pre_from, from)) + this._dir(from, to));
}
/**
* Get a list of all bridges and tunnels that can be build from the
* current tile. Bridges will only be build starting on non-flat tiles
* for performance reasons. Tunnels will only be build if no terraforming
* is needed on both ends.
*/
function Rail::_GetTunnelsBridges(last_node, cur_node, bridge_dir)
{
local slope = AITile.GetSlope(cur_node);
if (slope == AITile.SLOPE_FLAT && AITile.IsBuildable(cur_node + (cur_node - last_node))) return [];
local tiles = [];
for (local i = 2; i < this._max_bridge_length; i++) {
local bridge_list = AIBridgeList_Length(i + 1);
local target = cur_node + i * (cur_node - last_node);
if (!bridge_list.IsEmpty() && AIBridge.BuildBridge(AIVehicle.VEHICLE_RAIL, bridge_list.Begin(), cur_node, target)) {
tiles.push([target, bridge_dir]);
}
}
if (slope != AITile.SLOPE_SW && slope != AITile.SLOPE_NW && slope != AITile.SLOPE_SE && slope != AITile.SLOPE_NE) return tiles;
local other_tunnel_end = AITunnel.GetOtherTunnelEnd(cur_node);
if (!AIMap.IsValidTile(other_tunnel_end)) return tiles;
local tunnel_length = AIMap.DistanceManhattan(cur_node, other_tunnel_end);
local prev_tile = cur_node + (cur_node - other_tunnel_end) / tunnel_length;
if (AITunnel.GetOtherTunnelEnd(other_tunnel_end) == cur_node && tunnel_length >= 2 &&
prev_tile == last_node && tunnel_length < _max_tunnel_length && AITunnel.BuildTunnel(AIVehicle.VEHICLE_RAIL, cur_node)) {
tiles.push([other_tunnel_end, bridge_dir]);
}
return tiles;
}
function Rail::_IsSlopedRail(start, middle, end)
{
local NW = 0; // Set to true if we want to build a rail to / from the north-west
local NE = 0; // Set to true if we want to build a rail to / from the north-east
local SW = 0; // Set to true if we want to build a rail to / from the south-west
local SE = 0; // Set to true if we want to build a rail to / from the south-east
if (middle - AIMap.GetMapSizeX() == start || middle - AIMap.GetMapSizeX() == end) NW = 1;
if (middle - 1 == start || middle - 1 == end) NE = 1;
if (middle + AIMap.GetMapSizeX() == start || middle + AIMap.GetMapSizeX() == end) SE = 1;
if (middle + 1 == start || middle + 1 == end) SW = 1;
/* If there is a turn in the current tile, it can't be sloped. */
if ((NW || SE) && (NE || SW)) return false;
local slope = AITile.GetSlope(middle);
/* A rail on a steep slope is always sloped. */
if (AITile.IsSteepSlope(slope)) return true;
/* If only one corner is raised, the rail is sloped. */
if (slope == AITile.SLOPE_N || slope == AITile.SLOPE_W) return true;
if (slope == AITile.SLOPE_S || slope == AITile.SLOPE_E) return true;
if (NW && (slope == AITile.SLOPE_NW || slope == AITile.SLOPE_SE)) return true;
if (NE && (slope == AITile.SLOPE_NE || slope == AITile.SLOPE_SW)) return true;
return false;
}