mirror of
https://github.com/JGRennison/OpenTTD-patches.git
synced 2024-11-19 15:25:39 +00:00
25a63ec7af
-Feature: Bridges can now be placed above: Any railway track combination (excluding depots and waypoints) Any road combination (excluding depots) Clear tiles (duh), including fields Tunnel entrances Bridge heads Thanks to Tron for idea and implementation, KUDr for the yapf synchronization and many others for hours of testing There are still a number of visual problems remaining, especially when electric railways are on or under the bridge. DO NOT REPORT THOSE BUGS FOR THE TIME BEING please.
892 lines
32 KiB
C
892 lines
32 KiB
C
/* $Id$ */
|
|
|
|
#include "stdafx.h"
|
|
#include "openttd.h"
|
|
#include "bridge_map.h"
|
|
#include "debug.h"
|
|
#include "functions.h"
|
|
#include "npf.h"
|
|
#include "aystar.h"
|
|
#include "macros.h"
|
|
#include "pathfind.h"
|
|
#include "station.h"
|
|
#include "station_map.h"
|
|
#include "tile.h"
|
|
#include "depot.h"
|
|
#include "tunnel_map.h"
|
|
#include "network.h"
|
|
|
|
static AyStar _npf_aystar;
|
|
|
|
/* The cost of each trackdir. A diagonal piece is the full NPF_TILE_LENGTH,
|
|
* the shorter piece is sqrt(2)/2*NPF_TILE_LENGTH =~ 0.7071
|
|
*/
|
|
#define NPF_STRAIGHT_LENGTH (uint)(NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH)
|
|
static const uint _trackdir_length[TRACKDIR_END] = {
|
|
NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH,
|
|
0, 0,
|
|
NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH
|
|
};
|
|
|
|
/**
|
|
* Calculates the minimum distance traveled to get from t0 to t1 when only
|
|
* using tracks (ie, only making 45 degree turns). Returns the distance in the
|
|
* NPF scale, ie the number of full tiles multiplied by NPF_TILE_LENGTH to
|
|
* prevent rounding.
|
|
*/
|
|
static uint NPFDistanceTrack(TileIndex t0, TileIndex t1)
|
|
{
|
|
const uint dx = abs(TileX(t0) - TileX(t1));
|
|
const uint dy = abs(TileY(t0) - TileY(t1));
|
|
|
|
const uint straightTracks = 2 * min(dx, dy); /* The number of straight (not full length) tracks */
|
|
/* OPTIMISATION:
|
|
* Original: diagTracks = max(dx, dy) - min(dx,dy);
|
|
* Proof:
|
|
* (dx+dy) - straightTracks == (min + max) - straightTracks = min + max - 2 * min = max - min */
|
|
const uint diagTracks = dx + dy - straightTracks; /* The number of diagonal (full tile length) tracks. */
|
|
|
|
/* Don't factor out NPF_TILE_LENGTH below, this will round values and lose
|
|
* precision */
|
|
return diagTracks * NPF_TILE_LENGTH + straightTracks * NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH;
|
|
}
|
|
|
|
|
|
#if 0
|
|
static uint NTPHash(uint key1, uint key2)
|
|
{
|
|
/* This function uses the old hash, which is fixed on 10 bits (1024 buckets) */
|
|
return PATHFIND_HASH_TILE(key1);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Calculates a hash value for use in the NPF.
|
|
* @param key1 The TileIndex of the tile to hash
|
|
* @param key1 The Trackdir of the track on the tile.
|
|
*
|
|
* @todo Think of a better hash.
|
|
*/
|
|
static uint NPFHash(uint key1, uint key2)
|
|
{
|
|
/* TODO: think of a better hash? */
|
|
uint part1 = TileX(key1) & NPF_HASH_HALFMASK;
|
|
uint part2 = TileY(key1) & NPF_HASH_HALFMASK;
|
|
|
|
assert(IsValidTrackdir(key2));
|
|
assert(IsValidTile(key1));
|
|
return ((part1 << NPF_HASH_HALFBITS | part2) + (NPF_HASH_SIZE * key2 / TRACKDIR_END)) % NPF_HASH_SIZE;
|
|
}
|
|
|
|
static int32 NPFCalcZero(AyStar* as, AyStarNode* current, OpenListNode* parent)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* Calcs the tile of given station that is closest to a given tile
|
|
* for this we assume the station is a rectangle,
|
|
* as defined by its top tile (st->train_tile) and its width/height (st->trainst_w, st->trainst_h)
|
|
*/
|
|
static TileIndex CalcClosestStationTile(StationID station, TileIndex tile)
|
|
{
|
|
const Station* st = GetStation(station);
|
|
|
|
uint minx = TileX(st->train_tile); // topmost corner of station
|
|
uint miny = TileY(st->train_tile);
|
|
uint maxx = minx + st->trainst_w - 1; // lowermost corner of station
|
|
uint maxy = miny + st->trainst_h - 1;
|
|
uint x;
|
|
uint y;
|
|
|
|
// we are going the aim for the x coordinate of the closest corner
|
|
// but if we are between those coordinates, we will aim for our own x coordinate
|
|
x = clamp(TileX(tile), minx, maxx);
|
|
|
|
// same for y coordinate, see above comment
|
|
y = clamp(TileY(tile), miny, maxy);
|
|
|
|
// return the tile of our target coordinates
|
|
return TileXY(x, y);
|
|
}
|
|
|
|
/* Calcs the heuristic to the target station or tile. For train stations, it
|
|
* takes into account the direction of approach.
|
|
*/
|
|
static int32 NPFCalcStationOrTileHeuristic(AyStar* as, AyStarNode* current, OpenListNode* parent)
|
|
{
|
|
NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
|
|
NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
|
|
TileIndex from = current->tile;
|
|
TileIndex to = fstd->dest_coords;
|
|
uint dist;
|
|
|
|
// for train-stations, we are going to aim for the closest station tile
|
|
if (as->user_data[NPF_TYPE] == TRANSPORT_RAIL && fstd->station_index != INVALID_STATION)
|
|
to = CalcClosestStationTile(fstd->station_index, from);
|
|
|
|
if (as->user_data[NPF_TYPE] == TRANSPORT_ROAD) {
|
|
/* Since roads only have diagonal pieces, we use manhattan distance here */
|
|
dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH;
|
|
} else {
|
|
/* Ships and trains can also go diagonal, so the minimum distance is shorter */
|
|
dist = NPFDistanceTrack(from, to);
|
|
}
|
|
|
|
DEBUG(npf, 4)("Calculating H for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), dist);
|
|
|
|
if (dist < ftd->best_bird_dist) {
|
|
ftd->best_bird_dist = dist;
|
|
ftd->best_trackdir = current->user_data[NPF_TRACKDIR_CHOICE];
|
|
}
|
|
return dist;
|
|
}
|
|
|
|
|
|
/* Fills AyStarNode.user_data[NPF_TRACKDIRCHOICE] with the chosen direction to
|
|
* get here, either getting it from the current choice or from the parent's
|
|
* choice */
|
|
static void NPFFillTrackdirChoice(AyStarNode* current, OpenListNode* parent)
|
|
{
|
|
if (parent->path.parent == NULL) {
|
|
Trackdir trackdir = (Trackdir)current->direction;
|
|
/* This is a first order decision, so we'd better save the
|
|
* direction we chose */
|
|
current->user_data[NPF_TRACKDIR_CHOICE] = trackdir;
|
|
DEBUG(npf, 6)("Saving trackdir: 0x%X", trackdir);
|
|
} else {
|
|
/* We've already made the decision, so just save our parent's decision */
|
|
current->user_data[NPF_TRACKDIR_CHOICE] = parent->path.node.user_data[NPF_TRACKDIR_CHOICE];
|
|
}
|
|
}
|
|
|
|
/* Will return the cost of the tunnel. If it is an entry, it will return the
|
|
* cost of that tile. If the tile is an exit, it will return the tunnel length
|
|
* including the exit tile. Requires that this is a Tunnel tile */
|
|
static uint NPFTunnelCost(AyStarNode* current)
|
|
{
|
|
DiagDirection exitdir = TrackdirToExitdir((Trackdir)current->direction);
|
|
TileIndex tile = current->tile;
|
|
if (GetTunnelDirection(tile) == ReverseDiagDir(exitdir)) {
|
|
/* We just popped out if this tunnel, since were
|
|
* facing the tunnel exit */
|
|
FindLengthOfTunnelResult flotr;
|
|
flotr = FindLengthOfTunnel(tile, ReverseDiagDir(exitdir));
|
|
return flotr.length * NPF_TILE_LENGTH;
|
|
//TODO: Penalty for tunnels?
|
|
} else {
|
|
/* We are entering the tunnel, the enter tile is just a
|
|
* straight track */
|
|
return NPF_TILE_LENGTH;
|
|
}
|
|
}
|
|
|
|
static uint NPFSlopeCost(AyStarNode* current)
|
|
{
|
|
TileIndex next = current->tile + TileOffsByDir(TrackdirToExitdir(current->direction));
|
|
int x,y;
|
|
int8 z1,z2;
|
|
|
|
x = TileX(current->tile) * TILE_SIZE;
|
|
y = TileY(current->tile) * TILE_SIZE;
|
|
/* get the height of the center of the current tile */
|
|
z1 = GetSlopeZ(x+TILE_HEIGHT, y+TILE_HEIGHT);
|
|
|
|
x = TileX(next) * TILE_SIZE;
|
|
y = TileY(next) * TILE_SIZE;
|
|
/* get the height of the center of the next tile */
|
|
z2 = GetSlopeZ(x+TILE_HEIGHT, y+TILE_HEIGHT);
|
|
|
|
if (z2 - z1 > 1) {
|
|
/* Slope up */
|
|
return _patches.npf_rail_slope_penalty;
|
|
}
|
|
return 0;
|
|
/* Should we give a bonus for slope down? Probably not, we
|
|
* could just substract that bonus from the penalty, because
|
|
* there is only one level of steepness... */
|
|
}
|
|
|
|
/**
|
|
* Mark tiles by mowing the grass when npf debug level >= 1.
|
|
* Will not work for multiplayer games, since it can (will) cause desyncs.
|
|
*/
|
|
static void NPFMarkTile(TileIndex tile)
|
|
{
|
|
#ifdef NO_DEBUG_MESSAGES
|
|
return;
|
|
#else
|
|
if (_debug_npf_level < 1 || _networking) return;
|
|
switch (GetTileType(tile)) {
|
|
case MP_RAILWAY:
|
|
/* DEBUG: mark visited tiles by mowing the grass under them ;-) */
|
|
if (!IsTileDepotType(tile, TRANSPORT_RAIL)) {
|
|
SetRailGroundType(tile, RAIL_GROUND_BARREN);
|
|
MarkTileDirtyByTile(tile);
|
|
}
|
|
break;
|
|
|
|
case MP_STREET:
|
|
if (!IsTileDepotType(tile, TRANSPORT_ROAD)) {
|
|
SetGroundType(tile, RGT_BARREN);
|
|
MarkTileDirtyByTile(tile);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int32 NPFWaterPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent)
|
|
{
|
|
//TileIndex tile = current->tile;
|
|
int32 cost = 0;
|
|
Trackdir trackdir = (Trackdir)current->direction;
|
|
|
|
cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
|
|
|
|
if (IsBuoyTile(current->tile) && IsDiagonalTrackdir(trackdir))
|
|
cost += _patches.npf_buoy_penalty; /* A small penalty for going over buoys */
|
|
|
|
if (current->direction != NextTrackdir((Trackdir)parent->path.node.direction))
|
|
cost += _patches.npf_water_curve_penalty;
|
|
|
|
/* TODO More penalties? */
|
|
|
|
return cost;
|
|
}
|
|
|
|
/* Determine the cost of this node, for road tracks */
|
|
static int32 NPFRoadPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent)
|
|
{
|
|
TileIndex tile = current->tile;
|
|
int32 cost = 0;
|
|
|
|
/* Determine base length */
|
|
switch (GetTileType(tile)) {
|
|
case MP_TUNNELBRIDGE:
|
|
if (IsTunnel(tile)) {
|
|
cost = NPFTunnelCost(current);
|
|
} else {
|
|
cost = NPF_TILE_LENGTH;
|
|
}
|
|
break;
|
|
|
|
case MP_STREET:
|
|
cost = NPF_TILE_LENGTH;
|
|
/* Increase the cost for level crossings */
|
|
if (IsLevelCrossing(tile))
|
|
cost += _patches.npf_crossing_penalty;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Determine extra costs */
|
|
|
|
/* Check for slope */
|
|
cost += NPFSlopeCost(current);
|
|
|
|
/* Check for turns. Road vehicles only really drive diagonal, turns are
|
|
* represented by non-diagonal tracks */
|
|
if (!IsDiagonalTrackdir(current->direction))
|
|
cost += _patches.npf_road_curve_penalty;
|
|
|
|
NPFMarkTile(tile);
|
|
DEBUG(npf, 4)("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
|
|
return cost;
|
|
}
|
|
|
|
|
|
/* Determine the cost of this node, for railway tracks */
|
|
static int32 NPFRailPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent)
|
|
{
|
|
TileIndex tile = current->tile;
|
|
Trackdir trackdir = (Trackdir)current->direction;
|
|
int32 cost = 0;
|
|
/* HACK: We create a OpenListNode manually, so we can call EndNodeCheck */
|
|
OpenListNode new_node;
|
|
|
|
/* Determine base length */
|
|
switch (GetTileType(tile)) {
|
|
case MP_TUNNELBRIDGE:
|
|
if (IsTunnel(tile)) {
|
|
cost = NPFTunnelCost(current);
|
|
break;
|
|
}
|
|
/* Fall through if above if is false, it is a bridge
|
|
* then. We treat that as ordinary rail */
|
|
|
|
case MP_RAILWAY:
|
|
cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
|
|
break;
|
|
|
|
case MP_STREET: /* Railway crossing */
|
|
cost = NPF_TILE_LENGTH;
|
|
break;
|
|
|
|
case MP_STATION:
|
|
/* We give a station tile a penalty. Logically we would only want to give
|
|
* station tiles that are not our destination this penalty. This would
|
|
* discourage trains to drive through busy stations. But, we can just
|
|
* give any station tile a penalty, because every possible route will get
|
|
* this penalty exactly once, on its end tile (if it's a station) and it
|
|
* will therefore not make a difference. */
|
|
cost = NPF_TILE_LENGTH + _patches.npf_rail_station_penalty;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Determine extra costs */
|
|
|
|
/* Check for signals */
|
|
if (IsTileType(tile, MP_RAILWAY) && HasSignalOnTrackdir(tile, trackdir)) {
|
|
/* Ordinary track with signals */
|
|
if (GetSignalStateByTrackdir(tile, trackdir) == SIGNAL_STATE_RED) {
|
|
/* Signal facing us is red */
|
|
if (!NPFGetFlag(current, NPF_FLAG_SEEN_SIGNAL)) {
|
|
/* Penalize the first signal we
|
|
* encounter, if it is red */
|
|
|
|
/* Is this a presignal exit or combo? */
|
|
SignalType sigtype = GetSignalType(tile);
|
|
if (sigtype == SIGTYPE_EXIT || sigtype == SIGTYPE_COMBO) {
|
|
/* Penalise exit and combo signals differently (heavier) */
|
|
cost += _patches.npf_rail_firstred_exit_penalty;
|
|
} else {
|
|
cost += _patches.npf_rail_firstred_penalty;
|
|
}
|
|
}
|
|
/* Record the state of this signal */
|
|
NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, true);
|
|
} else {
|
|
/* Record the state of this signal */
|
|
NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, false);
|
|
}
|
|
NPFSetFlag(current, NPF_FLAG_SEEN_SIGNAL, true);
|
|
}
|
|
|
|
/* Penalise the tile if it is a target tile and the last signal was
|
|
* red */
|
|
/* HACK: We create a new_node here so we can call EndNodeCheck. Ugly as hell
|
|
* of course... */
|
|
new_node.path.node = *current;
|
|
if (as->EndNodeCheck(as, &new_node) == AYSTAR_FOUND_END_NODE && NPFGetFlag(current, NPF_FLAG_LAST_SIGNAL_RED))
|
|
cost += _patches.npf_rail_lastred_penalty;
|
|
|
|
/* Check for slope */
|
|
cost += NPFSlopeCost(current);
|
|
|
|
/* Check for turns */
|
|
if (current->direction != NextTrackdir((Trackdir)parent->path.node.direction))
|
|
cost += _patches.npf_rail_curve_penalty;
|
|
//TODO, with realistic acceleration, also the amount of straight track between
|
|
// curves should be taken into account, as this affects the speed limit.
|
|
|
|
/* Check for reverse in depot */
|
|
if (IsTileDepotType(tile, TRANSPORT_RAIL) && as->EndNodeCheck(as, &new_node) != AYSTAR_FOUND_END_NODE) {
|
|
/* Penalise any depot tile that is not the last tile in the path. This
|
|
* _should_ penalise every occurence of reversing in a depot (and only
|
|
* that) */
|
|
cost += _patches.npf_rail_depot_reverse_penalty;
|
|
}
|
|
|
|
/* Check for occupied track */
|
|
//TODO
|
|
|
|
NPFMarkTile(tile);
|
|
DEBUG(npf, 4)("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
|
|
return cost;
|
|
}
|
|
|
|
/* Will find any depot */
|
|
static int32 NPFFindDepot(AyStar* as, OpenListNode *current)
|
|
{
|
|
TileIndex tile = current->path.node.tile;
|
|
|
|
/* It's not worth caching the result with NPF_FLAG_IS_TARGET here as below,
|
|
* since checking the cache not that much faster than the actual check */
|
|
if (IsTileDepotType(tile, as->user_data[NPF_TYPE])) {
|
|
return AYSTAR_FOUND_END_NODE;
|
|
} else {
|
|
return AYSTAR_DONE;
|
|
}
|
|
}
|
|
|
|
/* Will find a station identified using the NPFFindStationOrTileData */
|
|
static int32 NPFFindStationOrTile(AyStar* as, OpenListNode *current)
|
|
{
|
|
NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
|
|
AyStarNode *node = ¤t->path.node;
|
|
TileIndex tile = node->tile;
|
|
|
|
/* If GetNeighbours said we could get here, we assume the station type
|
|
* is correct */
|
|
if (
|
|
(fstd->station_index == INVALID_STATION && tile == fstd->dest_coords) || /* We've found the tile, or */
|
|
(IsTileType(tile, MP_STATION) && GetStationIndex(tile) == fstd->station_index) /* the station */
|
|
) {
|
|
return AYSTAR_FOUND_END_NODE;
|
|
} else {
|
|
return AYSTAR_DONE;
|
|
}
|
|
}
|
|
|
|
/* To be called when current contains the (shortest route to) the target node.
|
|
* Will fill the contents of the NPFFoundTargetData using
|
|
* AyStarNode[NPF_TRACKDIR_CHOICE].
|
|
*/
|
|
static void NPFSaveTargetData(AyStar* as, OpenListNode* current)
|
|
{
|
|
NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
|
|
ftd->best_trackdir = (Trackdir)current->path.node.user_data[NPF_TRACKDIR_CHOICE];
|
|
ftd->best_path_dist = current->g;
|
|
ftd->best_bird_dist = 0;
|
|
ftd->node = current->path.node;
|
|
}
|
|
|
|
/**
|
|
* Finds out if a given player's vehicles are allowed to enter a given tile.
|
|
* @param owner The owner of the vehicle.
|
|
* @param tile The tile that is about to be entered.
|
|
* @param enterdir The direction from which the vehicle wants to enter the tile.
|
|
* @return true if the vehicle can enter the tile.
|
|
* @todo This function should be used in other places than just NPF,
|
|
* maybe moved to another file too.
|
|
*/
|
|
static bool VehicleMayEnterTile(Owner owner, TileIndex tile, DiagDirection enterdir)
|
|
{
|
|
if (IsTileType(tile, MP_RAILWAY) || /* Rail tile (also rail depot) */
|
|
IsRailwayStationTile(tile) || /* Rail station tile */
|
|
IsTileDepotType(tile, TRANSPORT_ROAD) || /* Road depot tile */
|
|
IsRoadStopTile(tile) || /* Road station tile */
|
|
IsTileDepotType(tile, TRANSPORT_WATER)) { /* Water depot tile */
|
|
return IsTileOwner(tile, owner); /* You need to own these tiles entirely to use them */
|
|
}
|
|
|
|
switch (GetTileType(tile)) {
|
|
case MP_STREET:
|
|
/* rail-road crossing : are we looking at the railway part? */
|
|
if (IsLevelCrossing(tile) &&
|
|
DiagDirToAxis(enterdir) != GetCrossingRoadAxis(tile)) {
|
|
return IsTileOwner(tile, owner); /* Railway needs owner check, while the street is public */
|
|
}
|
|
break;
|
|
|
|
case MP_TUNNELBRIDGE:
|
|
if ((IsTunnel(tile) && GetTunnelTransportType(tile) == TRANSPORT_RAIL) ||
|
|
(IsBridge(tile) && GetBridgeTransportType(tile) == TRANSPORT_RAIL)) {
|
|
return IsTileOwner(tile, owner);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true; /* no need to check */
|
|
}
|
|
|
|
/* Will just follow the results of GetTileTrackStatus concerning where we can
|
|
* go and where not. Uses AyStar.user_data[NPF_TYPE] as the transport type and
|
|
* an argument to GetTileTrackStatus. Will skip tunnels, meaning that the
|
|
* entry and exit are neighbours. Will fill
|
|
* AyStarNode.user_data[NPF_TRACKDIR_CHOICE] with an appropriate value, and
|
|
* copy AyStarNode.user_data[NPF_NODE_FLAGS] from the parent */
|
|
static void NPFFollowTrack(AyStar* aystar, OpenListNode* current)
|
|
{
|
|
Trackdir src_trackdir = (Trackdir)current->path.node.direction;
|
|
TileIndex src_tile = current->path.node.tile;
|
|
DiagDirection src_exitdir = TrackdirToExitdir(src_trackdir);
|
|
TileIndex dst_tile = INVALID_TILE;
|
|
int i;
|
|
TrackdirBits trackdirbits, ts;
|
|
TransportType type = aystar->user_data[NPF_TYPE];
|
|
bool override_dst_check = false;
|
|
/* Initialize to 0, so we can jump out (return) somewhere an have no neighbours */
|
|
aystar->num_neighbours = 0;
|
|
DEBUG(npf, 4)("Expanding: (%d, %d, %d) [%d]", TileX(src_tile), TileY(src_tile), src_trackdir, src_tile);
|
|
|
|
/* Find dest tile */
|
|
if (IsTunnelTile(src_tile) && GetTunnelDirection(src_tile) == src_exitdir) {
|
|
/* This is a tunnel. We know this tunnel is our type,
|
|
* otherwise we wouldn't have got here. It is also facing us,
|
|
* so we should skip it's body */
|
|
dst_tile = GetOtherTunnelEnd(src_tile);
|
|
override_dst_check = true;
|
|
} else if (IsBridgeTile(src_tile) && GetBridgeRampDirection(src_tile) == src_exitdir) {
|
|
dst_tile = GetOtherBridgeEnd(src_tile);
|
|
override_dst_check = true;
|
|
} else if (type != TRANSPORT_WATER && (IsRoadStopTile(src_tile) || IsTileDepotType(src_tile, type))) {
|
|
/* This is a road station or a train or road depot. We can enter and exit
|
|
* those from one side only. Trackdirs don't support that (yet), so we'll
|
|
* do this here. */
|
|
|
|
DiagDirection exitdir;
|
|
/* Find out the exit direction first */
|
|
if (IsRoadStopTile(src_tile)) {
|
|
exitdir = GetRoadStopDir(src_tile);
|
|
} else { /* Train or road depot */
|
|
exitdir = GetDepotDirection(src_tile, type);
|
|
}
|
|
|
|
/* Let's see if were headed the right way into the depot */
|
|
if (src_trackdir == DiagdirToDiagTrackdir(ReverseDiagDir(exitdir))) {
|
|
/* We are headed inwards. We cannot go through the back of the depot.
|
|
* For rail, we can now reverse. Reversing for road vehicles is never
|
|
* useful, since you cannot take paths you couldn't take before
|
|
* reversing (as with rail). */
|
|
if (type == TRANSPORT_RAIL) {
|
|
/* We can only reverse here, so we'll not consider this direction, but
|
|
* jump ahead to the reverse direction. It would be nicer to return
|
|
* one neighbour here (the reverse trackdir of the one we are
|
|
* considering now) and then considering that one to return the tracks
|
|
* outside of the depot. But, because the code layout is cleaner this
|
|
* way, we will just pretend we are reversed already */
|
|
src_trackdir = ReverseTrackdir(src_trackdir);
|
|
dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(exitdir));
|
|
} else {
|
|
dst_tile = INVALID_TILE; /* Road vehicle heading inwards: dead end */
|
|
}
|
|
} else {
|
|
dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(exitdir));
|
|
}
|
|
} else {
|
|
/* This a normal tile, a bridge, a tunnel exit, etc. */
|
|
dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(TrackdirToExitdir(src_trackdir)));
|
|
}
|
|
if (dst_tile == INVALID_TILE) {
|
|
/* We reached the border of the map */
|
|
/* TODO Nicer control flow for this */
|
|
return;
|
|
}
|
|
|
|
/* I can't enter a tunnel entry/exit tile from a tile above the tunnel. Note
|
|
* that I can enter the tunnel from a tile below the tunnel entrance. This
|
|
* solves the problem of vehicles wanting to drive off a tunnel entrance */
|
|
if (!override_dst_check) {
|
|
if (IsTileType(dst_tile, MP_TUNNELBRIDGE)) {
|
|
if (IsTunnel(dst_tile)) {
|
|
if (GetTunnelDirection(dst_tile) != src_exitdir) return;
|
|
} else {
|
|
if (GetBridgeRampDirection(dst_tile) != src_exitdir) return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* check correct rail type (mono, maglev, etc) */
|
|
if (type == TRANSPORT_RAIL) {
|
|
RailType dst_type = GetTileRailType(dst_tile, src_trackdir);
|
|
if (!HASBIT(aystar->user_data[NPF_RAILTYPES], dst_type))
|
|
return;
|
|
}
|
|
|
|
/* Check the owner of the tile */
|
|
if (!VehicleMayEnterTile(aystar->user_data[NPF_OWNER], dst_tile, TrackdirToExitdir(src_trackdir))) {
|
|
return;
|
|
}
|
|
|
|
/* Determine available tracks */
|
|
if (type != TRANSPORT_WATER && (IsRoadStopTile(dst_tile) || IsTileDepotType(dst_tile, type))){
|
|
/* Road stations and road and train depots return 0 on GTTS, so we have to do this by hand... */
|
|
DiagDirection exitdir;
|
|
if (IsRoadStopTile(dst_tile)) {
|
|
exitdir = GetRoadStopDir(dst_tile);
|
|
} else { /* Road or train depot */
|
|
exitdir = GetDepotDirection(dst_tile, type);
|
|
}
|
|
/* Find the trackdirs that are available for a depot or station with this
|
|
* orientation. They are only "inwards", since we are reaching this tile
|
|
* from some other tile. This prevents vehicles driving into depots from
|
|
* the back */
|
|
ts = TrackdirToTrackdirBits(DiagdirToDiagTrackdir(ReverseDiagDir(exitdir)));
|
|
} else {
|
|
ts = GetTileTrackStatus(dst_tile, type);
|
|
}
|
|
trackdirbits = ts & TRACKDIR_BIT_MASK; /* Filter out signal status and the unused bits */
|
|
|
|
DEBUG(npf, 4)("Next node: (%d, %d) [%d], possible trackdirs: 0x%X", TileX(dst_tile), TileY(dst_tile), dst_tile, trackdirbits);
|
|
/* Select only trackdirs we can reach from our current trackdir */
|
|
trackdirbits &= TrackdirReachesTrackdirs(src_trackdir);
|
|
if (_patches.forbid_90_deg && (type == TRANSPORT_RAIL || type == TRANSPORT_WATER)) /* Filter out trackdirs that would make 90 deg turns for trains */
|
|
trackdirbits &= ~TrackdirCrossesTrackdirs(src_trackdir);
|
|
|
|
DEBUG(npf,6)("After filtering: (%d, %d), possible trackdirs: 0x%X", TileX(dst_tile), TileY(dst_tile), trackdirbits);
|
|
|
|
i = 0;
|
|
/* Enumerate possible track */
|
|
while (trackdirbits != 0) {
|
|
Trackdir dst_trackdir;
|
|
dst_trackdir = FindFirstBit2x64(trackdirbits);
|
|
trackdirbits = KillFirstBit2x64(trackdirbits);
|
|
DEBUG(npf, 5)("Expanded into trackdir: %d, remaining trackdirs: 0x%X", dst_trackdir, trackdirbits);
|
|
|
|
/* Check for oneway signal against us */
|
|
if (IsTileType(dst_tile, MP_RAILWAY) && GetRailTileType(dst_tile) == RAIL_TILE_SIGNALS) {
|
|
if (HasSignalOnTrackdir(dst_tile, ReverseTrackdir(dst_trackdir)) && !HasSignalOnTrackdir(dst_tile, dst_trackdir))
|
|
// if one way signal not pointing towards us, stop going in this direction.
|
|
break;
|
|
}
|
|
{
|
|
/* We've found ourselves a neighbour :-) */
|
|
AyStarNode* neighbour = &aystar->neighbours[i];
|
|
neighbour->tile = dst_tile;
|
|
neighbour->direction = dst_trackdir;
|
|
/* Save user data */
|
|
neighbour->user_data[NPF_NODE_FLAGS] = current->path.node.user_data[NPF_NODE_FLAGS];
|
|
NPFFillTrackdirChoice(neighbour, current);
|
|
}
|
|
i++;
|
|
}
|
|
aystar->num_neighbours = i;
|
|
}
|
|
|
|
/*
|
|
* Plan a route to the specified target (which is checked by target_proc),
|
|
* from start1 and if not NULL, from start2 as well. The type of transport we
|
|
* are checking is in type. reverse_penalty is applied to all routes that
|
|
* originate from the second start node.
|
|
* When we are looking for one specific target (optionally multiple tiles), we
|
|
* should use a good heuristic to perform aystar search. When we search for
|
|
* multiple targets that are spread around, we should perform a breadth first
|
|
* search by specifiying CalcZero as our heuristic.
|
|
*/
|
|
static NPFFoundTargetData NPFRouteInternal(AyStarNode* start1, AyStarNode* start2, NPFFindStationOrTileData* target, AyStar_EndNodeCheck target_proc, AyStar_CalculateH heuristic_proc, TransportType type, Owner owner, RailTypeMask railtypes, uint reverse_penalty)
|
|
{
|
|
int r;
|
|
NPFFoundTargetData result;
|
|
|
|
/* Initialize procs */
|
|
_npf_aystar.CalculateH = heuristic_proc;
|
|
_npf_aystar.EndNodeCheck = target_proc;
|
|
_npf_aystar.FoundEndNode = NPFSaveTargetData;
|
|
_npf_aystar.GetNeighbours = NPFFollowTrack;
|
|
if (type == TRANSPORT_RAIL)
|
|
_npf_aystar.CalculateG = NPFRailPathCost;
|
|
else if (type == TRANSPORT_ROAD)
|
|
_npf_aystar.CalculateG = NPFRoadPathCost;
|
|
else if (type == TRANSPORT_WATER)
|
|
_npf_aystar.CalculateG = NPFWaterPathCost;
|
|
else
|
|
assert(0);
|
|
|
|
/* Initialize Start Node(s) */
|
|
start1->user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
|
|
start1->user_data[NPF_NODE_FLAGS] = 0;
|
|
_npf_aystar.addstart(&_npf_aystar, start1, 0);
|
|
if (start2) {
|
|
start2->user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
|
|
start2->user_data[NPF_NODE_FLAGS] = 0;
|
|
NPFSetFlag(start2, NPF_FLAG_REVERSE, true);
|
|
_npf_aystar.addstart(&_npf_aystar, start2, reverse_penalty);
|
|
}
|
|
|
|
/* Initialize result */
|
|
result.best_bird_dist = (uint)-1;
|
|
result.best_path_dist = (uint)-1;
|
|
result.best_trackdir = INVALID_TRACKDIR;
|
|
_npf_aystar.user_path = &result;
|
|
|
|
/* Initialize target */
|
|
_npf_aystar.user_target = target;
|
|
|
|
/* Initialize user_data */
|
|
_npf_aystar.user_data[NPF_TYPE] = type;
|
|
_npf_aystar.user_data[NPF_OWNER] = owner;
|
|
_npf_aystar.user_data[NPF_RAILTYPES] = railtypes;
|
|
|
|
/* GO! */
|
|
r = AyStarMain_Main(&_npf_aystar);
|
|
assert(r != AYSTAR_STILL_BUSY);
|
|
|
|
if (result.best_bird_dist != 0) {
|
|
if (target != NULL) {
|
|
DEBUG(npf, 1) ("Could not find route to tile 0x%X from 0x%X.", target->dest_coords, start1->tile);
|
|
} else {
|
|
/* Assumption: target == NULL, so we are looking for a depot */
|
|
DEBUG(npf, 1) ("Could not find route to a depot from tile 0x%X.", start1->tile);
|
|
}
|
|
|
|
}
|
|
return result;
|
|
}
|
|
|
|
NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, Trackdir trackdir1, TileIndex tile2, Trackdir trackdir2, NPFFindStationOrTileData* target, TransportType type, Owner owner, RailTypeMask railtypes)
|
|
{
|
|
AyStarNode start1;
|
|
AyStarNode start2;
|
|
|
|
start1.tile = tile1;
|
|
start2.tile = tile2;
|
|
/* We set this in case the target is also the start tile, we will just
|
|
* return a not found then */
|
|
start1.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
|
|
start1.direction = trackdir1;
|
|
start2.direction = trackdir2;
|
|
start2.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
|
|
|
|
return NPFRouteInternal(&start1, (IsValidTile(tile2) ? &start2 : NULL), target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, owner, railtypes, 0);
|
|
}
|
|
|
|
NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, Trackdir trackdir, NPFFindStationOrTileData* target, TransportType type, Owner owner, RailTypeMask railtypes)
|
|
{
|
|
return NPFRouteToStationOrTileTwoWay(tile, trackdir, INVALID_TILE, 0, target, type, owner, railtypes);
|
|
}
|
|
|
|
NPFFoundTargetData NPFRouteToDepotBreadthFirstTwoWay(TileIndex tile1, Trackdir trackdir1, TileIndex tile2, Trackdir trackdir2, TransportType type, Owner owner, RailTypeMask railtypes, uint reverse_penalty)
|
|
{
|
|
AyStarNode start1;
|
|
AyStarNode start2;
|
|
|
|
start1.tile = tile1;
|
|
start2.tile = tile2;
|
|
/* We set this in case the target is also the start tile, we will just
|
|
* return a not found then */
|
|
start1.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
|
|
start1.direction = trackdir1;
|
|
start2.direction = trackdir2;
|
|
start2.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
|
|
|
|
/* perform a breadth first search. Target is NULL,
|
|
* since we are just looking for any depot...*/
|
|
return NPFRouteInternal(&start1, (IsValidTile(tile2) ? &start2 : NULL), NULL, NPFFindDepot, NPFCalcZero, type, owner, railtypes, reverse_penalty);
|
|
}
|
|
|
|
NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, Trackdir trackdir, TransportType type, Owner owner, RailTypeMask railtypes)
|
|
{
|
|
return NPFRouteToDepotBreadthFirstTwoWay(tile, trackdir, INVALID_TILE, 0, type, owner, railtypes, 0);
|
|
}
|
|
|
|
NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, Trackdir trackdir, TransportType type, Owner owner, RailTypeMask railtypes)
|
|
{
|
|
/* Okay, what we're gonna do. First, we look at all depots, calculate
|
|
* the manhatten distance to get to each depot. We then sort them by
|
|
* distance. We start by trying to plan a route to the closest, then
|
|
* the next closest, etc. We stop when the best route we have found so
|
|
* far, is shorter than the manhattan distance. This will obviously
|
|
* always find the closest depot. It will probably be most efficient
|
|
* for ships, since the heuristic will not be to far off then. I hope.
|
|
*/
|
|
Queue depots;
|
|
int r;
|
|
NPFFoundTargetData best_result;
|
|
NPFFoundTargetData result;
|
|
NPFFindStationOrTileData target;
|
|
AyStarNode start;
|
|
Depot* current;
|
|
Depot *depot;
|
|
|
|
init_InsSort(&depots);
|
|
/* Okay, let's find all depots that we can use first */
|
|
FOR_ALL_DEPOTS(depot) {
|
|
/* Check if this is really a valid depot, it is of the needed type and
|
|
* owner */
|
|
if (IsValidDepot(depot) && IsTileDepotType(depot->xy, type) && IsTileOwner(depot->xy, owner))
|
|
/* If so, let's add it to the queue, sorted by distance */
|
|
depots.push(&depots, depot, DistanceManhattan(tile, depot->xy));
|
|
}
|
|
|
|
/* Now, let's initialise the aystar */
|
|
|
|
/* Initialize procs */
|
|
_npf_aystar.CalculateH = NPFCalcStationOrTileHeuristic;
|
|
_npf_aystar.EndNodeCheck = NPFFindStationOrTile;
|
|
_npf_aystar.FoundEndNode = NPFSaveTargetData;
|
|
_npf_aystar.GetNeighbours = NPFFollowTrack;
|
|
if (type == TRANSPORT_RAIL)
|
|
_npf_aystar.CalculateG = NPFRailPathCost;
|
|
else if (type == TRANSPORT_ROAD)
|
|
_npf_aystar.CalculateG = NPFRoadPathCost;
|
|
else if (type == TRANSPORT_WATER)
|
|
_npf_aystar.CalculateG = NPFWaterPathCost;
|
|
else
|
|
assert(0);
|
|
|
|
/* Initialize target */
|
|
target.station_index = INVALID_STATION; /* We will initialize dest_coords inside the loop below */
|
|
_npf_aystar.user_target = ⌖
|
|
|
|
/* Initialize user_data */
|
|
_npf_aystar.user_data[NPF_TYPE] = type;
|
|
_npf_aystar.user_data[NPF_OWNER] = owner;
|
|
|
|
/* Initialize Start Node */
|
|
start.tile = tile;
|
|
start.direction = trackdir; /* We will initialize user_data inside the loop below */
|
|
|
|
/* Initialize Result */
|
|
_npf_aystar.user_path = &result;
|
|
best_result.best_path_dist = (uint)-1;
|
|
best_result.best_bird_dist = (uint)-1;
|
|
|
|
/* Just iterate the depots in order of increasing distance */
|
|
while ((current = depots.pop(&depots))) {
|
|
/* Check to see if we already have a path shorter than this
|
|
* depot's manhattan distance. HACK: We call DistanceManhattan
|
|
* again, we should probably modify the queue to give us that
|
|
* value... */
|
|
if ( DistanceManhattan(tile, current->xy * NPF_TILE_LENGTH) > best_result.best_path_dist)
|
|
break;
|
|
|
|
/* Initialize Start Node */
|
|
/* We set this in case the target is also the start tile, we will just
|
|
* return a not found then */
|
|
start.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR;
|
|
start.user_data[NPF_NODE_FLAGS] = 0;
|
|
_npf_aystar.addstart(&_npf_aystar, &start, 0);
|
|
|
|
/* Initialize result */
|
|
result.best_bird_dist = (uint)-1;
|
|
result.best_path_dist = (uint)-1;
|
|
result.best_trackdir = INVALID_TRACKDIR;
|
|
|
|
/* Initialize target */
|
|
target.dest_coords = current->xy;
|
|
|
|
/* GO! */
|
|
r = AyStarMain_Main(&_npf_aystar);
|
|
assert(r != AYSTAR_STILL_BUSY);
|
|
|
|
/* This depot is closer */
|
|
if (result.best_path_dist < best_result.best_path_dist)
|
|
best_result = result;
|
|
}
|
|
if (result.best_bird_dist != 0) {
|
|
DEBUG(npf, 1) ("Could not find route to any depot from tile 0x%X.", tile);
|
|
}
|
|
return best_result;
|
|
}
|
|
|
|
void InitializeNPF(void)
|
|
{
|
|
init_AyStar(&_npf_aystar, NPFHash, NPF_HASH_SIZE);
|
|
_npf_aystar.loops_per_tick = 0;
|
|
_npf_aystar.max_path_cost = 0;
|
|
//_npf_aystar.max_search_nodes = 0;
|
|
/* We will limit the number of nodes for now, until we have a better
|
|
* solution to really fix performance */
|
|
_npf_aystar.max_search_nodes = _patches.npf_max_search_nodes;
|
|
}
|
|
|
|
void NPFFillWithOrderData(NPFFindStationOrTileData* fstd, Vehicle* v)
|
|
{
|
|
/* Ships don't really reach their stations, but the tile in front. So don't
|
|
* save the station id for ships. For roadvehs we don't store it either,
|
|
* because multistop depends on vehicles actually reaching the exact
|
|
* dest_tile, not just any stop of that station.
|
|
* So only for train orders to stations we fill fstd->station_index, for all
|
|
* others only dest_coords */
|
|
if (v->current_order.type == OT_GOTO_STATION && v->type == VEH_Train) {
|
|
fstd->station_index = v->current_order.station;
|
|
/* Let's take the closest tile of the station as our target for trains */
|
|
fstd->dest_coords = CalcClosestStationTile(v->current_order.station, v->tile);
|
|
} else {
|
|
fstd->dest_coords = v->dest_tile;
|
|
fstd->station_index = INVALID_STATION;
|
|
}
|
|
}
|