mirror of
https://github.com/JGRennison/OpenTTD-patches.git
synced 2024-11-13 07:10:57 +00:00
827 lines
30 KiB
C
827 lines
30 KiB
C
/* $Id$ */
|
|
|
|
#include "stdafx.h"
|
|
#include <math.h>
|
|
#include "openttd.h"
|
|
#include "clear_map.h"
|
|
#include "functions.h"
|
|
#include "map.h"
|
|
#include "table/strings.h"
|
|
#include "clear_map.h"
|
|
#include "tile.h"
|
|
#include "variables.h"
|
|
#include "void_map.h"
|
|
#include "tgp.h"
|
|
#include "console.h"
|
|
#include "genworld.h"
|
|
|
|
/*
|
|
* OTTD Perlin Noise Landscape Generator, aka TerraGenesis Perlin
|
|
*
|
|
* Quickie guide to Perlin Noise
|
|
* Perlin noise is a predictable pseudo random number sequence. By generating
|
|
* it in 2 dimensions, it becomes a useful random map, that for a given seed
|
|
* and starting X & Y is entirely predictable. On the face of it, that may not
|
|
* be useful. However, it means that if you want to replay a map in a different
|
|
* terrain, or just vary the sea level, you just re-run the generator with the
|
|
* same seed. The seed is an int32, and is randomised on each run of New Game.
|
|
* The Scenario Generator does not randomise the value, so that you can
|
|
* experiment with one terrain until you are happy, or click "Random" for a new
|
|
* random seed.
|
|
*
|
|
* Perlin Noise is a series of "octaves" of random noise added together. By
|
|
* reducing the amplitude of the noise with each octave, the first octave of
|
|
* noise defines the main terrain sweep, the next the ripples on that, and the
|
|
* next the ripples on that. I use 6 octaves, with the amplitude controlled by
|
|
* a power ratio, usually known as a persistence or p value. This I vary by the
|
|
* smoothness selection, as can be seen in the table below. The closer to 1,
|
|
* the more of that octave is added. Each octave is however raised to the power
|
|
* of its position in the list, so the last entry in the "smooth" row, 0.35, is
|
|
* raised to the power of 6, so can only add 0.001838... of the amplitude to
|
|
* the running total.
|
|
*
|
|
* In other words; the first p value sets the general shape of the terrain, the
|
|
* second sets the major variations to that, ... until finally the smallest
|
|
* bumps are added.
|
|
*
|
|
* Usefully, this routine is totally scaleable; so when 32bpp comes along, the
|
|
* terrain can be as bumpy as you like! It is also infinitely expandable; a
|
|
* single random seed terrain continues in X & Y as far as you care to
|
|
* calculate. In theory, we could use just one seed value, but randomly select
|
|
* where in the Perlin XY space we use for the terrain. Personally I prefer
|
|
* using a simple (0, 0) to (X, Y), with a varying seed.
|
|
*
|
|
*
|
|
* Other things i have had to do: mountainous wasnt mountainous enough, and
|
|
* since we only have 0..15 heights available, I add a second generated map
|
|
* (with a modified seed), onto the original. This generally raises the
|
|
* terrain, which then needs scaling back down. Overall effect is a general
|
|
* uplift.
|
|
*
|
|
* However, the values on the top of mountains are then almost guaranteed to go
|
|
* too high, so large flat plateaus appeared at height 15. To counter this, I
|
|
* scale all heights above 12 to proportion up to 15. It still makes the
|
|
* mountains have flatish tops, rather than craggy peaks, but at least they
|
|
* arent smooth as glass.
|
|
*
|
|
*
|
|
* For a full discussion of Perlin Noise, please visit:
|
|
* http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
|
|
*
|
|
*
|
|
* Evolution II
|
|
*
|
|
* The algorithm as described in the above link suggests to compute each tile height
|
|
* as composition of several noise waves. Some of them are computed directly by
|
|
* noise(x, y) function, some are calculated using linear approximation. Our
|
|
* first implementation of perlin_noise_2D() used 4 noise(x, y) calls plus
|
|
* 3 linear interpolations. It was called 6 times for each tile. This was a bit
|
|
* CPU expensive.
|
|
*
|
|
* The following implementation uses optimized algorithm that should produce
|
|
* the same quality result with much less computations, but more memory accesses.
|
|
* The overal speedup should be 300% to 800% depending on CPU and memory speed.
|
|
*
|
|
* I will try to explain it on the example below:
|
|
*
|
|
* Have a map of 4 x 4 tiles, our simplifiead noise generator produces only two
|
|
* values -1 and +1, use 3 octaves with wave lenght 1, 2 and 4, with amplitudes
|
|
* 3, 2, 1. Original algorithm produces:
|
|
*
|
|
* h00 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 0/4) + lerp(lerp(-2, 2, 0/2), lerp( 2, -2, 0/2), 0/2) + -1 = lerp(-3.0, 3.0, 0/4) + lerp(-2, 2, 0/2) + -1 = -3.0 + -2 + -1 = -6.0
|
|
* h01 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 0/4) + lerp(lerp(-2, 2, 1/2), lerp( 2, -2, 1/2), 0/2) + 1 = lerp(-1.5, 1.5, 0/4) + lerp( 0, 0, 0/2) + 1 = -1.5 + 0 + 1 = -0.5
|
|
* h02 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 0/4) + lerp(lerp( 2, -2, 0/2), lerp(-2, 2, 0/2), 0/2) + -1 = lerp( 0, 0, 0/4) + lerp( 2, -2, 0/2) + -1 = 0 + 2 + -1 = 1.0
|
|
* h03 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 0/4) + lerp(lerp( 2, -2, 1/2), lerp(-2, 2, 1/2), 0/2) + 1 = lerp( 1.5, -1.5, 0/4) + lerp( 0, 0, 0/2) + 1 = 1.5 + 0 + 1 = 2.5
|
|
*
|
|
* h10 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 1/4) + lerp(lerp(-2, 2, 0/2), lerp( 2, -2, 0/2), 1/2) + 1 = lerp(-3.0, 3.0, 1/4) + lerp(-2, 2, 1/2) + 1 = -1.5 + 0 + 1 = -0.5
|
|
* h11 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 1/4) + lerp(lerp(-2, 2, 1/2), lerp( 2, -2, 1/2), 1/2) + -1 = lerp(-1.5, 1.5, 1/4) + lerp( 0, 0, 1/2) + -1 = -0.75 + 0 + -1 = -1.75
|
|
* h12 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 1/4) + lerp(lerp( 2, -2, 0/2), lerp(-2, 2, 0/2), 1/2) + 1 = lerp( 0, 0, 1/4) + lerp( 2, -2, 1/2) + 1 = 0 + 0 + 1 = 1.0
|
|
* h13 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 1/4) + lerp(lerp( 2, -2, 1/2), lerp(-2, 2, 1/2), 1/2) + -1 = lerp( 1.5, -1.5, 1/4) + lerp( 0, 0, 1/2) + -1 = 0.75 + 0 + -1 = -0.25
|
|
*
|
|
*
|
|
* Optimization 1:
|
|
*
|
|
* 1) we need to allocate a bit more tiles: (size_x + 1) * (size_y + 1) = (5 * 5):
|
|
*
|
|
* 2) setup corner values using amplitude 3
|
|
* { -3.0 X X X 3.0 }
|
|
* { X X X X X }
|
|
* { X X X X X }
|
|
* { X X X X X }
|
|
* { 3.0 X X X -3.0 }
|
|
*
|
|
* 3a) interpolate values in the middle
|
|
* { -3.0 X 0.0 X 3.0 }
|
|
* { X X X X X }
|
|
* { 0.0 X 0.0 X 0.0 }
|
|
* { X X X X X }
|
|
* { 3.0 X 0.0 X -3.0 }
|
|
*
|
|
* 3b) add patches with amplitude 2 to them
|
|
* { -5.0 X 2.0 X 1.0 }
|
|
* { X X X X X }
|
|
* { 2.0 X -2.0 X 2.0 }
|
|
* { X X X X X }
|
|
* { 1.0 X 2.0 X -5.0 }
|
|
*
|
|
* 4a) interpolate values in the middle
|
|
* { -5.0 -1.5 2.0 1.5 1.0 }
|
|
* { -1.5 -0.75 0.0 0.75 1.5 }
|
|
* { 2.0 0.0 -2.0 0.0 2.0 }
|
|
* { 1.5 0.75 0.0 -0.75 -1.5 }
|
|
* { 1.0 1.5 2.0 -1.5 -5.0 }
|
|
*
|
|
* 4b) add patches with amplitude 1 to them
|
|
* { -6.0 -0.5 1.0 2.5 0.0 }
|
|
* { -0.5 -1.75 1.0 -0.25 2.5 }
|
|
* { 1.0 1.0 -3.0 1.0 1.0 }
|
|
* { 2.5 -0.25 1.0 -1.75 -0.5 }
|
|
* { 0.0 2.5 1.0 -0.5 -6.0 }
|
|
*
|
|
*
|
|
*
|
|
* Optimization 2:
|
|
*
|
|
* As you can see above, each noise function was called just once. Therefore
|
|
* we don't need to use noise function that calculates the noise from x, y and
|
|
* some prime. The same quality result we can obtain using standard Random()
|
|
* function instead.
|
|
*
|
|
*/
|
|
|
|
#ifndef M_PI_2
|
|
#define M_PI_2 1.57079632679489661923
|
|
#define M_PI 3.14159265358979323846
|
|
#endif /* M_PI_2 */
|
|
|
|
/** Fixed point type for heights */
|
|
typedef int16 height_t;
|
|
static const int height_decimal_bits = 4;
|
|
static const height_t _invalid_height = -32768;
|
|
|
|
/** Fixed point array for amplitudes (and percent values) */
|
|
typedef int amplitude_t;
|
|
static const int amplitude_decimal_bits = 10;
|
|
|
|
/** Height map - allocated array of heights (MapSizeX() + 1) x (MapSizeY() + 1) */
|
|
typedef struct HeightMap
|
|
{
|
|
height_t *h; //! array of heights
|
|
uint dim_x; //! height map size_x MapSizeX() + 1
|
|
uint total_size; //! height map total size
|
|
uint size_x; //! MapSizeX()
|
|
uint size_y; //! MapSizeY()
|
|
} HeightMap;
|
|
|
|
/** Global height map instance */
|
|
static HeightMap _height_map = {NULL, 0, 0, 0, 0};
|
|
|
|
/** Height map accessors */
|
|
#define HeightMapXY(x, y) _height_map.h[(x) + (y) * _height_map.dim_x]
|
|
|
|
/** Conversion: int to height_t */
|
|
#define I2H(i) ((i) << height_decimal_bits)
|
|
/** Conversion: height_t to int */
|
|
#define H2I(i) ((i) >> height_decimal_bits)
|
|
|
|
/** Conversion: int to amplitude_t */
|
|
#define I2A(i) ((i) << amplitude_decimal_bits)
|
|
/** Conversion: amplitude_t to int */
|
|
#define A2I(i) ((i) >> amplitude_decimal_bits)
|
|
|
|
/** Conversion: amplitude_t to height_t */
|
|
#define A2H(a) ((height_decimal_bits < amplitude_decimal_bits) \
|
|
? ((a) >> (amplitude_decimal_bits - height_decimal_bits)) \
|
|
: ((a) << (height_decimal_bits - amplitude_decimal_bits)))
|
|
|
|
/** Walk through all items of _height_map.h */
|
|
#define FOR_ALL_TILES_IN_HEIGHT(h) for (h = _height_map.h; h < &_height_map.h[_height_map.total_size]; h++)
|
|
|
|
/** Noise amplitudes (multiplied by 1024)
|
|
* - indexed by "smoothness setting" and log2(frequency) */
|
|
static const amplitude_t _amplitudes_by_smoothness_and_frequency[4][12] = {
|
|
// Very smooth
|
|
{1000, 350, 123, 43, 15, 1, 1, 0, 0, 0, 0, 0},
|
|
// Smooth
|
|
{1000, 1000, 403, 200, 64, 8, 1, 0, 0, 0, 0, 0},
|
|
// Rough
|
|
{1000, 1200, 800, 500, 200, 16, 4, 0, 0, 0, 0, 0},
|
|
// Very Rough
|
|
{1500, 1000, 1200, 1000, 500, 32, 20, 0, 0, 0, 0, 0},
|
|
};
|
|
|
|
/** Desired water percentage (100% == 1024) - indexed by _opt.diff.quantity_sea_lakes */
|
|
static const amplitude_t _water_percent[4] = {20, 80, 250, 400};
|
|
|
|
/** Desired maximum height - indexed by _opt.diff.terrain_type */
|
|
static const int8 _max_height[4] = {
|
|
6, // Very flat
|
|
9, // Flat
|
|
12, // Hilly
|
|
15 // Mountainous
|
|
};
|
|
|
|
/** Check if a X/Y set are within the map. */
|
|
static inline bool IsValidXY(uint x, uint y)
|
|
{
|
|
return ((int)x) >= 0 && x < _height_map.size_x && ((int)y) >= 0 && y < _height_map.size_y;
|
|
}
|
|
|
|
|
|
/** Allocate array of (MapSizeX()+1)*(MapSizeY()+1) heights and init the _height_map structure members */
|
|
static inline bool AllocHeightMap(void)
|
|
{
|
|
height_t *h;
|
|
|
|
_height_map.size_x = MapSizeX();
|
|
_height_map.size_y = MapSizeY();
|
|
|
|
/* Allocate memory block for height map row pointers */
|
|
_height_map.total_size = (_height_map.size_x + 1) * (_height_map.size_y + 1);
|
|
_height_map.dim_x = _height_map.size_x + 1;
|
|
_height_map.h = calloc(_height_map.total_size, sizeof(*_height_map.h));
|
|
if (_height_map.h == NULL) return false;
|
|
|
|
/* Iterate through height map initialize values */
|
|
FOR_ALL_TILES_IN_HEIGHT(h) *h = _invalid_height;
|
|
|
|
return true;
|
|
}
|
|
|
|
/** Free height map */
|
|
static inline void FreeHeightMap(void)
|
|
{
|
|
if (_height_map.h == NULL) return;
|
|
free(_height_map.h);
|
|
_height_map.h = NULL;
|
|
}
|
|
|
|
/** RandomHeight() generator */
|
|
static inline height_t RandomHeight(amplitude_t rMax)
|
|
{
|
|
amplitude_t ra = (Random() << 16) | (Random() & 0x0000FFFF);
|
|
height_t rh;
|
|
/* Scale the amplitude for better resolution */
|
|
rMax *= 16;
|
|
/* Spread height into range -rMax..+rMax */
|
|
rh = A2H(ra % (2 * rMax + 1) - rMax);
|
|
return rh;
|
|
}
|
|
|
|
/** One interpolation and noise round */
|
|
static bool ApplyNoise(uint log_frequency, amplitude_t amplitude)
|
|
{
|
|
uint size_min = min(_height_map.size_x, _height_map.size_y);
|
|
uint step = size_min >> log_frequency;
|
|
uint x, y;
|
|
|
|
assert(_height_map.h != NULL);
|
|
|
|
/* Are we finished? */
|
|
if (step == 0) return false;
|
|
|
|
if (log_frequency == 0) {
|
|
/* This is first round, we need to establish base heights with step = size_min */
|
|
for (y = 0; y <= _height_map.size_y; y += step) {
|
|
for (x = 0; x <= _height_map.size_x; x += step) {
|
|
height_t height = (amplitude > 0) ? RandomHeight(amplitude) : 0;
|
|
HeightMapXY(x, y) = height;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* It is regular iteration round.
|
|
* Interpolate height values at odd x, even y tiles */
|
|
for (y = 0; y <= _height_map.size_y; y += 2 * step) {
|
|
for (x = 0; x < _height_map.size_x; x += 2 * step) {
|
|
height_t h00 = HeightMapXY(x + 0 * step, y);
|
|
height_t h02 = HeightMapXY(x + 2 * step, y);
|
|
height_t h01 = (h00 + h02) / 2;
|
|
HeightMapXY(x + 1 * step, y) = h01;
|
|
}
|
|
}
|
|
|
|
/* Interpolate height values at odd y tiles */
|
|
for (y = 0; y < _height_map.size_y; y += 2 * step) {
|
|
for (x = 0; x <= _height_map.size_x; x += step) {
|
|
height_t h00 = HeightMapXY(x, y + 0 * step);
|
|
height_t h20 = HeightMapXY(x, y + 2 * step);
|
|
height_t h10 = (h00 + h20) / 2;
|
|
HeightMapXY(x, y + 1 * step) = h10;
|
|
}
|
|
}
|
|
|
|
for (y = 0; y <= _height_map.size_y; y += step) {
|
|
for (x = 0; x <= _height_map.size_x; x += step) {
|
|
HeightMapXY(x, y) += RandomHeight(amplitude);
|
|
}
|
|
}
|
|
return (step > 1);
|
|
}
|
|
|
|
/** Base Perlin noise generator - fills height map with raw Perlin noise */
|
|
static void HeightMapGenerate(void)
|
|
{
|
|
uint size_min = min(_height_map.size_x, _height_map.size_y);
|
|
uint iteration_round = 0;
|
|
amplitude_t amplitude;
|
|
bool continue_iteration;
|
|
uint log_size_min, log_frequency_min;
|
|
int log_frequency;
|
|
|
|
/* Find first power of two that fits */
|
|
for (log_size_min = 6; (1U << log_size_min) < size_min; log_size_min++) { }
|
|
log_frequency_min = log_size_min - 6;
|
|
|
|
do {
|
|
log_frequency = iteration_round - log_frequency_min;
|
|
if (log_frequency >= 0) {
|
|
amplitude = _amplitudes_by_smoothness_and_frequency[_patches.tgen_smoothness][log_frequency];
|
|
} else {
|
|
amplitude = 0;
|
|
}
|
|
continue_iteration = ApplyNoise(iteration_round, amplitude);
|
|
iteration_round++;
|
|
} while(continue_iteration);
|
|
}
|
|
|
|
/** Returns min, max and average height from height map */
|
|
static void HeightMapGetMinMaxAvg(height_t *min_ptr, height_t *max_ptr, height_t *avg_ptr)
|
|
{
|
|
height_t h_min, h_max, h_avg, *h;
|
|
int64 h_accu = 0;
|
|
h_min = h_max = HeightMapXY(0, 0);
|
|
|
|
/* Get h_min, h_max and accumulate heights into h_accu */
|
|
FOR_ALL_TILES_IN_HEIGHT(h) {
|
|
if (*h < h_min) h_min = *h;
|
|
if (*h > h_max) h_max = *h;
|
|
h_accu += *h;
|
|
}
|
|
|
|
/* Get average height */
|
|
h_avg = (height_t)(h_accu / (_height_map.size_x * _height_map.size_y));
|
|
|
|
/* Return required results */
|
|
if (min_ptr != NULL) *min_ptr = h_min;
|
|
if (max_ptr != NULL) *max_ptr = h_max;
|
|
if (avg_ptr != NULL) *avg_ptr = h_avg;
|
|
}
|
|
|
|
/** Dill histogram and return pointer to its base point - to the count of zero heights */
|
|
static int *HeightMapMakeHistogram(height_t h_min, height_t h_max, int *hist_buf)
|
|
{
|
|
int *hist = hist_buf - h_min;
|
|
height_t *h;
|
|
|
|
/* Fill histogram */
|
|
FOR_ALL_TILES_IN_HEIGHT(h) {
|
|
assert(*h >= h_min);
|
|
assert(*h <= h_max);
|
|
hist[*h]++;
|
|
}
|
|
return hist;
|
|
}
|
|
|
|
/** Applies sine wave redistribution onto height map */
|
|
static void HeightMapSineTransform(height_t h_min, height_t h_max)
|
|
{
|
|
height_t *h;
|
|
|
|
FOR_ALL_TILES_IN_HEIGHT(h) {
|
|
double fheight;
|
|
|
|
if (*h < h_min) continue;
|
|
|
|
/* Transform height into 0..1 space */
|
|
fheight = (double)(*h - h_min) / (double)(h_max - h_min);
|
|
/* Apply sine transform depending on landscape type */
|
|
switch(_opt.landscape) {
|
|
case LT_CANDY:
|
|
case LT_NORMAL:
|
|
/* Move and scale 0..1 into -1..+1 */
|
|
fheight = 2 * fheight - 1;
|
|
/* Sine transform */
|
|
fheight = sin(fheight * M_PI_2);
|
|
/* Transform it back from -1..1 into 0..1 space */
|
|
fheight = 0.5 * (fheight + 1);
|
|
break;
|
|
|
|
case LT_HILLY:
|
|
{
|
|
/* Arctic terrain needs special height distribution.
|
|
* Redistribute heights to have more tiles at highest (75%..100%) range */
|
|
double sine_upper_limit = 0.75;
|
|
double linear_compression = 2;
|
|
if (fheight >= sine_upper_limit) {
|
|
/* Over the limit we do linear compression up */
|
|
fheight = 1.0 - (1.0 - fheight) / linear_compression;
|
|
} else {
|
|
double m = 1.0 - (1.0 - sine_upper_limit) / linear_compression;
|
|
/* Get 0..sine_upper_limit into -1..1 */
|
|
fheight = 2.0 * fheight / sine_upper_limit - 1.0;
|
|
/* Sine wave transform */
|
|
fheight = sin(fheight * M_PI_2);
|
|
/* Get -1..1 back to 0..(1 - (1 - sine_upper_limit) / linear_compression) == 0.0..m */
|
|
fheight = 0.5 * (fheight + 1.0) * m;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case LT_DESERT:
|
|
{
|
|
/* Desert terrain needs special height distribution.
|
|
* Half of tiles should be at lowest (0..25%) heights */
|
|
double sine_lower_limit = 0.5;
|
|
double linear_compression = 2;
|
|
if (fheight <= sine_lower_limit) {
|
|
/* Under the limit we do linear compression down */
|
|
fheight = fheight / linear_compression;
|
|
} else {
|
|
double m = sine_lower_limit / linear_compression;
|
|
/* Get sine_lower_limit..1 into -1..1 */
|
|
fheight = 2.0 * ((fheight - sine_lower_limit) / (1.0 - sine_lower_limit)) - 1.0;
|
|
/* Sine wave transform */
|
|
fheight = sin(fheight * M_PI_2);
|
|
/* Get -1..1 back to (sine_lower_limit / linear_compression)..1.0 */
|
|
fheight = 0.5 * ((1.0 - m) * fheight + (1.0 + m));
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
NOT_REACHED();
|
|
break;
|
|
}
|
|
/* Transform it back into h_min..h_max space */
|
|
*h = fheight * (h_max - h_min) + h_min;
|
|
if (*h < 0) *h = I2H(0);
|
|
if (*h >= h_max) *h = h_max - 1;
|
|
}
|
|
}
|
|
|
|
/** Adjusts heights in height map to contain required amount of water tiles */
|
|
static void HeightMapAdjustWaterLevel(amplitude_t water_percent, height_t h_max_new)
|
|
{
|
|
height_t h_min, h_max, h_avg, h_water_level;
|
|
int water_tiles, desired_water_tiles;
|
|
height_t *h;
|
|
int *hist_buf, *hist;
|
|
|
|
HeightMapGetMinMaxAvg(&h_min, &h_max, &h_avg);
|
|
|
|
/* Allocate histogram buffer and clear its cells */
|
|
hist_buf = calloc(h_max - h_min + 1, sizeof(*hist_buf));
|
|
/* Fill histogram */
|
|
hist = HeightMapMakeHistogram(h_min, h_max, hist_buf);
|
|
|
|
/* How many water tiles do we want? */
|
|
desired_water_tiles = (int)(((int64)water_percent) * (int64)(_height_map.size_x * _height_map.size_y)) >> amplitude_decimal_bits;
|
|
|
|
/* Raise water_level and accumulate values from histogram until we reach required number of water tiles */
|
|
for (h_water_level = h_min, water_tiles = 0; h_water_level < h_max; h_water_level++) {
|
|
water_tiles += hist[h_water_level];
|
|
if (water_tiles >= desired_water_tiles) break;
|
|
}
|
|
|
|
/* We now have the proper water level value.
|
|
* Transform the height map into new (normalized) height map:
|
|
* values from range: h_min..h_water_level will become negative so it will be clamped to 0
|
|
* values from range: h_water_level..h_max are transformed into 0..h_max_new
|
|
* , where h_max_new is 4, 8, 12 or 16 depending on terrain type (very flat, flat, hilly, mountains)
|
|
*/
|
|
FOR_ALL_TILES_IN_HEIGHT(h) {
|
|
/* Transform height from range h_water_level..h_max into 0..h_max_new range */
|
|
*h = (height_t)(((int)h_max_new) * (*h - h_water_level) / (h_max - h_water_level)) + I2H(1);
|
|
/* Make sure all values are in the proper range (0..h_max_new) */
|
|
if (*h < 0) *h = I2H(0);
|
|
if (*h >= h_max_new) *h = h_max_new - 1;
|
|
}
|
|
|
|
free(hist_buf);
|
|
}
|
|
|
|
static double perlin_coast_noise_2D(const double x, const double y, const double p, const int prime);
|
|
|
|
/**
|
|
* This routine sculpts in from the edge a random amount, again a Perlin
|
|
* sequence, to avoid the rigid flat-edge slopes that were present before. The
|
|
* Perlin noise map doesnt know where we are going to slice across, and so we
|
|
* often cut straight through high terrain. the smoothing routine makes it
|
|
* legal, gradually increasing up from the edge to the original terrain height.
|
|
* By cutting parts of this away, it gives a far more irregular edge to the
|
|
* map-edge. Sometimes it works beautifully with the existing sea & lakes, and
|
|
* creates a very realistic coastline. Other times the variation is less, and
|
|
* the map-edge shows its cliff-like roots.
|
|
*
|
|
* This routine may be extended to randomly sculpt the height of the terrain
|
|
* near the edge. This will have the coast edge at low level (1-3), rising in
|
|
* smoothed steps inland to about 15 tiles in. This should make it look as
|
|
* though the map has been built for the map size, rather than a slice through
|
|
* a larger map.
|
|
*
|
|
* Please note that all the small numbers; 53, 101, 167, etc. are small primes
|
|
* to help give the perlin noise a bit more of a random feel.
|
|
*/
|
|
static void HeightMapCoastLines(void)
|
|
{
|
|
int smallest_size = min(_patches.map_x, _patches.map_y);
|
|
const int margin = 4;
|
|
uint y, x;
|
|
uint max_x;
|
|
uint max_y;
|
|
|
|
/* Lower to sea level */
|
|
for (y = 0; y <= _height_map.size_y; y++) {
|
|
/* Top right */
|
|
max_x = myabs((perlin_coast_noise_2D(_height_map.size_y - y, y, 0.9, 53) + 0.25) * 5 + (perlin_coast_noise_2D(y, y, 0.35, 179) + 1) * 12);
|
|
max_x = max((smallest_size * smallest_size / 16) + max_x, (smallest_size * smallest_size / 16) + margin - max_x);
|
|
if (smallest_size < 8 && max_x > 5) max_x /= 1.5;
|
|
for (x = 0; x < max_x; x++) {
|
|
HeightMapXY(x, y) = 0;
|
|
}
|
|
|
|
/* Bottom left */
|
|
max_x = myabs((perlin_coast_noise_2D(_height_map.size_y - y, y, 0.85, 101) + 0.3) * 6 + (perlin_coast_noise_2D(y, y, 0.45, 67) + 0.75) * 8);
|
|
max_x = max((smallest_size * smallest_size / 16) + max_x, (smallest_size * smallest_size / 16) + margin - max_x);
|
|
if (smallest_size < 8 && max_x > 5) max_x /= 1.5;
|
|
for (x = _height_map.size_x; x > (_height_map.size_x - 1 - max_x); x--) {
|
|
HeightMapXY(x, y) = 0;
|
|
}
|
|
}
|
|
|
|
/* Lower to sea level */
|
|
for (x = 0; x <= _height_map.size_x; x++) {
|
|
/* Top left */
|
|
max_y = myabs((perlin_coast_noise_2D(x, _height_map.size_y / 2, 0.9, 167) + 0.4) * 5 + (perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.4, 211) + 0.7) * 9);
|
|
max_y = max((smallest_size * smallest_size / 16) + max_y, (smallest_size * smallest_size / 16) + margin - max_y);
|
|
if (smallest_size < 8 && max_y > 5) max_y /= 1.5;
|
|
for (y = 0; y < max_y; y++) {
|
|
HeightMapXY(x, y) = 0;
|
|
}
|
|
|
|
|
|
/* Bottom right */
|
|
max_y = myabs((perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.85, 71) + 0.25) * 6 + (perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.35, 193) + 0.75) * 12);
|
|
max_y = max((smallest_size * smallest_size / 16) + max_y, (smallest_size * smallest_size / 16) + margin - max_y);
|
|
if (smallest_size < 8 && max_y > 5) max_y /= 1.5;
|
|
for (y = _height_map.size_y; y > (_height_map.size_y - 1 - max_y); y--) {
|
|
HeightMapXY(x, y) = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Start at given point, move in given direction, find and Smooth coast in that direction */
|
|
static void HeightMapSmoothCoastInDirection(int org_x, int org_y, int dir_x, int dir_y)
|
|
{
|
|
const int max_coast_dist_from_edge = 35;
|
|
const int max_coast_Smooth_depth = 35;
|
|
|
|
int x, y;
|
|
int ed; // coast distance from edge
|
|
int depth;
|
|
|
|
height_t h_prev = 16;
|
|
height_t h;
|
|
|
|
assert(IsValidXY(org_x, org_y));
|
|
|
|
/* Search for the coast (first non-water tile) */
|
|
for (x = org_x, y = org_y, ed = 0; IsValidXY(x, y) && ed < max_coast_dist_from_edge; x += dir_x, y += dir_y, ed++) {
|
|
/* Coast found? */
|
|
if (HeightMapXY(x, y) > 15) break;
|
|
|
|
/* Coast found in the neighborhood? */
|
|
if (IsValidXY(x + dir_y, y + dir_x) && HeightMapXY(x + dir_y, y + dir_x) > 0) break;
|
|
|
|
/* Coast found in the neighborhood on the other side */
|
|
if (IsValidXY(x - dir_y, y - dir_x) && HeightMapXY(x - dir_y, y - dir_x) > 0) break;
|
|
}
|
|
|
|
/* Coast found or max_coast_dist_from_edge has been reached.
|
|
* Soften the coast slope */
|
|
for (depth = 0; IsValidXY(x, y) && depth <= max_coast_Smooth_depth; depth++, x += dir_x, y += dir_y) {
|
|
h = HeightMapXY(x, y);
|
|
h = min(h, h_prev + (4 + depth)); // coast softening formula
|
|
HeightMapXY(x, y) = h;
|
|
h_prev = h;
|
|
}
|
|
}
|
|
|
|
/** Smooth coasts by modulating height of tiles close to map edges with cosine of distance from edge */
|
|
static void HeightMapSmoothCoasts(void)
|
|
{
|
|
uint x, y;
|
|
/* First Smooth NW and SE coasts (y close to 0 and y close to size_y) */
|
|
for (x = 0; x < _height_map.size_x; x++) {
|
|
HeightMapSmoothCoastInDirection(x, 0, 0, 1);
|
|
HeightMapSmoothCoastInDirection(x, _height_map.size_y - 1, 0, -1);
|
|
}
|
|
/* First Smooth NE and SW coasts (x close to 0 and x close to size_x) */
|
|
for (y = 0; y < _height_map.size_y; y++) {
|
|
HeightMapSmoothCoastInDirection(0, y, 1, 0);
|
|
HeightMapSmoothCoastInDirection(_height_map.size_x - 1, y, -1, 0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This routine provides the essential cleanup necessary before OTTD can
|
|
* display the terrain. When generated, the terrain heights can jump more than
|
|
* one level between tiles. This routine smooths out those differences so that
|
|
* the most it can change is one level. When OTTD can support cliffs, this
|
|
* routine may not be necessary.
|
|
*/
|
|
static void HeightMapSmoothSlopes(height_t dh_max)
|
|
{
|
|
int x, y;
|
|
for (y = 1; y <= (int)_height_map.size_y; y++) {
|
|
for (x = 1; x <= (int)_height_map.size_x; x++) {
|
|
height_t h_max = min(HeightMapXY(x - 1, y), HeightMapXY(x, y - 1)) + dh_max;
|
|
if (HeightMapXY(x, y) > h_max) HeightMapXY(x, y) = h_max;
|
|
}
|
|
}
|
|
for (y = _height_map.size_y - 1; y >= 0; y--) {
|
|
for (x = _height_map.size_x - 1; x >= 0; x--) {
|
|
height_t h_max = min(HeightMapXY(x + 1, y), HeightMapXY(x, y + 1)) + dh_max;
|
|
if (HeightMapXY(x, y) > h_max) HeightMapXY(x, y) = h_max;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Height map terraform post processing:
|
|
* - water level adjusting
|
|
* - coast Smoothing
|
|
* - slope Smoothing
|
|
* - height histogram redistribution by sine wave transform */
|
|
static void HeightMapNormalize(void)
|
|
{
|
|
const amplitude_t water_percent = _water_percent[_opt.diff.quantity_sea_lakes];
|
|
const height_t h_max_new = I2H(_max_height[_opt.diff.terrain_type]);
|
|
const height_t roughness = 7 + 3 * _patches.tgen_smoothness;
|
|
|
|
HeightMapAdjustWaterLevel(water_percent, h_max_new);
|
|
|
|
HeightMapCoastLines();
|
|
HeightMapSmoothSlopes(roughness);
|
|
|
|
HeightMapSmoothCoasts();
|
|
HeightMapSmoothSlopes(roughness);
|
|
|
|
HeightMapSineTransform(12, h_max_new);
|
|
HeightMapSmoothSlopes(16);
|
|
}
|
|
|
|
static inline int perlin_landXY(uint x, uint y)
|
|
{
|
|
return HeightMapXY(x, y);
|
|
}
|
|
|
|
|
|
/* The following decimals are the octave power modifiers for the Perlin noise */
|
|
static const double _perlin_p_values[][7] = { // perlin frequency per power
|
|
{ 0.35, 0.35, 0.35, 0.35, 0.35, 0.25, 0.539 }, // Very smooth
|
|
{ 0.45, 0.55, 0.45, 0.45, 0.35, 0.25, 0.89 }, // Smooth
|
|
{ 0.85, 0.80, 0.70, 0.45, 0.45, 0.35, 1.825 }, // Rough 1.825
|
|
{ 0.95, 0.85, 0.80, 0.55, 0.55, 0.45, 2.245 } // Very Rough 2.25
|
|
};
|
|
|
|
/**
|
|
* The Perlin Noise calculation using large primes
|
|
* The initial number is adjusted by two values; the generation_seed, and the
|
|
* passed parameter; prime.
|
|
* prime is used to allow the perlin noise generator to create useful random
|
|
* numbers from slightly different series.
|
|
*/
|
|
static double int_noise(const long x, const long y, const int prime)
|
|
{
|
|
long n = x + y * prime + _patches.generation_seed;
|
|
|
|
n = (n << 13) ^ n;
|
|
|
|
/* Pseudo-random number generator, using several large primes */
|
|
return 1.0 - (double)((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Hj. Malthaner's routine included 2 different noise smoothing methods.
|
|
* We now use the "raw" int_noise one.
|
|
* However, it may be useful to move to the other routine in future.
|
|
* So it is included too.
|
|
*/
|
|
static double smoothed_noise(const int x, const int y, const int prime)
|
|
{
|
|
#if 0
|
|
/* A hilly world (four corner smooth) */
|
|
const double sides = int_noise(x - 1, y) + int_noise(x + 1, y) + int_noise(x, y - 1) + int_noise(x, y + 1);
|
|
const double center = int_noise(x, y);
|
|
return (sides + sides + center * 4) / 8.0;
|
|
#endif
|
|
|
|
/* This gives very hilly world */
|
|
return int_noise(x, y, prime);
|
|
}
|
|
|
|
|
|
/**
|
|
* This routine determines the interpolated value between a and b
|
|
*/
|
|
static inline double linear_interpolate(const double a, const double b, const double x)
|
|
{
|
|
return a + x * (b - a);
|
|
}
|
|
|
|
|
|
/**
|
|
* This routine returns the smoothed interpolated noise for an x and y, using
|
|
* the values from the surrounding positions.
|
|
*/
|
|
static double interpolated_noise(const double x, const double y, const int prime)
|
|
{
|
|
const int integer_X = (int)x;
|
|
const int integer_Y = (int)y;
|
|
|
|
const double fractional_X = x - (double)integer_X;
|
|
const double fractional_Y = y - (double)integer_Y;
|
|
|
|
const double v1 = smoothed_noise(integer_X, integer_Y, prime);
|
|
const double v2 = smoothed_noise(integer_X + 1, integer_Y, prime);
|
|
const double v3 = smoothed_noise(integer_X, integer_Y + 1, prime);
|
|
const double v4 = smoothed_noise(integer_X + 1, integer_Y + 1, prime);
|
|
|
|
const double i1 = linear_interpolate(v1, v2, fractional_X);
|
|
const double i2 = linear_interpolate(v3, v4, fractional_X);
|
|
|
|
return linear_interpolate(i1, i2, fractional_Y);
|
|
}
|
|
|
|
|
|
/**
|
|
* This is a similar function to the main perlin noise calculation, but uses
|
|
* the value p passed as a parameter rather than selected from the predefined
|
|
* sequences. as you can guess by its title, i use this to create the indented
|
|
* coastline, which is just another perlin sequence.
|
|
*/
|
|
static double perlin_coast_noise_2D(const double x, const double y, const double p, const int prime)
|
|
{
|
|
double total = 0.0;
|
|
int i;
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
const double frequency = (double)(1 << i);
|
|
const double amplitude = pow(p, (double)i);
|
|
|
|
total += interpolated_noise((x * frequency) / 64.0, (y * frequency) / 64.0, prime) * amplitude;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
|
|
/** A small helper function */
|
|
static void TgenSetTileHeight(TileIndex tile, int height)
|
|
{
|
|
SetTileHeight(tile, height);
|
|
MakeClear(tile, CLEAR_GRASS, 3);
|
|
}
|
|
|
|
/**
|
|
* The main new land generator using Perlin noise. Desert landscape is handled
|
|
* different to all others to give a desert valley between two high mountains.
|
|
* Clearly if a low height terrain (flat/very flat) is chosen, then the tropic
|
|
* areas wont be high enough, and there will be very little tropic on the map.
|
|
* Thus Tropic works best on Hilly or Mountainous.
|
|
*/
|
|
void GenerateTerrainPerlin(void)
|
|
{
|
|
uint x, y;
|
|
|
|
if (!AllocHeightMap()) return;
|
|
HeightMapGenerate();
|
|
|
|
IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
|
|
|
|
HeightMapNormalize();
|
|
|
|
IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
|
|
|
|
/* Transfer height map into OTTD map */
|
|
for (y = 2; y < _height_map.size_y - 2; y++) {
|
|
for (x = 2; x < _height_map.size_x - 2; x++) {
|
|
int height = H2I(HeightMapXY(x, y));
|
|
if (height < 0) height = 0;
|
|
if (height > 15) height = 15;
|
|
TgenSetTileHeight(TileXY(x, y), height);
|
|
}
|
|
}
|
|
|
|
IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
|
|
|
|
/* Recreate void tiles at the border in case they have been affected by generation */
|
|
for (y = 0; y < _height_map.size_y - 1; y++) MakeVoid(_height_map.size_x * y + _height_map.size_x - 1);
|
|
for (x = 0; x < _height_map.size_x; x++) MakeVoid(_height_map.size_x * y + x);
|
|
|
|
FreeHeightMap();
|
|
}
|