OpenTTD-patches/npf.c
2006-01-29 18:57:26 +00:00

874 lines
32 KiB
C

/* $Id$ */
#include "stdafx.h"
#include "openttd.h"
#include "debug.h"
#include "functions.h"
#include "npf.h"
#include "aystar.h"
#include "macros.h"
#include "pathfind.h"
#include "station.h"
#include "tile.h"
#include "depot.h"
static AyStar _npf_aystar;
/* The cost of each trackdir. A diagonal piece is the full NPF_TILE_LENGTH,
* the shorter piece is sqrt(2)/2*NPF_TILE_LENGTH =~ 0.7071
*/
#define NPF_STRAIGHT_LENGTH (uint)(NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH)
static const uint _trackdir_length[TRACKDIR_END] = {
NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH,
0, 0,
NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH
};
/**
* Calculates the minimum distance traveled to get from t0 to t1 when only
* using tracks (ie, only making 45 degree turns). Returns the distance in the
* NPF scale, ie the number of full tiles multiplied by NPF_TILE_LENGTH to
* prevent rounding.
*/
static uint NPFDistanceTrack(TileIndex t0, TileIndex t1)
{
const uint dx = abs(TileX(t0) - TileX(t1));
const uint dy = abs(TileY(t0) - TileY(t1));
const uint straightTracks = 2 * min(dx, dy); /* The number of straight (not full length) tracks */
/* OPTIMISATION:
* Original: diagTracks = max(dx, dy) - min(dx,dy);
* Proof:
* (dx+dy) - straightTracks == (min + max) - straightTracks = min + max - 2 * min = max - min */
const uint diagTracks = dx + dy - straightTracks; /* The number of diagonal (full tile length) tracks. */
/* Don't factor out NPF_TILE_LENGTH below, this will round values and lose
* precision */
return diagTracks * NPF_TILE_LENGTH + straightTracks * NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH;
}
#if 0
static uint NTPHash(uint key1, uint key2)
{
/* This function uses the old hash, which is fixed on 10 bits (1024 buckets) */
return PATHFIND_HASH_TILE(key1);
}
#endif
/**
* Calculates a hash value for use in the NPF.
* @param key1 The TileIndex of the tile to hash
* @param key1 The Trackdir of the track on the tile.
*
* @todo Think of a better hash.
*/
static uint NPFHash(uint key1, uint key2)
{
/* TODO: think of a better hash? */
uint part1 = TileX(key1) & NPF_HASH_HALFMASK;
uint part2 = TileY(key1) & NPF_HASH_HALFMASK;
assert(IsValidTrackdir(key2));
assert(IsValidTile(key1));
return ((((part1 << NPF_HASH_HALFBITS) | part2)) + (NPF_HASH_SIZE * key2 / TRACKDIR_END)) % NPF_HASH_SIZE;
}
static int32 NPFCalcZero(AyStar* as, AyStarNode* current, OpenListNode* parent)
{
return 0;
}
/* Calcs the tile of given station that is closest to a given tile
* for this we assume the station is a rectangle,
* as defined by its top tile (st->train_tile) and its width/height (st->trainst_w, st->trainst_h)
*/
static TileIndex CalcClosestStationTile(StationID station, TileIndex tile)
{
const Station* st = GetStation(station);
uint minx = TileX(st->train_tile); // topmost corner of station
uint miny = TileY(st->train_tile);
uint maxx = minx + st->trainst_w - 1; // lowermost corner of station
uint maxy = miny + st->trainst_h - 1;
uint x;
uint y;
// we are going the aim for the x coordinate of the closest corner
// but if we are between those coordinates, we will aim for our own x coordinate
x = clamp(TileX(tile), minx, maxx);
// same for y coordinate, see above comment
y = clamp(TileY(tile), miny, maxy);
// return the tile of our target coordinates
return TileXY(x, y);
}
/* Calcs the heuristic to the target station or tile. For train stations, it
* takes into account the direction of approach.
*/
static int32 NPFCalcStationOrTileHeuristic(AyStar* as, AyStarNode* current, OpenListNode* parent)
{
NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
TileIndex from = current->tile;
TileIndex to = fstd->dest_coords;
uint dist;
// for train-stations, we are going to aim for the closest station tile
if ((as->user_data[NPF_TYPE] == TRANSPORT_RAIL) && (fstd->station_index != -1))
to = CalcClosestStationTile(fstd->station_index, from);
if (as->user_data[NPF_TYPE] == TRANSPORT_ROAD)
/* Since roads only have diagonal pieces, we use manhattan distance here */
dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH;
else
/* Ships and trains can also go diagonal, so the minimum distance is shorter */
dist = NPFDistanceTrack(from, to);
DEBUG(npf, 4)("Calculating H for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), dist);
if (dist < ftd->best_bird_dist) {
ftd->best_bird_dist = dist;
ftd->best_trackdir = current->user_data[NPF_TRACKDIR_CHOICE];
}
return dist;
}
/* Fills AyStarNode.user_data[NPF_TRACKDIRCHOICE] with the chosen direction to
* get here, either getting it from the current choice or from the parent's
* choice */
static void NPFFillTrackdirChoice(AyStarNode* current, OpenListNode* parent)
{
if (parent->path.parent == NULL) {
Trackdir trackdir = (Trackdir)current->direction;
/* This is a first order decision, so we'd better save the
* direction we chose */
current->user_data[NPF_TRACKDIR_CHOICE] = trackdir;
DEBUG(npf, 6)("Saving trackdir: %#x", trackdir);
} else {
/* We've already made the decision, so just save our parent's
* decision */
current->user_data[NPF_TRACKDIR_CHOICE] = parent->path.node.user_data[NPF_TRACKDIR_CHOICE];
}
}
/* Will return the cost of the tunnel. If it is an entry, it will return the
* cost of that tile. If the tile is an exit, it will return the tunnel length
* including the exit tile. Requires that this is a Tunnel tile */
static uint NPFTunnelCost(AyStarNode* current)
{
DiagDirection exitdir = TrackdirToExitdir((Trackdir)current->direction);
TileIndex tile = current->tile;
if ((DiagDirection)GB(_m[tile].m5, 0, 2) == ReverseDiagdir(exitdir)) {
/* We just popped out if this tunnel, since were
* facing the tunnel exit */
FindLengthOfTunnelResult flotr;
flotr = FindLengthOfTunnel(tile, ReverseDiagdir(exitdir));
return flotr.length * NPF_TILE_LENGTH;
//TODO: Penalty for tunnels?
} else {
/* We are entering the tunnel, the enter tile is just a
* straight track */
return NPF_TILE_LENGTH;
}
}
static uint NPFSlopeCost(AyStarNode* current)
{
TileIndex next = current->tile + TileOffsByDir(TrackdirToExitdir(current->direction));
int x,y;
int8 z1,z2;
x = TileX(current->tile) * TILE_SIZE;
y = TileY(current->tile) * TILE_SIZE;
/* get the height of the center of the current tile */
z1 = GetSlopeZ(x+TILE_HEIGHT, y+TILE_HEIGHT);
x = TileX(next) * TILE_SIZE;
y = TileY(next) * TILE_SIZE;
/* get the height of the center of the next tile */
z2 = GetSlopeZ(x+TILE_HEIGHT, y+TILE_HEIGHT);
if ((z2 - z1) > 1) {
/* Slope up */
return _patches.npf_rail_slope_penalty;
}
return 0;
/* Should we give a bonus for slope down? Probably not, we
* could just substract that bonus from the penalty, because
* there is only one level of steepness... */
}
/* Mark tiles by mowing the grass when npf debug level >= 1 */
static void NPFMarkTile(TileIndex tile)
{
#ifdef NO_DEBUG_MESSAGES
return;
#else
if (_debug_npf_level >= 1)
switch(GetTileType(tile)) {
case MP_RAILWAY:
/* DEBUG: mark visited tiles by mowing the grass under them
* ;-) */
if (!IsTileDepotType(tile, TRANSPORT_RAIL)) {
SB(_m[tile].m2, 0, 4, 0);
MarkTileDirtyByTile(tile);
}
break;
case MP_STREET:
if (!IsTileDepotType(tile, TRANSPORT_ROAD)) {
SB(_m[tile].m4, 4, 3, 0);
MarkTileDirtyByTile(tile);
}
break;
default:
break;
}
#endif
}
static int32 NPFWaterPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent)
{
//TileIndex tile = current->tile;
int32 cost = 0;
Trackdir trackdir = (Trackdir)current->direction;
cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
if (IsBuoyTile(current->tile) && IsDiagonalTrackdir(trackdir))
cost += _patches.npf_buoy_penalty; /* A small penalty for going over buoys */
if (current->direction != NextTrackdir((Trackdir)parent->path.node.direction))
cost += _patches.npf_water_curve_penalty;
/* TODO More penalties? */
return cost;
}
/* Determine the cost of this node, for road tracks */
static int32 NPFRoadPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent)
{
TileIndex tile = current->tile;
int32 cost = 0;
/* Determine base length */
switch (GetTileType(tile)) {
case MP_TUNNELBRIDGE:
if (GB(_m[tile].m5, 4, 4) == 0) {
cost = NPFTunnelCost(current);
break;
}
cost = NPF_TILE_LENGTH;
break;
case MP_STREET:
cost = NPF_TILE_LENGTH;
/* Increase the cost for level crossings */
if (IsLevelCrossing(tile))
cost += _patches.npf_crossing_penalty;
break;
default:
break;
}
/* Determine extra costs */
/* Check for slope */
cost += NPFSlopeCost(current);
/* Check for turns. Road vehicles only really drive diagonal, turns are
* represented by non-diagonal tracks */
if (!IsDiagonalTrackdir(current->direction))
cost += _patches.npf_road_curve_penalty;
NPFMarkTile(tile);
DEBUG(npf, 4)("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
return cost;
}
/* Determine the cost of this node, for railway tracks */
static int32 NPFRailPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent)
{
TileIndex tile = current->tile;
Trackdir trackdir = (Trackdir)current->direction;
int32 cost = 0;
/* HACK: We create a OpenListNode manualy, so we can call EndNodeCheck */
OpenListNode new_node;
/* Determine base length */
switch (GetTileType(tile)) {
case MP_TUNNELBRIDGE:
if (GB(_m[tile].m5, 4, 4) == 0) {
cost = NPFTunnelCost(current);
break;
}
/* Fall through if above if is false, it is a bridge
* then. We treat that as ordinary rail */
case MP_RAILWAY:
cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
break;
case MP_STREET: /* Railway crossing */
cost = NPF_TILE_LENGTH;
break;
case MP_STATION:
/* We give a station tile a penalty. Logically we would only
* want to give station tiles that are not our destination
* this penalty. This would discourage trains to drive through
* busy stations. But, we can just give any station tile a
* penalty, because every possible route will get this penalty
* exactly once, on its end tile (if it's a station) and it
* will therefore not make a difference. */
cost = NPF_TILE_LENGTH + _patches.npf_rail_station_penalty;
break;
default:
break;
}
/* Determine extra costs */
/* Check for signals */
if (IsTileType(tile, MP_RAILWAY) && HasSignalOnTrackdir(tile, trackdir)) {
/* Ordinary track with signals */
if (GetSignalState(tile, trackdir) == SIGNAL_STATE_RED) {
/* Signal facing us is red */
if (!NPFGetFlag(current, NPF_FLAG_SEEN_SIGNAL)) {
/* Penalize the first signal we
* encounter, if it is red */
/* Is this a presignal exit or combo? */
SignalType sigtype = GetSignalType(tile, TrackdirToTrack(trackdir));
if (sigtype == SIGTYPE_EXIT || sigtype == SIGTYPE_COMBO)
/* Penalise exit and combo signals differently (heavier) */
cost += _patches.npf_rail_firstred_exit_penalty;
else
cost += _patches.npf_rail_firstred_penalty;
}
/* Record the state of this signal */
NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, true);
} else {
/* Record the state of this signal */
NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, false);
}
NPFSetFlag(current, NPF_FLAG_SEEN_SIGNAL, true);
}
/* Penalise the tile if it is a target tile and the last signal was
* red */
/* HACK: We create a new_node here so we can call EndNodeCheck. Ugly as hell
* of course... */
new_node.path.node = *current;
if (as->EndNodeCheck(as, &new_node) == AYSTAR_FOUND_END_NODE && NPFGetFlag(current, NPF_FLAG_LAST_SIGNAL_RED))
cost += _patches.npf_rail_lastred_penalty;
/* Check for slope */
cost += NPFSlopeCost(current);
/* Check for turns */
if (current->direction != NextTrackdir((Trackdir)parent->path.node.direction))
cost += _patches.npf_rail_curve_penalty;
//TODO, with realistic acceleration, also the amount of straight track between
// curves should be taken into account, as this affects the speed limit.
/* Check for reverse in depot */
if (IsTileDepotType(tile, TRANSPORT_RAIL) && as->EndNodeCheck(as, &new_node) != AYSTAR_FOUND_END_NODE) {
/* Penalise any depot tile that is not the last tile in the path. This
* _should_ penalise every occurence of reversing in a depot (and only
* that) */
cost += _patches.npf_rail_depot_reverse_penalty;
}
/* Check for occupied track */
//TODO
NPFMarkTile(tile);
DEBUG(npf, 4)("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
return cost;
}
/* Will find any depot */
static int32 NPFFindDepot(AyStar* as, OpenListNode *current)
{
TileIndex tile = current->path.node.tile;
/* It's not worth caching the result with NPF_FLAG_IS_TARGET here as below,
* since checking the cache not that much faster than the actual check */
if (IsTileDepotType(tile, as->user_data[NPF_TYPE]))
return AYSTAR_FOUND_END_NODE;
else
return AYSTAR_DONE;
}
/* Will find a station identified using the NPFFindStationOrTileData */
static int32 NPFFindStationOrTile(AyStar* as, OpenListNode *current)
{
NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
AyStarNode *node = &current->path.node;
TileIndex tile = node->tile;
/* If GetNeighbours said we could get here, we assume the station type
* is correct */
if (
(fstd->station_index == -1 && tile == fstd->dest_coords) || /* We've found the tile, or */
(IsTileType(tile, MP_STATION) && _m[tile].m2 == fstd->station_index) /* the station */
) {
return AYSTAR_FOUND_END_NODE;
} else {
return AYSTAR_DONE;
}
}
/* To be called when current contains the (shortest route to) the target node.
* Will fill the contents of the NPFFoundTargetData using
* AyStarNode[NPF_TRACKDIR_CHOICE].
*/
static void NPFSaveTargetData(AyStar* as, OpenListNode* current)
{
NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
ftd->best_trackdir = (Trackdir)current->path.node.user_data[NPF_TRACKDIR_CHOICE];
ftd->best_path_dist = current->g;
ftd->best_bird_dist = 0;
ftd->node = current->path.node;
}
/**
* Finds out if a given player's vehicles are allowed to enter a given tile.
* @param owner The owner of the vehicle.
* @param tile The tile that is about to be entered.
* @param enterdir The direction from which the vehicle wants to enter the tile.
* @return true if the vehicle can enter the tile.
* @todo This function should be used in other places than just NPF,
* maybe moved to another file too.
*/
static bool VehicleMayEnterTile(Owner owner, TileIndex tile, DiagDirection enterdir)
{
if (
IsTileType(tile, MP_RAILWAY) /* Rail tile (also rail depot) */
|| IsTrainStationTile(tile) /* Rail station tile */
|| IsTileDepotType(tile, TRANSPORT_ROAD) /* Road depot tile */
|| IsRoadStationTile(tile) /* Road station tile */
|| IsTileDepotType(tile, TRANSPORT_WATER) /* Water depot tile */
)
return IsTileOwner(tile, owner); /* You need to own these tiles entirely to use them */
switch (GetTileType(tile)) {
case MP_STREET:
/* rail-road crossing : are we looking at the railway part? */
if (IsLevelCrossing(tile) && GetCrossingTransportType(tile, TrackdirToTrack(DiagdirToDiagTrackdir(enterdir))) == TRANSPORT_RAIL)
return IsTileOwner(tile, owner); /* Railway needs owner check, while the street is public */
break;
case MP_TUNNELBRIDGE:
#if 0
/* OPTIMISATION: If we are on the middle of a bridge, we will not do the cpu
* intensive owner check, instead we will just assume that if the vehicle
* managed to get on the bridge, it is probably allowed to :-)
*/
if ((_m[tile].m5 & 0xC6) == 0xC0 && GB(_m[tile].m5, 0, 1) == (enterdir & 0x1)) {
/* on the middle part of a railway bridge: find bridge ending */
while (IsTileType(tile, MP_TUNNELBRIDGE) && !((_m[tile].m5 & 0xC6) == 0x80)) {
tile += TileOffsByDir(GB(_m[tile].m5, 0, 1));
}
}
/* if we were on a railway middle part, we are now at a railway bridge ending */
#endif
if (
(_m[tile].m5 & 0xFC) == 0 /* railway tunnel */
|| (_m[tile].m5 & 0xC6) == 0x80 /* railway bridge ending */
|| ((_m[tile].m5 & 0xF8) == 0xE0 && GB(_m[tile].m5, 0, 1) != (enterdir & 0x1)) /* railway under bridge */
)
return IsTileOwner(tile, owner);
break;
default:
break;
}
return true; /* no need to check */
}
/* Will just follow the results of GetTileTrackStatus concerning where we can
* go and where not. Uses AyStar.user_data[NPF_TYPE] as the transport type and
* an argument to GetTileTrackStatus. Will skip tunnels, meaning that the
* entry and exit are neighbours. Will fill
* AyStarNode.user_data[NPF_TRACKDIR_CHOICE] with an appropriate value, and
* copy AyStarNode.user_data[NPF_NODE_FLAGS] from the parent */
static void NPFFollowTrack(AyStar* aystar, OpenListNode* current)
{
Trackdir src_trackdir = (Trackdir)current->path.node.direction;
TileIndex src_tile = current->path.node.tile;
DiagDirection src_exitdir = TrackdirToExitdir(src_trackdir);
FindLengthOfTunnelResult flotr;
TileIndex dst_tile;
int i;
TrackdirBits trackdirbits, ts;
TransportType type = aystar->user_data[NPF_TYPE];
/* Initialize to 0, so we can jump out (return) somewhere an have no neighbours */
aystar->num_neighbours = 0;
DEBUG(npf, 4)("Expanding: (%d, %d, %d) [%d]", TileX(src_tile), TileY(src_tile), src_trackdir, src_tile);
/* Find dest tile */
if (IsTileType(src_tile, MP_TUNNELBRIDGE) && GB(_m[src_tile].m5, 4, 4) == 0 &&
(DiagDirection)GB(_m[src_tile].m5, 0, 2) == src_exitdir) {
/* This is a tunnel. We know this tunnel is our type,
* otherwise we wouldn't have got here. It is also facing us,
* so we should skip it's body */
flotr = FindLengthOfTunnel(src_tile, src_exitdir);
dst_tile = flotr.tile;
} else {
if (type != TRANSPORT_WATER && (IsRoadStationTile(src_tile) || IsTileDepotType(src_tile, type))){
/* This is a road station or a train or road depot. We can enter and exit
* those from one side only. Trackdirs don't support that (yet), so we'll
* do this here. */
DiagDirection exitdir;
/* Find out the exit direction first */
if (IsRoadStationTile(src_tile))
exitdir = GetRoadStationDir(src_tile);
else /* Train or road depot. Direction is stored the same for both, in map5 */
exitdir = GetDepotDirection(src_tile, type);
/* Let's see if were headed the right way into the depot, and reverse
* otherwise (only for trains, since only with trains you can
* (sometimes) reach tiles after reversing that you couldn't reach
* without reversing. */
if (src_trackdir == DiagdirToDiagTrackdir(ReverseDiagdir(exitdir)) && type == TRANSPORT_RAIL)
/* We are headed inwards. We can only reverse here, so we'll not
* consider this direction, but jump ahead to the reverse direction.
* It would be nicer to return one neighbour here (the reverse
* trackdir of the one we are considering now) and then considering
* that one to return the tracks outside of the depot. But, because
* the code layout is cleaner this way, we will just pretend we are
* reversed already */
src_trackdir = ReverseTrackdir(src_trackdir);
}
/* This a normal tile, a bridge, a tunnel exit, etc. */
dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(TrackdirToExitdir(src_trackdir)));
if (dst_tile == INVALID_TILE) {
/* We reached the border of the map */
/* TODO Nicer control flow for this */
return;
}
}
/* I can't enter a tunnel entry/exit tile from a tile above the tunnel. Note
* that I can enter the tunnel from a tile below the tunnel entrance. This
* solves the problem of vehicles wanting to drive off a tunnel entrance */
if (IsTileType(dst_tile, MP_TUNNELBRIDGE) && GB(_m[dst_tile].m5, 4, 4) == 0 &&
GetTileZ(dst_tile) < GetTileZ(src_tile)) {
return;
}
/* check correct rail type (mono, maglev, etc) */
if (type == TRANSPORT_RAIL) {
RailType dst_type = GetTileRailType(dst_tile, src_trackdir);
if (!IsCompatibleRail(aystar->user_data[NPF_RAILTYPE], dst_type))
return;
}
/* Check the owner of the tile */
if (!VehicleMayEnterTile(aystar->user_data[NPF_OWNER], dst_tile, TrackdirToExitdir(src_trackdir))) {
return;
}
/* Determine available tracks */
if (type != TRANSPORT_WATER && (IsRoadStationTile(dst_tile) || IsTileDepotType(dst_tile, type))){
/* Road stations and road and train depots return 0 on GTTS, so we have to do this by hand... */
DiagDirection exitdir;
if (IsRoadStationTile(dst_tile))
exitdir = GetRoadStationDir(dst_tile);
else /* Road or train depot */
exitdir = GetDepotDirection(dst_tile, type);
/* Find the trackdirs that are available for a depot or station with this
* orientation. They are only "inwards", since we are reaching this tile
* from some other tile. This prevents vehicles driving into depots from
* the back */
ts = TrackdirToTrackdirBits(DiagdirToDiagTrackdir(ReverseDiagdir(exitdir)));
} else {
ts = GetTileTrackStatus(dst_tile, type);
}
trackdirbits = ts & TRACKDIR_BIT_MASK; /* Filter out signal status and the unused bits */
DEBUG(npf, 4)("Next node: (%d, %d) [%d], possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), dst_tile, trackdirbits);
/* Select only trackdirs we can reach from our current trackdir */
trackdirbits &= TrackdirReachesTrackdirs(src_trackdir);
if (_patches.forbid_90_deg && (type == TRANSPORT_RAIL || type == TRANSPORT_WATER)) /* Filter out trackdirs that would make 90 deg turns for trains */
trackdirbits &= ~TrackdirCrossesTrackdirs(src_trackdir);
DEBUG(npf,6)("After filtering: (%d, %d), possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), trackdirbits);
i = 0;
/* Enumerate possible track */
while (trackdirbits != 0) {
Trackdir dst_trackdir;
dst_trackdir = FindFirstBit2x64(trackdirbits);
trackdirbits = KillFirstBit2x64(trackdirbits);
DEBUG(npf, 5)("Expanded into trackdir: %d, remaining trackdirs: %#x", dst_trackdir, trackdirbits);
/* Check for oneway signal against us */
if (IsTileType(dst_tile, MP_RAILWAY) && GetRailTileType(dst_tile) == RAIL_TYPE_SIGNALS) {
if (HasSignalOnTrackdir(dst_tile, ReverseTrackdir(dst_trackdir)) && !HasSignalOnTrackdir(dst_tile, dst_trackdir))
// if one way signal not pointing towards us, stop going in this direction.
break;
}
{
/* We've found ourselves a neighbour :-) */
AyStarNode* neighbour = &aystar->neighbours[i];
neighbour->tile = dst_tile;
neighbour->direction = dst_trackdir;
/* Save user data */
neighbour->user_data[NPF_NODE_FLAGS] = current->path.node.user_data[NPF_NODE_FLAGS];
NPFFillTrackdirChoice(neighbour, current);
}
i++;
}
aystar->num_neighbours = i;
}
/*
* Plan a route to the specified target (which is checked by target_proc),
* from start1 and if not NULL, from start2 as well. The type of transport we
* are checking is in type. reverse_penalty is applied to all routes that
* originate from the second start node.
* When we are looking for one specific target (optionally multiple tiles), we
* should use a good heuristic to perform aystar search. When we search for
* multiple targets that are spread around, we should perform a breadth first
* search by specifiying CalcZero as our heuristic.
*/
static NPFFoundTargetData NPFRouteInternal(AyStarNode* start1, AyStarNode* start2, NPFFindStationOrTileData* target, AyStar_EndNodeCheck target_proc, AyStar_CalculateH heuristic_proc, TransportType type, Owner owner, RailType railtype, uint reverse_penalty)
{
int r;
NPFFoundTargetData result;
/* Initialize procs */
_npf_aystar.CalculateH = heuristic_proc;
_npf_aystar.EndNodeCheck = target_proc;
_npf_aystar.FoundEndNode = NPFSaveTargetData;
_npf_aystar.GetNeighbours = NPFFollowTrack;
if (type == TRANSPORT_RAIL)
_npf_aystar.CalculateG = NPFRailPathCost;
else if (type == TRANSPORT_ROAD)
_npf_aystar.CalculateG = NPFRoadPathCost;
else if (type == TRANSPORT_WATER)
_npf_aystar.CalculateG = NPFWaterPathCost;
else
assert(0);
/* Initialize Start Node(s) */
start1->user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
start1->user_data[NPF_NODE_FLAGS] = 0;
_npf_aystar.addstart(&_npf_aystar, start1, 0);
if (start2) {
start2->user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
start2->user_data[NPF_NODE_FLAGS] = 0;
NPFSetFlag(start2, NPF_FLAG_REVERSE, true);
_npf_aystar.addstart(&_npf_aystar, start2, reverse_penalty);
}
/* Initialize result */
result.best_bird_dist = (uint)-1;
result.best_path_dist = (uint)-1;
result.best_trackdir = INVALID_TRACKDIR;
_npf_aystar.user_path = &result;
/* Initialize target */
_npf_aystar.user_target = target;
/* Initialize user_data */
_npf_aystar.user_data[NPF_TYPE] = type;
_npf_aystar.user_data[NPF_OWNER] = owner;
_npf_aystar.user_data[NPF_RAILTYPE] = railtype;
/* GO! */
r = AyStarMain_Main(&_npf_aystar);
assert(r != AYSTAR_STILL_BUSY);
if (result.best_bird_dist != 0) {
if (target) {
DEBUG(misc, 1) ("NPF: Could not find route to 0x%x from 0x%x.", target->dest_coords, start1->tile);
} else {
/* Assumption: target == NULL, so we are looking for a depot */
DEBUG(misc, 1) ("NPF: Could not find route to a depot from 0x%x.", start1->tile);
}
}
return result;
}
NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, Trackdir trackdir1, TileIndex tile2, Trackdir trackdir2, NPFFindStationOrTileData* target, TransportType type, Owner owner, RailType railtype)
{
AyStarNode start1;
AyStarNode start2;
start1.tile = tile1;
start2.tile = tile2;
/* We set this in case the target is also the start tile, we will just
* return a not found then */
start1.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
start1.direction = trackdir1;
start2.direction = trackdir2;
start2.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
return NPFRouteInternal(&start1, (IsValidTile(tile2) ? &start2 : NULL), target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, owner, railtype, 0);
}
NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, Trackdir trackdir, NPFFindStationOrTileData* target, TransportType type, Owner owner, RailType railtype)
{
return NPFRouteToStationOrTileTwoWay(tile, trackdir, INVALID_TILE, 0, target, type, owner, railtype);
}
NPFFoundTargetData NPFRouteToDepotBreadthFirstTwoWay(TileIndex tile1, Trackdir trackdir1, TileIndex tile2, Trackdir trackdir2, TransportType type, Owner owner, RailType railtype, uint reverse_penalty)
{
AyStarNode start1;
AyStarNode start2;
start1.tile = tile1;
start2.tile = tile2;
/* We set this in case the target is also the start tile, we will just
* return a not found then */
start1.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
start1.direction = trackdir1;
start2.direction = trackdir2;
start2.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
/* perform a breadth first search. Target is NULL,
* since we are just looking for any depot...*/
return NPFRouteInternal(&start1, (IsValidTile(tile2) ? &start2 : NULL), NULL, NPFFindDepot, NPFCalcZero, type, owner, railtype, reverse_penalty);
}
NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, Trackdir trackdir, TransportType type, Owner owner, RailType railtype)
{
return NPFRouteToDepotBreadthFirstTwoWay(tile, trackdir, INVALID_TILE, 0, type, owner, railtype, 0);
}
NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, Trackdir trackdir, TransportType type, Owner owner, RailType railtype)
{
/* Okay, what we're gonna do. First, we look at all depots, calculate
* the manhatten distance to get to each depot. We then sort them by
* distance. We start by trying to plan a route to the closest, then
* the next closest, etc. We stop when the best route we have found so
* far, is shorter than the manhattan distance. This will obviously
* always find the closest depot. It will probably be most efficient
* for ships, since the heuristic will not be to far off then. I hope.
*/
Queue depots;
int r;
NPFFoundTargetData best_result;
NPFFoundTargetData result;
NPFFindStationOrTileData target;
AyStarNode start;
Depot* current;
Depot *depot;
init_InsSort(&depots);
/* Okay, let's find all depots that we can use first */
FOR_ALL_DEPOTS(depot) {
/* Check if this is really a valid depot, it is of the needed type and
* owner */
if (IsValidDepot(depot) && IsTileDepotType(depot->xy, type) && IsTileOwner(depot->xy, owner))
/* If so, let's add it to the queue, sorted by distance */
depots.push(&depots, depot, DistanceManhattan(tile, depot->xy));
}
/* Now, let's initialise the aystar */
/* Initialize procs */
_npf_aystar.CalculateH = NPFCalcStationOrTileHeuristic;
_npf_aystar.EndNodeCheck = NPFFindStationOrTile;
_npf_aystar.FoundEndNode = NPFSaveTargetData;
_npf_aystar.GetNeighbours = NPFFollowTrack;
if (type == TRANSPORT_RAIL)
_npf_aystar.CalculateG = NPFRailPathCost;
else if (type == TRANSPORT_ROAD)
_npf_aystar.CalculateG = NPFRoadPathCost;
else if (type == TRANSPORT_WATER)
_npf_aystar.CalculateG = NPFWaterPathCost;
else
assert(0);
/* Initialize target */
target.station_index = -1; /* We will initialize dest_coords inside the loop below */
_npf_aystar.user_target = &target;
/* Initialize user_data */
_npf_aystar.user_data[NPF_TYPE] = type;
_npf_aystar.user_data[NPF_OWNER] = owner;
/* Initialize Start Node */
start.tile = tile;
start.direction = trackdir; /* We will initialize user_data inside the loop below */
/* Initialize Result */
_npf_aystar.user_path = &result;
best_result.best_path_dist = (uint)-1;
best_result.best_bird_dist = (uint)-1;
/* Just iterate the depots in order of increasing distance */
while ((current = depots.pop(&depots))) {
/* Check to see if we already have a path shorter than this
* depot's manhattan distance. HACK: We call DistanceManhattan
* again, we should probably modify the queue to give us that
* value... */
if ( DistanceManhattan(tile, current->xy * NPF_TILE_LENGTH) > best_result.best_path_dist)
break;
/* Initialize Start Node */
/* We set this in case the target is also the start tile, we will just
* return a not found then */
start.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
start.user_data[NPF_NODE_FLAGS] = 0;
_npf_aystar.addstart(&_npf_aystar, &start, 0);
/* Initialize result */
result.best_bird_dist = (uint)-1;
result.best_path_dist = (uint)-1;
result.best_trackdir = INVALID_TRACKDIR;
/* Initialize target */
target.dest_coords = current->xy;
/* GO! */
r = AyStarMain_Main(&_npf_aystar);
assert(r != AYSTAR_STILL_BUSY);
/* This depot is closer */
if (result.best_path_dist < best_result.best_path_dist)
best_result = result;
}
if (result.best_bird_dist != 0) {
DEBUG(misc, 1) ("NPF: Could not find route to any depot from 0x%x.", tile);
}
return best_result;
}
void InitializeNPF(void)
{
init_AyStar(&_npf_aystar, NPFHash, NPF_HASH_SIZE);
_npf_aystar.loops_per_tick = 0;
_npf_aystar.max_path_cost = 0;
//_npf_aystar.max_search_nodes = 0;
/* We will limit the number of nodes for now, until we have a better
* solution to really fix performance */
_npf_aystar.max_search_nodes = _patches.npf_max_search_nodes;
}
void NPFFillWithOrderData(NPFFindStationOrTileData* fstd, Vehicle* v)
{
/* Ships don't really reach their stations, but the tile in front. So don't
* save the station id for ships. For roadvehs we don't store it either,
* because multistop depends on vehicles actually reaching the exact
* dest_tile, not just any stop of that station.
* So only for train orders to stations we fill fstd->station_index, for all
* others only dest_coords */
if ((v->current_order.type) == OT_GOTO_STATION && v->type == VEH_Train) {
fstd->station_index = v->current_order.station;
/* Let's take the closest tile of the station as our target for trains */
fstd->dest_coords = CalcClosestStationTile(v->current_order.station, v->tile);
} else {
fstd->dest_coords = v->dest_tile;
fstd->station_index = -1;
}
}