mirror of
https://github.com/JGRennison/OpenTTD-patches.git
synced 2024-11-17 21:25:40 +00:00
220 lines
6.1 KiB
C++
220 lines
6.1 KiB
C++
/* $Id$ */
|
|
|
|
/*
|
|
* This file is part of OpenTTD.
|
|
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
|
|
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/** @file binaryheap.hpp Binary heap implementation. */
|
|
|
|
#ifndef BINARYHEAP_HPP
|
|
#define BINARYHEAP_HPP
|
|
|
|
/**
|
|
* Binary Heap as C++ template.
|
|
*
|
|
* For information about Binary Heap algotithm,
|
|
* see: http://www.policyalmanac.org/games/binaryHeaps.htm
|
|
*
|
|
* Implementation specific notes:
|
|
*
|
|
* 1) It allocates space for item pointers (array). Items are allocated elsewhere.
|
|
*
|
|
* 2) T*[0] is never used. Total array size is max_items + 1, because we
|
|
* use indices 1..max_items instead of zero based C indexing.
|
|
*
|
|
* 3) Item of the binary heap should support these public members:
|
|
* - 'lower-than' operator '<' - used for comparing items before moving
|
|
*
|
|
*/
|
|
|
|
template <class T>
|
|
class CBinaryHeapT {
|
|
private:
|
|
uint m_size; ///< Number of items in the heap
|
|
uint m_max_size; ///< Maximum number of items the heap can hold
|
|
T **m_items; ///< The heap item pointers
|
|
|
|
public:
|
|
explicit CBinaryHeapT(uint max_items)
|
|
: m_size(0)
|
|
, m_max_size(max_items)
|
|
{
|
|
m_items = MallocT<T*>(max_items + 1);
|
|
}
|
|
|
|
~CBinaryHeapT()
|
|
{
|
|
Clear();
|
|
free(m_items);
|
|
m_items = NULL;
|
|
}
|
|
|
|
public:
|
|
/** Return the number of items stored in the priority queue.
|
|
* @return number of items in the queue */
|
|
FORCEINLINE uint Size() const {return m_size;};
|
|
|
|
/** Test if the priority queue is empty.
|
|
* @return true if empty */
|
|
FORCEINLINE bool IsEmpty() const {return (m_size == 0);};
|
|
|
|
/** Test if the priority queue is full.
|
|
* @return true if full. */
|
|
FORCEINLINE bool IsFull() const {return (m_size >= m_max_size);};
|
|
|
|
/** Find the smallest item in the priority queue.
|
|
* Return the smallest item, or throw assert if empty. */
|
|
FORCEINLINE T& GetHead()
|
|
{
|
|
assert(!IsEmpty());
|
|
return *m_items[1];
|
|
}
|
|
|
|
/** Insert new item into the priority queue, maintaining heap order.
|
|
* @return false if the queue is full. */
|
|
FORCEINLINE void Push(T& new_item)
|
|
{
|
|
if (IsFull()) {
|
|
m_max_size *= 2;
|
|
m_items = ReallocT<T*>(m_items, m_max_size + 1);
|
|
}
|
|
|
|
/* make place for new item */
|
|
uint gap = ++m_size;
|
|
/* Heapify up */
|
|
for (uint parent = gap / 2; (parent > 0) && (new_item < *m_items[parent]); gap = parent, parent /= 2)
|
|
m_items[gap] = m_items[parent];
|
|
m_items[gap] = &new_item;
|
|
CheckConsistency();
|
|
}
|
|
|
|
/** Remove and return the smallest item from the priority queue. */
|
|
FORCEINLINE T& PopHead()
|
|
{
|
|
T& ret = GetHead();
|
|
RemoveHead();
|
|
return ret;
|
|
}
|
|
|
|
/** Remove the smallest item from the priority queue. */
|
|
FORCEINLINE void RemoveHead()
|
|
{
|
|
assert(!IsEmpty());
|
|
|
|
/* at index 1 we have a gap now */
|
|
uint gap = 1;
|
|
|
|
/* Heapify down:
|
|
* last item becomes a candidate for the head. Call it last. */
|
|
T& last = *m_items[m_size--];
|
|
|
|
/* now we must maintain relation between parent and its children:
|
|
* parent <= any child
|
|
* from head down to the tail */
|
|
uint child = 2; // first child is at [parent * 2]
|
|
|
|
/* while children are valid */
|
|
while (child <= m_size) {
|
|
/* choose the smaller child */
|
|
if (child < m_size && *m_items[child + 1] < *m_items[child])
|
|
child++;
|
|
/* is it smaller than our parent? */
|
|
if (!(*m_items[child] < last)) {
|
|
/* the smaller child is still bigger or same as parent => we are done */
|
|
break;
|
|
}
|
|
/* if smaller child is smaller than parent, it will become new parent */
|
|
m_items[gap] = m_items[child];
|
|
gap = child;
|
|
/* where do we have our new children? */
|
|
child = gap * 2;
|
|
}
|
|
/* move last item to the proper place */
|
|
if (m_size > 0) m_items[gap] = &last;
|
|
CheckConsistency();
|
|
}
|
|
|
|
/** Remove item specified by index */
|
|
FORCEINLINE void RemoveByIdx(uint idx)
|
|
{
|
|
/* at position idx we have a gap now */
|
|
uint gap = idx;
|
|
T& last = *m_items[m_size];
|
|
if (idx < m_size) {
|
|
assert(idx >= 1);
|
|
m_size--;
|
|
/* and the candidate item for fixing this gap is our last item 'last'
|
|
* Move gap / last item up: */
|
|
while (gap > 1)
|
|
{
|
|
/* compare [gap] with its parent */
|
|
uint parent = gap / 2;
|
|
if (last < *m_items[parent]) {
|
|
m_items[gap] = m_items[parent];
|
|
gap = parent;
|
|
} else {
|
|
/* we don't need to continue upstairs */
|
|
break;
|
|
}
|
|
}
|
|
|
|
uint child = gap * 2;
|
|
/* Heapify (move gap) down: */
|
|
while (child <= m_size) {
|
|
/* choose the smaller child */
|
|
if (child < m_size && *m_items[child + 1] < *m_items[child])
|
|
child++;
|
|
/* is it smaller than our parent? */
|
|
if (!(*m_items[child] < last)) {
|
|
/* the smaller child is still bigger or same as parent => we are done */
|
|
break;
|
|
}
|
|
/* if smaller child is smaller than parent, it will become new parent */
|
|
m_items[gap] = m_items[child];
|
|
gap = child;
|
|
/* where do we have our new children? */
|
|
child = gap * 2;
|
|
}
|
|
/* move parent to the proper place */
|
|
if (m_size > 0) m_items[gap] = &last;
|
|
} else {
|
|
assert(idx == m_size);
|
|
m_size--;
|
|
}
|
|
CheckConsistency();
|
|
}
|
|
|
|
/** return index of the item that matches (using &item1 == &item2) the given item. */
|
|
FORCEINLINE uint FindLinear(const T& item) const
|
|
{
|
|
if (IsEmpty()) return 0;
|
|
for (T **ppI = m_items + 1, **ppLast = ppI + m_size; ppI <= ppLast; ppI++) {
|
|
if (*ppI == &item) {
|
|
return ppI - m_items;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Make the priority queue empty.
|
|
* All remaining items will remain untouched. */
|
|
FORCEINLINE void Clear() {m_size = 0;}
|
|
|
|
/** verifies the heap consistency (added during first YAPF debug phase) */
|
|
FORCEINLINE void CheckConsistency()
|
|
{
|
|
/* enable it if you suspect binary heap doesn't work well */
|
|
#if 0
|
|
for (uint child = 2; child <= m_size; child++) {
|
|
uint parent = child / 2;
|
|
assert(!(*m_items[child] < *m_items[parent]));
|
|
}
|
|
#endif
|
|
}
|
|
};
|
|
|
|
#endif /* BINARYHEAP_HPP */
|