OpenTTD-patches/yapf/yapf_base.hpp

341 lines
12 KiB
C++

/* $Id$ */
#ifndef YAPF_BASE_HPP
#define YAPF_BASE_HPP
EXTERN_C_BEGIN
#include "../debug.h"
EXTERN_C_END
#include "fixedsizearray.hpp"
#include "blob.hpp"
#include "nodelist.hpp"
extern int _total_pf_time_us;
/** CYapfBaseT - A-star type path finder base class.
Derive your own pathfinder from it. You must provide the following template argument:
Types - used as collection of local types used in pathfinder
Requirements for the Types struct:
----------------------------------
The following types must be defined in the 'Types' argument:
- Types::Tpf - your pathfinder derived from CYapfBaseT
- Types::NodeList - open/closed node list (look at CNodeList_HashTableT)
NodeList needs to have defined local type Titem - defines the pathfinder node type.
Node needs to define local type Key - the node key in the collection ()
For node list you can use template class CNodeList_HashTableT, for which
you need to declare only your node type. Look at test_yapf.h for an example.
Requrements to your pathfinder class derived from CYapfBaseT:
-------------------------------------------------------------
Your pathfinder derived class needs to implement following methods:
FORCEINLINE void PfSetStartupNodes()
FORCEINLINE void PfFollowNode(Node& org)
FORCEINLINE bool PfCalcCost(Node& n)
FORCEINLINE bool PfCalcEstimate(Node& n)
FORCEINLINE bool PfDetectDestination(Node& n)
For more details about those methods, look at the end of CYapfBaseT
declaration. There are some examples. For another example look at
test_yapf.h (part or unittest project).
*/
template <class Types>
class CYapfBaseT {
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::NodeList NodeList; ///< our node list
typedef typename NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
NodeList m_nodes; ///< node list multi-container
protected:
Node* m_pBestDestNode; ///< pointer to the destination node found at last round
Node* m_pBestIntermediateNode; ///< here should be node closest to the destination if path not found
const YapfSettings *m_settings; ///< current settings (_patches.yapf)
int m_max_search_nodes; ///< maximum number of nodes we are allowed to visit before we give up
const Vehicle* m_veh; ///< vehicle that we are trying to drive
int m_stats_cost_calcs; ///< stats - how many node's costs were calculated
int m_stats_cache_hits; ///< stats - how many node's costs were reused from cache
public:
CPerformanceTimer m_perf_cost; ///< stats - total CPU time of this run
CPerformanceTimer m_perf_slope_cost; ///< stats - slope calculation CPU time
CPerformanceTimer m_perf_ts_cost; ///< stats - GetTrackStatus() CPU time
CPerformanceTimer m_perf_other_cost; ///< stats - other CPU time
public:
int m_num_steps; ///< this is there for debugging purposes (hope it doesn't hurt)
public:
/// default constructor
FORCEINLINE CYapfBaseT()
: m_pBestDestNode(NULL)
, m_pBestIntermediateNode(NULL)
#if defined(UNITTEST)
, m_settings(NULL)
, m_max_search_nodes(100000)
#else
, m_settings(&_patches.yapf)
, m_max_search_nodes(PfGetSettings().max_search_nodes)
#endif
, m_veh(NULL)
, m_stats_cost_calcs(0)
, m_stats_cache_hits(0)
, m_num_steps(0)
{
}
/// default destructor
~CYapfBaseT() {}
protected:
/// to access inherited path finder
FORCEINLINE Tpf& Yapf() {return *static_cast<Tpf*>(this);}
public:
/// return current settings (can be custom - player based - but later)
FORCEINLINE const YapfSettings& PfGetSettings() const
{
return *m_settings;
}
/** Main pathfinder routine:
- set startup node(s)
- main loop that stops if:
- the destination was found
- or the open list is empty (no route to destination).
- or the maximum amount of loops reached - m_max_search_nodes (default = 10000)
@return true if the path was found */
inline bool FindPath(const Vehicle* v)
{
m_veh = v;
CPerformanceTimer perf;
perf.Start();
Yapf().PfSetStartupNodes();
while (true) {
m_num_steps++;
Node& n = m_nodes.GetBestOpenNode();
if (&n == NULL)
break;
// if the best open node was worse than the best path found, we can finish
if (m_pBestDestNode != NULL && m_pBestDestNode->GetCost() < n.GetCostEstimate())
break;
Yapf().PfFollowNode(n);
if (m_max_search_nodes == 0 || m_nodes.ClosedCount() < m_max_search_nodes) {
m_nodes.PopOpenNode(n.GetKey());
m_nodes.InsertClosedNode(n);
} else {
m_pBestDestNode = m_pBestIntermediateNode;
break;
}
}
bool bDestFound = (m_pBestDestNode != NULL);
int16 veh_idx = (m_veh != NULL) ? m_veh->unitnumber : 0;
// if (veh_idx != 433) return bDestFound;
perf.Stop();
int t = perf.Get(1000000);
_total_pf_time_us += t;
char ttc = Yapf().TransportTypeChar();
float cache_hit_ratio = (float)m_stats_cache_hits / (float)(m_stats_cache_hits + m_stats_cost_calcs) * 100.0f;
int cost = bDestFound ? m_pBestDestNode->m_cost : -1;
int dist = bDestFound ? m_pBestDestNode->m_estimate - m_pBestDestNode->m_cost : -1;
#ifdef UNITTEST
printf("%c%c%4d-%6d us -%5d rounds -%4d open -%5d closed - CHR %4.1f%% - c/d(%d, %d) - c%d(sc%d, ts%d, o%d) -- \n", bDestFound ? '-' : '!', ttc, veh_idx, t, m_num_steps, m_nodes.OpenCount(), m_nodes.ClosedCount(), cache_hit_ratio, cost, dist, m_perf_cost.Get(1000000), m_perf_slope_cost.Get(1000000), m_perf_ts_cost.Get(1000000), m_perf_other_cost.Get(1000000));
#else
DEBUG(yapf, 3)("[YAPF][YAPF%c]%c%4d- %d us - %d rounds - %d open - %d closed - CHR %4.1f%% - c%d(sc%d, ts%d, o%d) -- ", ttc, bDestFound ? '-' : '!', veh_idx, t, m_num_steps, m_nodes.OpenCount(), m_nodes.ClosedCount(), cache_hit_ratio, cost, dist, m_perf_cost.Get(1000000), m_perf_slope_cost.Get(1000000), m_perf_ts_cost.Get(1000000), m_perf_other_cost.Get(1000000));
#endif
return bDestFound;
}
/** If path was found return the best node that has reached the destination. Otherwise
return the best visited node (which was nearest to the destination).
*/
FORCEINLINE Node& GetBestNode()
{
return (m_pBestDestNode != NULL) ? *m_pBestDestNode : *m_pBestIntermediateNode;
}
/** Calls NodeList::CreateNewNode() - allocates new node that can be filled and used
as argument for AddStartupNode() or AddNewNode()
*/
FORCEINLINE Node& CreateNewNode()
{
Node& node = *m_nodes.CreateNewNode();
return node;
}
/** Add new node (created by CreateNewNode and filled with data) into open list */
FORCEINLINE void AddStartupNode(Node& n)
{
Yapf().PfNodeCacheFetch(n);
// insert the new node only if it is not there
if (&m_nodes.FindOpenNode(n.m_key) == NULL) {
m_nodes.InsertOpenNode(n);
} else {
// if we are here, it means that node is already there - how it is possible?
// probably the train is in the position that both its ends point to the same tile/exit-dir
// very unlikely, but it happened
}
}
/** add multiple nodes - direct children of the given node */
FORCEINLINE void AddMultipleNodes(Node* parent, TileIndex tile, TrackdirBits td_bits)
{
bool is_choice = (KillFirstBit2x64(td_bits) != 0);
for (TrackdirBits rtds = td_bits; rtds != TRACKDIR_BIT_NONE; rtds = (TrackdirBits)KillFirstBit2x64(rtds)) {
Trackdir td = (Trackdir)FindFirstBit2x64(rtds);
Node& n = Yapf().CreateNewNode();
n.Set(parent, tile, td, is_choice);
Yapf().AddNewNode(n);
}
}
/** AddNewNode() - called by Tderived::PfFollowNode() for each child node.
Nodes are evaluated here and added into open list */
void AddNewNode(Node& n)
{
// evaluate the node
bool bCached = Yapf().PfNodeCacheFetch(n);
if (!bCached) {
m_stats_cost_calcs++;
} else {
m_stats_cache_hits++;
}
bool bValid = Yapf().PfCalcCost(n);
if (bCached) {
Yapf().PfNodeCacheFlush(n);
}
if (bValid) bValid = Yapf().PfCalcEstimate(n);
// have the cost or estimate callbacks marked this node as invalid?
if (!bValid) return;
// detect the destination
bool bDestination = Yapf().PfDetectDestination(n);
if (bDestination) {
if (m_pBestDestNode == NULL || n < *m_pBestDestNode) {
m_pBestDestNode = &n;
}
m_nodes.FoundBestNode(n);
return;
}
if (m_max_search_nodes > 0 && (m_pBestIntermediateNode == NULL || (m_pBestIntermediateNode->GetCostEstimate() - m_pBestIntermediateNode->GetCost()) > (n.GetCostEstimate() - n.GetCost()))) {
m_pBestIntermediateNode = &n;
}
// check new node against open list
Node& openNode = m_nodes.FindOpenNode(n.GetKey());
if (&openNode != NULL) {
// another node exists with the same key in the open list
// is it better than new one?
if (n.GetCostEstimate() < openNode.GetCostEstimate()) {
// update the old node by value from new one
m_nodes.PopOpenNode(n.GetKey());
openNode = n;
// add the updated old node back to open list
m_nodes.InsertOpenNode(openNode);
}
return;
}
// check new node against closed list
Node& closedNode = m_nodes.FindClosedNode(n.GetKey());
if (&closedNode != NULL) {
// another node exists with the same key in the closed list
// is it better than new one?
int node_est = n.GetCostEstimate();
int closed_est = closedNode.GetCostEstimate();
if (node_est < closed_est) {
// If this assert occurs, you have probably problem in
// your Tderived::PfCalcCost() or Tderived::PfCalcEstimate().
// The problem could be:
// - PfCalcEstimate() gives too large numbers
// - PfCalcCost() gives too small numbers
// - You have used negative cost penalty in some cases (cost bonus)
assert(0);
return;
}
return;
}
// the new node is really new
// add it to the open list
m_nodes.InsertOpenNode(n);
}
const Vehicle* GetVehicle() const {return m_veh;}
// methods that should be implemented at derived class Types::Tpf (derived from CYapfBaseT)
#if 0
/** Example: PfSetStartupNodes() - set source (origin) nodes */
FORCEINLINE void PfSetStartupNodes()
{
// example:
Node& n1 = *base::m_nodes.CreateNewNode();
.
. // setup node members here
.
base::m_nodes.InsertOpenNode(n1);
}
/** Example: PfFollowNode() - set following (child) nodes of the given node */
FORCEINLINE void PfFollowNode(Node& org)
{
for (each follower of node org) {
Node& n = *base::m_nodes.CreateNewNode();
.
. // setup node members here
.
n.m_parent = &org; // set node's parent to allow back tracking
AddNewNode(n);
}
}
/** Example: PfCalcCost() - set path cost from origin to the given node */
FORCEINLINE bool PfCalcCost(Node& n)
{
// evaluate last step cost
int cost = ...;
// set the node cost as sum of parent's cost and last step cost
n.m_cost = n.m_parent->m_cost + cost;
return true; // true if node is valid follower (i.e. no obstacle was found)
}
/** Example: PfCalcEstimate() - set path cost estimate from origin to the target through given node */
FORCEINLINE bool PfCalcEstimate(Node& n)
{
// evaluate the distance to our destination
int distance = ...;
// set estimate as sum of cost from origin + distance to the target
n.m_estimate = n.m_cost + distance;
return true; // true if node is valid (i.e. not too far away :)
}
/** Example: PfDetectDestination() - return true if the given node is our destination */
FORCEINLINE bool PfDetectDestination(Node& n)
{
bool bDest = (n.m_key.m_x == m_x2) && (n.m_key.m_y == m_y2);
return bDest;
}
#endif
};
#endif /* YAPF_BASE_HPP */