OpenTTD-patches/newgrf_engine.c
Darkvater 04628a1979 (svn r7565) -Codechange: Rework DEBUG functionality. Look for appropiate debugging levels to
use in debug.h. grfmsg() is now used as a specific debug-function for grf.
2006-12-26 17:36:18 +00:00

1158 lines
34 KiB
C

/* $Id$ */
#include "stdafx.h"
#include "openttd.h"
#include "variables.h"
#include "debug.h"
#include "functions.h"
#include "engine.h"
#include "train.h"
#include "player.h"
#include "station.h"
#include "airport.h"
#include "newgrf.h"
#include "newgrf_callbacks.h"
#include "newgrf_engine.h"
#include "newgrf_station.h"
#include "newgrf_spritegroup.h"
#include "newgrf_cargo.h"
#include "date.h"
/* Default cargo classes */
static const uint16 _cargo_classes[NUM_GLOBAL_CID] = {
CC_PASSENGERS,
CC_BULK,
CC_MAIL,
CC_LIQUID,
CC_PIECE_GOODS,
CC_EXPRESS,
CC_BULK,
CC_PIECE_GOODS,
CC_BULK,
CC_PIECE_GOODS,
CC_ARMOURED,
CC_PIECE_GOODS,
CC_REFRIGERATED | CC_EXPRESS,
CC_REFRIGERATED | CC_EXPRESS,
CC_BULK,
CC_LIQUID,
CC_LIQUID,
CC_BULK,
CC_PIECE_GOODS,
CC_PIECE_GOODS,
CC_EXPRESS,
CC_BULK,
CC_LIQUID,
CC_BULK,
CC_PIECE_GOODS,
CC_LIQUID,
CC_PIECE_GOODS,
CC_PIECE_GOODS,
CC_NOAVAILABLE,
CC_NOAVAILABLE,
CC_NOAVAILABLE,
};
int _traininfo_vehicle_pitch = 0;
int _traininfo_vehicle_width = 29;
typedef struct WagonOverride {
byte *train_id;
int trains;
CargoID cargo;
const SpriteGroup *group;
} WagonOverride;
typedef struct WagonOverrides {
int overrides_count;
WagonOverride *overrides;
} WagonOverrides;
static WagonOverrides _engine_wagon_overrides[TOTAL_NUM_ENGINES];
void SetWagonOverrideSprites(EngineID engine, CargoID cargo, const SpriteGroup *group, byte *train_id, int trains)
{
WagonOverrides *wos;
WagonOverride *wo;
assert(engine < TOTAL_NUM_ENGINES);
assert(cargo < NUM_GLOBAL_CID);
wos = &_engine_wagon_overrides[engine];
wos->overrides_count++;
wos->overrides = realloc(wos->overrides,
wos->overrides_count * sizeof(*wos->overrides));
wo = &wos->overrides[wos->overrides_count - 1];
/* FIXME: If we are replacing an override, release original SpriteGroup
* to prevent leaks. But first we need to refcount the SpriteGroup.
* --pasky */
wo->group = group;
wo->cargo = cargo;
wo->trains = trains;
wo->train_id = malloc(trains);
memcpy(wo->train_id, train_id, trains);
}
static const SpriteGroup *GetWagonOverrideSpriteSet(EngineID engine, CargoID cargo, byte overriding_engine)
{
const WagonOverrides *wos = &_engine_wagon_overrides[engine];
int i;
// XXX: This could turn out to be a timesink on profiles. We could
// always just dedicate 65535 bytes for an [engine][train] trampoline
// for O(1). Or O(logMlogN) and searching binary tree or smt. like
// that. --pasky
for (i = 0; i < wos->overrides_count; i++) {
const WagonOverride *wo = &wos->overrides[i];
int j;
for (j = 0; j < wo->trains; j++) {
if (wo->train_id[j] == overriding_engine && (wo->cargo == cargo || wo->cargo == GC_DEFAULT)) return wo->group;
}
}
return NULL;
}
/**
* Unload all wagon override sprite groups.
*/
void UnloadWagonOverrides(void)
{
WagonOverrides *wos;
WagonOverride *wo;
EngineID engine;
int i;
for (engine = 0; engine < TOTAL_NUM_ENGINES; engine++) {
wos = &_engine_wagon_overrides[engine];
for (i = 0; i < wos->overrides_count; i++) {
wo = &wos->overrides[i];
wo->group = NULL;
free(wo->train_id);
}
free(wos->overrides);
wos->overrides_count = 0;
wos->overrides = NULL;
}
}
// 0 - 28 are cargos, 29 is default, 30 is the advert (purchase list)
// (It isn't and shouldn't be like this in the GRF files since new cargo types
// may appear in future - however it's more convenient to store it like this in
// memory. --pasky)
static const SpriteGroup *engine_custom_sprites[TOTAL_NUM_ENGINES][NUM_GLOBAL_CID];
static const GRFFile *_engine_grf[TOTAL_NUM_ENGINES];
void SetCustomEngineSprites(EngineID engine, byte cargo, const SpriteGroup *group)
{
assert(engine < TOTAL_NUM_ENGINES);
assert(cargo < NUM_GLOBAL_CID);
if (engine_custom_sprites[engine][cargo] != NULL) {
grfmsg(6, "SetCustomEngineSprites: engine %d cargo %d already has group -- replacing", engine, cargo);
}
engine_custom_sprites[engine][cargo] = group;
}
/**
* Unload all engine sprite groups.
*/
void UnloadCustomEngineSprites(void)
{
EngineID engine;
CargoID cargo;
for (engine = 0; engine < TOTAL_NUM_ENGINES; engine++) {
for (cargo = 0; cargo < NUM_GLOBAL_CID; cargo++) {
engine_custom_sprites[engine][cargo] = NULL;
}
_engine_grf[engine] = 0;
}
}
static const SpriteGroup *heli_rotor_custom_sprites[NUM_AIRCRAFT_ENGINES];
/** Load a rotor override sprite group for an aircraft */
void SetRotorOverrideSprites(EngineID engine, const SpriteGroup *group)
{
assert(engine >= AIRCRAFT_ENGINES_INDEX);
assert(engine < AIRCRAFT_ENGINES_INDEX + NUM_AIRCRAFT_ENGINES);
if (heli_rotor_custom_sprites[engine - AIRCRAFT_ENGINES_INDEX] != NULL) {
grfmsg(6, "SetRotorOverrideSprites: engine %d already has group -- replacing.", engine);
}
heli_rotor_custom_sprites[engine - AIRCRAFT_ENGINES_INDEX] = group;
}
/** Unload all rotor override sprite groups */
void UnloadRotorOverrideSprites(void)
{
EngineID engine;
/* Starting at AIRCRAFT_ENGINES_INDEX may seem pointless, but it means
* the context of EngineID is correct */
for (engine = AIRCRAFT_ENGINES_INDEX; engine < AIRCRAFT_ENGINES_INDEX + NUM_AIRCRAFT_ENGINES; engine++) {
heli_rotor_custom_sprites[engine - AIRCRAFT_ENGINES_INDEX] = NULL;
}
}
/**
* Tie a GRFFile entry to an engine, to allow us to retrieve GRF parameters
* etc during a game.
* @param engine Engine ID to tie the GRFFile to.
* @param file Pointer of GRFFile to tie.
*/
void SetEngineGRF(EngineID engine, const GRFFile *file)
{
assert(engine < TOTAL_NUM_ENGINES);
_engine_grf[engine] = file;
}
/**
* Retrieve the GRFFile tied to an engine
* @param engine Engine ID to retrieve.
* @return Pointer to GRFFile.
*/
const GRFFile *GetEngineGRF(EngineID engine)
{
assert(engine < TOTAL_NUM_ENGINES);
return _engine_grf[engine];
}
/**
* Retrieve the GRF ID of the GRFFile tied to an engine
* @param engine Engine ID to retrieve.
* @return 32 bit GRFID value.
*/
uint32 GetEngineGRFID(EngineID engine)
{
assert(engine < TOTAL_NUM_ENGINES);
return _engine_grf[engine]->grfid;
}
static int MapOldSubType(const Vehicle *v)
{
if (v->type != VEH_Train) return v->subtype;
if (IsTrainEngine(v)) return 0;
if (IsFreeWagon(v)) return 4;
return 2;
}
/* TTDP style aircraft movement states for GRF Action 2 Var 0xE2 */
enum {
AMS_TTDP_HANGAR,
AMS_TTDP_TO_HANGAR,
AMS_TTDP_TO_PAD1,
AMS_TTDP_TO_PAD2,
AMS_TTDP_TO_PAD3,
AMS_TTDP_TO_ENTRY_2_AND_3,
AMS_TTDP_TO_ENTRY_2_AND_3_AND_H,
AMS_TTDP_TO_JUNCTION,
AMS_TTDP_LEAVE_RUNWAY,
AMS_TTDP_TO_INWAY,
AMS_TTDP_TO_RUNWAY,
AMS_TTDP_TO_OUTWAY,
AMS_TTDP_WAITING,
AMS_TTDP_TAKEOFF,
AMS_TTDP_TO_TAKEOFF,
AMS_TTDP_CLIMBING,
AMS_TTDP_FLIGHT_APPROACH,
AMS_TTDP_UNUSED_0x11,
AMS_TTDP_FLIGHT_TO_TOWER,
AMS_TTDP_UNUSED_0x13,
AMS_TTDP_FLIGHT_FINAL,
AMS_TTDP_FLIGHT_DESCENT,
AMS_TTDP_BRAKING,
AMS_TTDP_HELI_TAKEOFF_AIRPORT,
AMS_TTDP_HELI_TO_TAKEOFF_AIRPORT,
AMS_TTDP_HELI_LAND_AIRPORT,
AMS_TTDP_HELI_TAKEOFF_HELIPORT,
AMS_TTDP_HELI_TO_TAKEOFF_HELIPORT,
AMS_TTDP_HELI_LAND_HELIPORT,
};
/**
* Map OTTD aircraft movement states to TTDPatch style movement states
* (VarAction 2 Variable 0xE2)
*/
static byte MapAircraftMovementState(const Vehicle *v)
{
const Station *st = GetStation(v->u.air.targetairport);
byte amdflag = GetAirportMovingData(st->airport_type, v->u.air.pos)->flag;
switch (v->u.air.state) {
case HANGAR:
/* The international airport is a special case as helicopters can land in
* front of the hanger. Helicopters also change their air.state to
* AMED_HELI_LOWER some time before actually descending. */
/* This condition only occurs for helicopters, during descent,
* to a landing by the hanger of an international airport. */
if (amdflag & AMED_HELI_LOWER) return AMS_TTDP_HELI_LAND_AIRPORT;
/* This condition only occurs for helicopters, before starting descent,
* to a landing by the hanger of an international airport. */
if (amdflag & AMED_SLOWTURN) return AMS_TTDP_FLIGHT_TO_TOWER;
// The final two conditions apply to helicopters or aircraft.
/* Has reached hanger? */
if (amdflag & AMED_EXACTPOS) return AMS_TTDP_HANGAR;
// Still moving towards hanger.
return AMS_TTDP_TO_HANGAR;
case TERM1:
if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD1;
return AMS_TTDP_TO_JUNCTION;
case TERM2:
if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD2;
return AMS_TTDP_TO_ENTRY_2_AND_3_AND_H;
case TERM3:
case TERM4:
case TERM5:
case TERM6:
case TERM7:
case TERM8:
/* TTDPatch only has 3 terminals, so treat these states the same */
if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD3;
return AMS_TTDP_TO_ENTRY_2_AND_3_AND_H;
case HELIPAD1:
case HELIPAD2:
case HELIPAD3:
case HELIPAD4: // Will only occur for helicopters.
if (amdflag & AMED_HELI_LOWER) return AMS_TTDP_HELI_LAND_AIRPORT; // Descending.
if (amdflag & AMED_SLOWTURN) return AMS_TTDP_FLIGHT_TO_TOWER; // Still hasn't started descent.
return AMS_TTDP_TO_JUNCTION; // On the ground.
case TAKEOFF: // Moving to takeoff position.
return AMS_TTDP_TO_OUTWAY;
case STARTTAKEOFF: // Accelerating down runway.
return AMS_TTDP_TAKEOFF;
case ENDTAKEOFF: // Ascent
return AMS_TTDP_CLIMBING;
case HELITAKEOFF: // Helicopter is moving to take off position.
switch (st->airport_type) {
case AT_SMALL:
case AT_LARGE:
case AT_METROPOLITAN:
case AT_INTERNATIONAL:
case AT_COMMUTER:
case AT_INTERCON:
/* Note, Helidepot and Helistation are treated as airports as
* helicopters are taking off from ground level. */
case AT_HELIDEPOT:
case AT_HELISTATION:
if (amdflag & AMED_HELI_RAISE) return AMS_TTDP_HELI_TAKEOFF_AIRPORT;
return AMS_TTDP_TO_JUNCTION;
case AT_HELIPORT:
case AT_OILRIG:
return AMS_TTDP_HELI_TAKEOFF_HELIPORT;
default:
return AMS_TTDP_HELI_TAKEOFF_AIRPORT;
}
case FLYING:
return AMS_TTDP_FLIGHT_TO_TOWER;
case LANDING: // Descent
return AMS_TTDP_FLIGHT_DESCENT;
case ENDLANDING: // On the runway braking
if (amdflag & AMED_BRAKE) return AMS_TTDP_BRAKING;
// Landed - moving off runway
return AMS_TTDP_TO_INWAY;
case HELILANDING:
case HELIENDLANDING: // Helicoptor is decending.
if (amdflag & AMED_HELI_LOWER) {
switch (st->airport_type) {
case AT_HELIPORT:
case AT_OILRIG:
return AMS_TTDP_HELI_LAND_HELIPORT;
default:
/* Note, Helidepot and Helistation are treated as airports as
* helicopters are landing at ground level. */
return AMS_TTDP_HELI_LAND_AIRPORT;
}
}
return AMS_TTDP_FLIGHT_TO_TOWER;
default:
return AMS_TTDP_HANGAR;
}
}
/* TTDP style aircraft movement action for GRF Action 2 Var 0xE6 */
enum {
AMA_TTDP_IN_HANGAR,
AMA_TTDP_ON_PAD1,
AMA_TTDP_ON_PAD2,
AMA_TTDP_ON_PAD3,
AMA_TTDP_HANGAR_TO_PAD1,
AMA_TTDP_HANGAR_TO_PAD2,
AMA_TTDP_HANGAR_TO_PAD3,
AMA_TTDP_LANDING_TO_PAD1,
AMA_TTDP_LANDING_TO_PAD2,
AMA_TTDP_LANDING_TO_PAD3,
AMA_TTDP_PAD1_TO_HANGAR,
AMA_TTDP_PAD2_TO_HANGAR,
AMA_TTDP_PAD3_TO_HANGAR,
AMA_TTDP_PAD1_TO_TAKEOFF,
AMA_TTDP_PAD2_TO_TAKEOFF,
AMA_TTDP_PAD3_TO_TAKEOFF,
AMA_TTDP_HANGAR_TO_TAKOFF,
AMA_TTDP_LANDING_TO_HANGAR,
AMA_TTDP_IN_FLIGHT,
};
/**
* Map OTTD aircraft movement states to TTDPatch style movement actions
* (VarAction 2 Variable 0xE6)
* This is not fully supported yet but it's enough for Planeset.
*/
static byte MapAircraftMovementAction(const Vehicle *v)
{
switch (v->u.air.state) {
case HANGAR:
return (v->cur_speed > 0) ? AMA_TTDP_LANDING_TO_HANGAR : AMA_TTDP_IN_HANGAR;
case TERM1:
case HELIPAD1:
return (v->current_order.type == OT_LOADING) ? AMA_TTDP_ON_PAD1 : AMA_TTDP_LANDING_TO_PAD1;
case TERM2:
case HELIPAD2:
return (v->current_order.type == OT_LOADING) ? AMA_TTDP_ON_PAD2 : AMA_TTDP_LANDING_TO_PAD2;
case TERM3:
case TERM4:
case TERM5:
case TERM6:
case TERM7:
case TERM8:
case HELIPAD3:
case HELIPAD4:
return (v->current_order.type == OT_LOADING) ? AMA_TTDP_ON_PAD3 : AMA_TTDP_LANDING_TO_PAD3;
case TAKEOFF: // Moving to takeoff position
case STARTTAKEOFF: // Accelerating down runway
case ENDTAKEOFF: // Ascent
case HELITAKEOFF:
// TODO Need to find which terminal (or hanger) we've come from. How?
return AMA_TTDP_PAD1_TO_TAKEOFF;
case FLYING:
return AMA_TTDP_IN_FLIGHT;
case LANDING: // Descent
case ENDLANDING: // On the runway braking
case HELILANDING:
case HELIENDLANDING:
// TODO Need to check terminal we're landing to. Is it known yet?
return (v->current_order.type == OT_GOTO_DEPOT) ?
AMA_TTDP_LANDING_TO_HANGAR : AMA_TTDP_LANDING_TO_PAD1;
default:
return AMA_TTDP_IN_HANGAR;
}
}
/* TTDP airport types. Used to map our types to TTDPatch's */
enum {
ATP_TTDP_SMALL,
ATP_TTDP_LARGE,
ATP_TTDP_HELIPORT,
ATP_TTDP_OILRIG,
};
/* Vehicle Resolver Functions */
static inline const Vehicle *GRV(const ResolverObject *object)
{
return object->scope == VSG_SCOPE_SELF ? object->u.vehicle.self : object->u.vehicle.parent;
}
static uint32 VehicleGetRandomBits(const ResolverObject *object)
{
return GRV(object) == NULL ? 0 : GRV(object)->random_bits;
}
static uint32 VehicleGetTriggers(const ResolverObject *object)
{
return GRV(object) == NULL ? 0 : GRV(object)->waiting_triggers;
}
static void VehicleSetTriggers(const ResolverObject *object, int triggers)
{
/* Evil cast to get around const-ness. This used to be achieved by an
* innocent looking function pointer cast... Currently I cannot see a
* way of avoiding this without removing consts deep within gui code.
*/
Vehicle *v = (Vehicle*)GRV(object);
/* This function must only be called when processing triggers -- any
* other time is an error. */
assert(object->trigger != 0);
if (v != NULL) v->waiting_triggers = triggers;
}
static uint32 GetVehicleTypeInfo(EngineID engine_type)
{
/* Bit 0 Vehicle type is available on the market
* Bit 1 Vehicle type is in the testing phase
* Bit 2 Exclusive testing offer for a human player active */
const Engine *e = GetEngine(engine_type);
uint32 var = 0;
if (e->player_avail == 0xFF) SETBIT(var, 0);
if (e->age < e->duration_phase_1) SETBIT(var, 1);
if (e->player_avail > 0 && e->player_avail != 0xFF) SETBIT(var, 2);
return var;
}
static uint32 GetGRFParameter(EngineID engine_type, byte parameter)
{
const GRFFile *file = GetEngineGRF(engine_type);
if (parameter >= file->param_end) return 0;
return file->param[parameter];
}
static uint32 VehicleGetVariable(const ResolverObject *object, byte variable, byte parameter, bool *available)
{
const Vehicle *v = GRV(object);
if (v == NULL) {
/* Vehicle does not exist, so we're in a purchase list */
switch (variable) {
case 0x43: return _current_player; /* Owner information */
case 0x46: return 0; /* Motion counter */
case 0x48: return GetVehicleTypeInfo(object->u.vehicle.self_type); /* Vehicle Type Info */
case 0xC4: return clamp(_cur_year, ORIGINAL_BASE_YEAR, ORIGINAL_MAX_YEAR) - ORIGINAL_BASE_YEAR; /* Build year */
case 0xDA: return INVALID_VEHICLE; /* Next vehicle */
case 0x7F: return GetGRFParameter(object->u.vehicle.self_type, parameter); /* Read GRF parameter */
}
*available = false;
return -1;
}
/* Calculated vehicle parameters */
switch (variable) {
case 0x40: /* Get length of consist */
case 0x41: /* Get length of same consecutive wagons */
if (v->type != VEH_Train) return 1;
{
const Vehicle* u;
byte chain_before = 0;
byte chain_after = 0;
for (u = GetFirstVehicleInChain(v); u != v; u = u->next) {
chain_before++;
if (variable == 0x41 && u->engine_type != v->engine_type) chain_before = 0;
}
while (u->next != NULL && (variable == 0x40 || u->next->engine_type == v->engine_type)) {
chain_after++;
u = u->next;
}
return chain_before | chain_after << 8 | (chain_before + chain_after + (variable == 0x41)) << 16;
}
case 0x42: { /* Consist cargo information */
/* XXX Missing support for common refit cycle and property 25 */
const Vehicle *u;
byte cargo_classes = 0;
uint common_cargo_best = 0;
uint common_cargos[NUM_GLOBAL_CID];
byte user_def_data = 0;
CargoID cargo;
CargoID common_cargo_type = GC_PASSENGERS;
/* Reset our arrays */
memset(common_cargos, 0, sizeof(common_cargos));
for (u = v; u != NULL; u = u->next) {
/* Skip empty engines */
if (u->cargo_cap == 0) continue;
/* Map from climate to global cargo ID */
cargo = _global_cargo_id[_opt.landscape][u->cargo_type];
cargo_classes |= _cargo_classes[cargo];
common_cargos[cargo]++;
user_def_data |= RailVehInfo(u->engine_type)->user_def_data;
}
/* Pick the most common cargo type */
for (cargo = 0; cargo < NUM_GLOBAL_CID; cargo++) {
if (common_cargos[cargo] > common_cargo_best) {
common_cargo_best = common_cargos[cargo];
common_cargo_type = cargo;
}
}
return cargo_classes | (common_cargo_type << 8) | (user_def_data << 24);
}
case 0x43: /* Player information */
return v->owner;
case 0x44: /* Aircraft information */
if (v->type != VEH_Aircraft) return -1;
{
const Vehicle *w = v->next;
uint16 altitude = v->z_pos - w->z_pos; /* Aircraft height - shadow height */
byte airporttype;
switch (GetStation(v->u.air.targetairport)->airport_type) {
/* Note, Helidepot and Helistation are treated as small airports
* as they are at ground level. */
case AT_HELIDEPOT:
case AT_HELISTATION:
case AT_COMMUTER:
case AT_SMALL: airporttype = ATP_TTDP_SMALL; break;
case AT_METROPOLITAN:
case AT_INTERNATIONAL:
case AT_INTERCON:
case AT_LARGE: airporttype = ATP_TTDP_LARGE; break;
case AT_HELIPORT: airporttype = ATP_TTDP_HELIPORT; break;
case AT_OILRIG: airporttype = ATP_TTDP_OILRIG; break;
default: airporttype = ATP_TTDP_LARGE; break;
}
return (altitude << 8) | airporttype;
}
case 0x46: /* Motion counter */
return v->motion_counter;
case 0x47: { /* Vehicle cargo info */
/* Format: ccccwwtt
* tt - the cargo type transported by the vehicle,
* translated if a translation table has been installed.
* ww - cargo unit weight in 1/16 tons, same as cargo prop. 0F.
* cccc - the cargo class value of the cargo transported by the vehicle.
*/
CargoID cid = _global_cargo_id[_opt.landscape][v->cargo_type];
return (_cargo_classes[cid] << 16) | (_cargoc.weights[v->cargo_type] << 8) | cid;
}
case 0x48: return GetVehicleTypeInfo(v->engine_type); /* Vehicle Type Info */
/* Variables which use the parameter */
case 0x60: /* Count consist's engine ID occurance */
if (v->type != VEH_Train) return v->engine_type == parameter;
{
uint count = 0;
for (; v != NULL; v = v->next) {
if (v->engine_type == parameter) count++;
}
return count;
}
case 0x7F: return GetGRFParameter(v->engine_type, parameter); /* Read GRF parameter */
}
/* General vehicle properties */
switch (variable - 0x80) {
case 0x00: return v->type;
case 0x01: return MapOldSubType(v);
case 0x04: return v->index;
case 0x05: return GB(v->index, 8, 8);
case 0x0A: return PackOrder(&v->current_order);
case 0x0B: return GB(PackOrder(&v->current_order), 8, 8);
case 0x0C: return v->num_orders;
case 0x0D: return v->cur_order_index;
case 0x10: return v->load_unload_time_rem;
case 0x11: return GB(v->load_unload_time_rem, 8, 8);
case 0x12: return max(v->date_of_last_service - DAYS_TILL_ORIGINAL_BASE_YEAR, 0);
case 0x13: return GB(max(v->date_of_last_service - DAYS_TILL_ORIGINAL_BASE_YEAR, 0), 8, 8);
case 0x14: return v->service_interval;
case 0x15: return GB(v->service_interval, 8, 8);
case 0x16: return v->last_station_visited;
case 0x17: return v->tick_counter;
case 0x18: return v->max_speed;
case 0x19: return GB(v->max_speed, 8, 8);
case 0x1A: return v->x_pos;
case 0x1B: return GB(v->x_pos, 8, 8);
case 0x1C: return v->y_pos;
case 0x1D: return GB(v->y_pos, 8, 8);
case 0x1E: return v->z_pos;
case 0x1F: return object->info_view ? DIR_W : v->direction;
case 0x28: return v->cur_image;
case 0x29: return GB(v->cur_image, 8, 8);
case 0x32: return v->vehstatus;
case 0x33: return 0; // non-existent high byte of vehstatus
case 0x34: return v->cur_speed;
case 0x35: return GB(v->cur_speed, 8, 8);
case 0x36: return v->subspeed;
case 0x37: return v->acceleration;
case 0x39: return v->cargo_type;
case 0x3A: return v->cargo_cap;
case 0x3B: return GB(v->cargo_cap, 8, 8);
case 0x3C: return v->cargo_count;
case 0x3D: return GB(v->cargo_count, 8, 8);
case 0x3E: return v->cargo_source;
case 0x3F: return v->cargo_days;
case 0x40: return v->age;
case 0x41: return GB(v->age, 8, 8);
case 0x42: return v->max_age;
case 0x43: return GB(v->max_age, 8, 8);
case 0x44: return clamp(v->build_year, ORIGINAL_BASE_YEAR, ORIGINAL_MAX_YEAR) - ORIGINAL_BASE_YEAR;
case 0x45: return v->unitnumber;
case 0x46: return v->engine_type;
case 0x47: return GB(v->engine_type, 8, 8);
case 0x48: return v->spritenum;
case 0x49: return v->day_counter;
case 0x4A: return v->breakdowns_since_last_service;
case 0x4B: return v->breakdown_ctr;
case 0x4C: return v->breakdown_delay;
case 0x4D: return v->breakdown_chance;
case 0x4E: return v->reliability;
case 0x4F: return GB(v->reliability, 8, 8);
case 0x50: return v->reliability_spd_dec;
case 0x51: return GB(v->reliability_spd_dec, 8, 8);
case 0x52: return v->profit_this_year;
case 0x53: return GB(v->profit_this_year, 8, 24);
case 0x54: return GB(v->profit_this_year, 16, 16);
case 0x55: return GB(v->profit_this_year, 24, 8);
case 0x56: return v->profit_last_year;
case 0x57: return GB(v->profit_last_year, 8, 24);
case 0x58: return GB(v->profit_last_year, 16, 16);
case 0x59: return GB(v->profit_last_year, 24, 8);
case 0x5A: return v->next == NULL ? INVALID_VEHICLE : v->next->index;
case 0x5C: return v->value;
case 0x5D: return GB(v->value, 8, 24);
case 0x5E: return GB(v->value, 16, 16);
case 0x5F: return GB(v->value, 24, 8);
case 0x60: return v->string_id;
case 0x61: return GB(v->string_id, 8, 8);
case 0x72: return v->cargo_subtype;
case 0x7A: return v->random_bits;
case 0x7B: return v->waiting_triggers;
}
/* Vehicle specific properties */
switch (v->type) {
case VEH_Train:
switch (variable - 0x80) {
case 0x62: return v->u.rail.track;
case 0x66: return v->u.rail.railtype;
case 0x73: return v->u.rail.cached_veh_length;
case 0x74: return v->u.rail.cached_power;
case 0x75: return GB(v->u.rail.cached_power, 8, 24);
case 0x76: return GB(v->u.rail.cached_power, 16, 16);
case 0x77: return GB(v->u.rail.cached_power, 24, 8);
case 0x7C: return v->first->index;
case 0x7D: return GB(v->first->index, 8, 8);
case 0x7F: return 0; // Used for vehicle reversing hack in TTDP
}
break;
case VEH_Road:
switch (variable - 0x80) {
case 0x62: return v->u.road.state;
case 0x64: return v->u.road.blocked_ctr;
case 0x65: return GB(v->u.road.blocked_ctr, 8, 8);
case 0x66: return v->u.road.overtaking;
case 0x67: return v->u.road.overtaking_ctr;
case 0x68: return v->u.road.crashed_ctr;
case 0x69: return GB(v->u.road.crashed_ctr, 8, 8);
}
break;
case VEH_Aircraft:
switch (variable - 0x80) {
case 0x62: return MapAircraftMovementState(v); // Current movement state
case 0x63: return v->u.air.targetairport; // Airport to which the action refers
case 0x66: return MapAircraftMovementAction(v); // Current movement action
}
break;
}
DEBUG(grf, 1, "Unhandled vehicle property 0x%X, type 0x%X", variable, v->type);
*available = false;
return -1;
}
static const SpriteGroup *VehicleResolveReal(const ResolverObject *object, const SpriteGroup *group)
{
const Vehicle *v = object->u.vehicle.self;
uint totalsets;
uint set;
bool in_motion;
if (v == NULL) return group->g.real.loading[0];
if (v->type == VEH_Train) {
in_motion = GetFirstVehicleInChain(v)->current_order.type != OT_LOADING;
} else {
in_motion = v->current_order.type != OT_LOADING;
}
totalsets = in_motion ? group->g.real.num_loaded : group->g.real.num_loading;
if (v->cargo_count == v->cargo_cap || totalsets == 1) {
set = totalsets - 1;
} else if (v->cargo_count == 0 || totalsets == 2) {
set = 0;
} else {
set = v->cargo_count * (totalsets - 2) / max(1, v->cargo_cap) + 1;
}
return in_motion ? group->g.real.loaded[set] : group->g.real.loading[set];
}
static inline void NewVehicleResolver(ResolverObject *res, EngineID engine_type, const Vehicle *v)
{
res->GetRandomBits = &VehicleGetRandomBits;
res->GetTriggers = &VehicleGetTriggers;
res->SetTriggers = &VehicleSetTriggers;
res->GetVariable = &VehicleGetVariable;
res->ResolveReal = &VehicleResolveReal;
res->u.vehicle.self = v;
res->u.vehicle.parent = (v != NULL && v->type == VEH_Train) ? GetFirstVehicleInChain(v) : v;
res->u.vehicle.self_type = engine_type;
res->info_view = false;
res->callback = 0;
res->callback_param1 = 0;
res->callback_param2 = 0;
res->last_value = 0;
res->trigger = 0;
res->reseed = 0;
}
/** Retrieve the SpriteGroup for the specified vehicle.
* If the vehicle is not specified, the purchase list group for the engine is
* chosen. For trains, an additional engine override lookup is performed.
* @param engine Engine type of the vehicle.
* @param v The vehicle itself.
* @returns The selected SpriteGroup for the vehicle.
*/
static const SpriteGroup *GetVehicleSpriteGroup(EngineID engine, const Vehicle *v)
{
const SpriteGroup *group;
CargoID cargo;
if (v == NULL) {
cargo = GC_PURCHASE;
} else {
cargo = _global_cargo_id[_opt.landscape][v->cargo_type];
assert(cargo != GC_INVALID);
if (v->type == VEH_Train) {
group = GetWagonOverrideSpriteSet(engine, cargo, v->u.rail.first_engine);
if (group != NULL) return group;
}
}
group = engine_custom_sprites[engine][cargo];
if (group != NULL) return group;
/* Fall back to the default set if the selected cargo type is not defined */
return engine_custom_sprites[engine][GC_DEFAULT];
}
SpriteID GetCustomEngineSprite(EngineID engine, const Vehicle *v, Direction direction)
{
const SpriteGroup *group;
ResolverObject object;
NewVehicleResolver(&object, engine, v);
group = Resolve(GetVehicleSpriteGroup(engine, v), &object);
if (group == NULL || group->type != SGT_RESULT) return 0;
return group->g.result.sprite + (direction % group->g.result.num_sprites);
}
SpriteID GetRotorOverrideSprite(EngineID engine, const Vehicle *v, bool info_view)
{
const SpriteGroup *group;
ResolverObject object;
assert(engine >= AIRCRAFT_ENGINES_INDEX);
assert(engine < AIRCRAFT_ENGINES_INDEX + NUM_AIRCRAFT_ENGINES);
/* Only valid for helicopters */
assert(!(AircraftVehInfo(engine)->subtype & AIR_CTOL));
NewVehicleResolver(&object, engine, v);
object.info_view = info_view;
group = heli_rotor_custom_sprites[engine - AIRCRAFT_ENGINES_INDEX];
group = Resolve(group, &object);
if (group == NULL || group->type != SGT_RESULT) return 0;
if (v == NULL) return group->g.result.sprite;
return group->g.result.sprite + (info_view ? 0 : (v->next->next->u.air.state % group->g.result.num_sprites));
}
/**
* Check if a wagon is currently using a wagon override
* @param v The wagon to check
* @return true if it is using an override, false otherwise
*/
bool UsesWagonOverride(const Vehicle* v)
{
assert(v->type == VEH_Train);
return GetWagonOverrideSpriteSet(v->engine_type, _global_cargo_id[_opt.landscape][v->cargo_type], v->u.rail.first_engine) != NULL;
}
/**
* Evaluate a newgrf callback for vehicles
* @param callback The callback to evalute
* @param param1 First parameter of the callback
* @param param2 Second parameter of the callback
* @param engine Engine type of the vehicle to evaluate the callback for
* @param vehicle The vehicle to evaluate the callback for, or NULL if it doesnt exist yet
* @return The value the callback returned, or CALLBACK_FAILED if it failed
*/
uint16 GetVehicleCallback(uint16 callback, uint32 param1, uint32 param2, EngineID engine, const Vehicle *v)
{
const SpriteGroup *group;
ResolverObject object;
NewVehicleResolver(&object, engine, v);
object.callback = callback;
object.callback_param1 = param1;
object.callback_param2 = param2;
group = Resolve(GetVehicleSpriteGroup(engine, v), &object);
if (group == NULL || group->type != SGT_CALLBACK) return CALLBACK_FAILED;
return group->g.callback.result;
}
/**
* Evaluate a newgrf callback for vehicles with a different vehicle for parent scope.
* @param callback The callback to evalute
* @param param1 First parameter of the callback
* @param param2 Second parameter of the callback
* @param engine Engine type of the vehicle to evaluate the callback for
* @param v The vehicle to evaluate the callback for, or NULL if it doesnt exist yet
* @param parent The vehicle to use for parent scope
* @return The value the callback returned, or CALLBACK_FAILED if it failed
*/
uint16 GetVehicleCallbackParent(uint16 callback, uint32 param1, uint32 param2, EngineID engine, const Vehicle *v, const Vehicle *parent)
{
const SpriteGroup *group;
ResolverObject object;
NewVehicleResolver(&object, engine, v);
object.callback = callback;
object.callback_param1 = param1;
object.callback_param2 = param2;
object.u.vehicle.parent = parent;
group = Resolve(GetVehicleSpriteGroup(engine, v), &object);
if (group == NULL || group->type != SGT_CALLBACK) return CALLBACK_FAILED;
return group->g.callback.result;
}
static void DoTriggerVehicle(Vehicle *v, VehicleTrigger trigger, byte base_random_bits, bool first)
{
const SpriteGroup *group;
ResolverObject object;
byte new_random_bits;
/* We can't trigger a non-existent vehicle... */
assert(v != NULL);
NewVehicleResolver(&object, v->engine_type, v);
object.trigger = trigger;
group = Resolve(GetVehicleSpriteGroup(v->engine_type, v), &object);
new_random_bits = Random();
v->random_bits &= ~object.reseed;
v->random_bits |= (first ? new_random_bits : base_random_bits) & object.reseed;
switch (trigger) {
case VEHICLE_TRIGGER_NEW_CARGO:
/* All vehicles in chain get ANY_NEW_CARGO trigger now.
* So we call it for the first one and they will recurse. */
/* Indexing part of vehicle random bits needs to be
* same for all triggered vehicles in the chain (to get
* all the random-cargo wagons carry the same cargo,
* i.e.), so we give them all the NEW_CARGO triggered
* vehicle's portion of random bits. */
assert(first);
DoTriggerVehicle(GetFirstVehicleInChain(v), VEHICLE_TRIGGER_ANY_NEW_CARGO, new_random_bits, false);
break;
case VEHICLE_TRIGGER_DEPOT:
/* We now trigger the next vehicle in chain recursively.
* The random bits portions may be different for each
* vehicle in chain. */
if (v->next != NULL) DoTriggerVehicle(v->next, trigger, 0, true);
break;
case VEHICLE_TRIGGER_EMPTY:
/* We now trigger the next vehicle in chain
* recursively. The random bits portions must be same
* for each vehicle in chain, so we give them all
* first chained vehicle's portion of random bits. */
if (v->next != NULL) DoTriggerVehicle(v->next, trigger, first ? new_random_bits : base_random_bits, false);
break;
case VEHICLE_TRIGGER_ANY_NEW_CARGO:
/* Now pass the trigger recursively to the next vehicle
* in chain. */
assert(!first);
if (v->next != NULL) DoTriggerVehicle(v->next, VEHICLE_TRIGGER_ANY_NEW_CARGO, base_random_bits, false);
break;
}
}
void TriggerVehicle(Vehicle *v, VehicleTrigger trigger)
{
if (trigger == VEHICLE_TRIGGER_DEPOT) {
// store that the vehicle entered a depot this tick
VehicleEnteredDepotThisTick(v);
}
DoTriggerVehicle(v, trigger, 0, true);
}
StringID _engine_custom_names[TOTAL_NUM_ENGINES];
void SetCustomEngineName(EngineID engine, StringID name)
{
assert(engine < lengthof(_engine_custom_names));
_engine_custom_names[engine] = name;
}
void UnloadCustomEngineNames(void)
{
EngineID i;
for (i = 0; i < TOTAL_NUM_ENGINES; i++) {
_engine_custom_names[i] = 0;
}
}
StringID GetCustomEngineName(EngineID engine)
{
return _engine_custom_names[engine] == 0 ? _engine_name_strings[engine] : _engine_custom_names[engine];
}
// Functions for changing the order of vehicle purchase lists
// This is currently only implemented for rail vehicles.
static EngineID _engine_list_order[NUM_TRAIN_ENGINES];
static byte _engine_list_position[NUM_TRAIN_ENGINES];
void ResetEngineListOrder(void)
{
EngineID i;
for (i = 0; i < NUM_TRAIN_ENGINES; i++) {
_engine_list_order[i] = i;
_engine_list_position[i] = i;
}
}
/**
* Get the EngineID at position pos.
* Used when drawing a(n unsorted) list of engines.
* @param pos List position/
* @return The EngineID at the requested position.
*/
EngineID GetRailVehAtPosition(EngineID pos)
{
if (pos < NUM_TRAIN_ENGINES) return _engine_list_order[pos];
return pos;
}
/**
* Get the list position of an engine.
* Used when sorting a list of engines.
* @param engine ID of the engine.
* @return The list position of the engine.
*/
uint16 ListPositionOfEngine(EngineID engine)
{
if (engine < NUM_TRAIN_ENGINES) return _engine_list_position[engine];
return engine;
}
void AlterRailVehListOrder(EngineID engine, EngineID target)
{
EngineID i;
bool moving = false;
if (engine == target) return;
// First, remove our ID from the list.
for (i = 0; i < NUM_TRAIN_ENGINES - 1; i++) {
if (_engine_list_order[i] == engine) moving = true;
if (moving) _engine_list_order[i] = _engine_list_order[i + 1];
}
// Now, insert it again, before the target engine.
for (i = NUM_TRAIN_ENGINES - 1; i > 0; i--) {
_engine_list_order[i] = _engine_list_order[i - 1];
if (_engine_list_order[i] == target) {
_engine_list_order[i - 1] = engine;
break;
}
}
// Update the engine list position (a reverse of engine list order)
for (i = 0; i < NUM_TRAIN_ENGINES; i++) {
_engine_list_position[_engine_list_order[i]] = i;
}
}