OpenTTD-patches/src/map.cpp

330 lines
9.8 KiB
C++

/* $Id$ */
/** @file map.cpp Base functions related to the map and distances on them. */
#include "stdafx.h"
#include "debug.h"
#include "core/bitmath_func.hpp"
#include "core/alloc_func.hpp"
#include "core/math_func.hpp"
#include "map_func.h"
#if defined(_MSC_VER)
/* Why the hell is that not in all MSVC headers?? */
extern "C" _CRTIMP void __cdecl _assert(void *, void *, unsigned);
#endif
uint _map_log_x; ///< 2^_map_log_x == _map_size_x
uint _map_log_y; ///< 2^_map_log_y == _map_size_y
uint _map_size_x; ///< Size of the map along the X
uint _map_size_y; ///< Size of the map along the Y
uint _map_size; ///< The number of tiles on the map
uint _map_tile_mask; ///< _map_size - 1 (to mask the mapsize)
Tile *_m = NULL; ///< Tiles of the map
TileExtended *_me = NULL; ///< Extended Tiles of the map
/*!
* (Re)allocates a map with the given dimension
* @param size_x the width of the map along the NE/SW edge
* @param size_y the 'height' of the map along the SE/NW edge
*/
void AllocateMap(uint size_x, uint size_y)
{
/* Make sure that the map size is within the limits and that
* the x axis size is a power of 2. */
if (size_x < 64 || size_x > 2048 ||
size_y < 64 || size_y > 2048 ||
(size_x & (size_x - 1)) != 0 ||
(size_y & (size_y - 1)) != 0)
error("Invalid map size");
DEBUG(map, 1, "Allocating map of size %dx%d", size_x, size_y);
_map_log_x = FindFirstBit(size_x);
_map_log_y = FindFirstBit(size_y);
_map_size_x = size_x;
_map_size_y = size_y;
_map_size = size_x * size_y;
_map_tile_mask = _map_size - 1;
free(_m);
free(_me);
_m = CallocT<Tile>(_map_size);
_me = CallocT<TileExtended>(_map_size);
}
#ifdef _DEBUG
TileIndex TileAdd(TileIndex tile, TileIndexDiff add,
const char *exp, const char *file, int line)
{
int dx;
int dy;
uint x;
uint y;
dx = add & MapMaxX();
if (dx >= (int)MapSizeX() / 2) dx -= MapSizeX();
dy = (add - dx) / (int)MapSizeX();
x = TileX(tile) + dx;
y = TileY(tile) + dy;
if (x >= MapSizeX() || y >= MapSizeY()) {
char buf[512];
snprintf(buf, lengthof(buf), "TILE_ADD(%s) when adding 0x%.4X and 0x%.4X failed",
exp, tile, add);
#if !defined(_MSC_VER) || defined(WINCE)
fprintf(stderr, "%s:%d %s\n", file, line, buf);
#else
_assert(buf, (char*)file, line);
#endif
}
assert(TileXY(x, y) == TILE_MASK(tile + add));
return TileXY(x, y);
}
#endif
/*!
* Scales the given value by the map size, where the given value is
* for a 256 by 256 map.
* @param n the value to scale
* @return the scaled size
*/
uint ScaleByMapSize(uint n)
{
/* First shift by 12 to prevent integer overflow for large values of n.
* >>12 is safe since the min mapsize is 64x64
* Add (1<<4)-1 to round upwards. */
return (n * (MapSize() >> 12) + (1 << 4) - 1) >> 4;
}
/*!
* Scales the given value by the maps circumference, where the given
* value is for a 256 by 256 map
* @param n the value to scale
* @return the scaled size
*/
uint ScaleByMapSize1D(uint n)
{
/* Normal circumference for the X+Y is 256+256 = 1<<9
* Note, not actually taking the full circumference into account,
* just half of it.
* (1<<9) - 1 is there to scale upwards. */
return (n * (MapSizeX() + MapSizeY()) + (1 << 9) - 1) >> 9;
}
/*!
* This function checks if we add addx/addy to tile, if we
* do wrap around the edges. For example, tile = (10,2) and
* addx = +3 and addy = -4. This function will now return
* INVALID_TILE, because the y is wrapped. This is needed in
* for example, farmland. When the tile is not wrapped,
* the result will be tile + TileDiffXY(addx, addy)
*
* @param tile the 'starting' point of the adding
* @param addx the amount of tiles in the X direction to add
* @param addy the amount of tiles in the Y direction to add
* @return translated tile, or INVALID_TILE when it would've wrapped.
*/
TileIndex TileAddWrap(TileIndex tile, int addx, int addy)
{
uint x = TileX(tile) + addx;
uint y = TileY(tile) + addy;
/* Are we about to wrap? */
if (x < MapMaxX() && y < MapMaxY())
return tile + TileDiffXY(addx, addy);
return INVALID_TILE;
}
/** 'Lookup table' for tile offsets given a DiagDirection */
extern const TileIndexDiffC _tileoffs_by_diagdir[] = {
{-1, 0}, ///< DIAGDIR_NE
{ 0, 1}, ///< DIAGDIR_SE
{ 1, 0}, ///< DIAGDIR_SW
{ 0, -1} ///< DIAGDIR_NW
};
/** 'Lookup table' for tile offsets given a Direction */
extern const TileIndexDiffC _tileoffs_by_dir[] = {
{-1, -1}, ///< DIR_N
{-1, 0}, ///< DIR_NE
{-1, 1}, ///< DIR_E
{ 0, 1}, ///< DIR_SE
{ 1, 1}, ///< DIR_S
{ 1, 0}, ///< DIR_SW
{ 1, -1}, ///< DIR_W
{ 0, -1} ///< DIR_NW
};
/*!
* Gets the Manhattan distance between the two given tiles.
* The Manhattan distance is the sum of the delta of both the
* X and Y component.
* Also known as L1-Norm
* @param t0 the start tile
* @param t1 the end tile
* @return the distance
*/
uint DistanceManhattan(TileIndex t0, TileIndex t1)
{
const uint dx = Delta(TileX(t0), TileX(t1));
const uint dy = Delta(TileY(t0), TileY(t1));
return dx + dy;
}
/*!
* Gets the 'Square' distance between the two given tiles.
* The 'Square' distance is the square of the shortest (straight line)
* distance between the two tiles.
* Also known as euclidian- or L2-Norm squared.
* @param t0 the start tile
* @param t1 the end tile
* @return the distance
*/
uint DistanceSquare(TileIndex t0, TileIndex t1)
{
const int dx = TileX(t0) - TileX(t1);
const int dy = TileY(t0) - TileY(t1);
return dx * dx + dy * dy;
}
/*!
* Gets the biggest distance component (x or y) between the two given tiles.
* Also known as L-Infinity-Norm.
* @param t0 the start tile
* @param t1 the end tile
* @return the distance
*/
uint DistanceMax(TileIndex t0, TileIndex t1)
{
const uint dx = Delta(TileX(t0), TileX(t1));
const uint dy = Delta(TileY(t0), TileY(t1));
return max(dx, dy);
}
/*!
* Gets the biggest distance component (x or y) between the two given tiles
* plus the Manhattan distance, i.e. two times the biggest distance component
* and once the smallest component.
* @param t0 the start tile
* @param t1 the end tile
* @return the distance
*/
uint DistanceMaxPlusManhattan(TileIndex t0, TileIndex t1)
{
const uint dx = Delta(TileX(t0), TileX(t1));
const uint dy = Delta(TileY(t0), TileY(t1));
return dx > dy ? 2 * dx + dy : 2 * dy + dx;
}
/*!
* Param the minimum distance to an edge
* @param tile the tile to get the distance from
* @return the distance from the edge in tiles
*/
uint DistanceFromEdge(TileIndex tile)
{
const uint xl = TileX(tile);
const uint yl = TileY(tile);
const uint xh = MapSizeX() - 1 - xl;
const uint yh = MapSizeY() - 1 - yl;
const uint minl = min(xl, yl);
const uint minh = min(xh, yh);
return min(minl, minh);
}
/*!
* Function performing a search around a center tile and going outward, thus in circle.
* Although it really is a square search...
* Every tile will be tested by means of the callback function proc,
* which will determine if yes or no the given tile meets criteria of search.
* @param tile to start the search from. Upon completion, it will return the tile matching the search
* @param size: number of tiles per side of the desired search area
* @param proc: callback testing function pointer.
* @param user_data to be passed to the callback function. Depends on the implementation
* @return result of the search
* @pre proc != NULL
* @pre size > 0
*/
bool CircularTileSearch(TileIndex *tile, uint size, TestTileOnSearchProc proc, void *user_data)
{
assert(proc != NULL);
assert(size > 0);
if (size % 2 == 1) {
/* If the length of the side is uneven, the center has to be checked
* separately, as the pattern of uneven sides requires to go around the center */
if (proc(*tile, user_data)) return true;
/* If tile test is not successful, get one tile down and left,
* ready for a test in first circle around center tile */
*tile = TILE_ADD(*tile, TileOffsByDir(DIR_W));
return CircularTileSearch(tile, size / 2, 1, 1, proc, user_data);
} else {
return CircularTileSearch(tile, size / 2, 0, 0, proc, user_data);
}
}
/*!
* Generalized circular search allowing for rectangles and a hole.
* Function performing a search around a center rectangle and going outward.
* The center rectangle is left out from the search. To do a rectangular search
* without a hole, set either h or w to zero.
* Every tile will be tested by means of the callback function proc,
* which will determine if yes or no the given tile meets criteria of search.
* @param tile to start the search from. Upon completion, it will return the tile matching the search
* @param radius: How many tiles to search outwards. Note: This is a radius and thus different
* from the size parameter of the other CircularTileSearch function, which is a diameter.
* @param proc: callback testing function pointer.
* @param user_data to be passed to the callback function. Depends on the implementation
* @return result of the search
* @pre proc != NULL
* @pre radius > 0
*/
bool CircularTileSearch(TileIndex *tile, uint radius, uint w, uint h, TestTileOnSearchProc proc, void *user_data)
{
assert(proc != NULL);
assert(radius > 0);
uint x = TileX(*tile) + w + 1;
uint y = TileY(*tile);
uint extent[DIAGDIR_END] = { w, h, w, h };
for (uint n = 0; n < radius; n++) {
for (DiagDirection dir = DIAGDIR_NE; dir < DIAGDIR_END; dir++) {
for (uint j = extent[dir] + n * 2 + 1; j != 0; j--) {
if (x <= MapMaxX() && y <= MapMaxY() && ///< Is the tile within the map?
proc(TileXY(x, y), user_data)) { ///< Is the callback successful?
*tile = TileXY(x, y);
return true; ///< then stop the search
}
/* Step to the next 'neighbour' in the circular line */
x += _tileoffs_by_diagdir[dir].x;
y += _tileoffs_by_diagdir[dir].y;
}
}
/* Jump to next circle to test */
x += _tileoffs_by_dir[DIR_W].x;
y += _tileoffs_by_dir[DIR_W].y;
}
*tile = INVALID_TILE;
return false;
}