mirror of
https://github.com/JGRennison/OpenTTD-patches.git
synced 2024-11-04 06:00:15 +00:00
b618b75c9b
-Feature: Bridges can now be placed above: Any railway track combination (excluding depots and waypoints) Any road combination (excluding depots) Clear tiles (duh), including fields Tunnel entrances Bridge heads Thanks to Tron for idea and implementation, KUDr for the yapf synchronization and many others for hours of testing There are still a number of visual problems remaining, especially when electric railways are on or under the bridge. DO NOT REPORT THOSE BUGS FOR THE TIME BEING please.
959 lines
26 KiB
C
959 lines
26 KiB
C
/* $Id$ */
|
|
|
|
#include "stdafx.h"
|
|
#include "openttd.h"
|
|
#include "bridge_map.h"
|
|
#include "station_map.h"
|
|
#include "depot.h"
|
|
#include "functions.h"
|
|
#include "map.h"
|
|
#include "tile.h"
|
|
#include "pathfind.h"
|
|
#include "rail.h"
|
|
#include "debug.h"
|
|
#include "tunnel_map.h"
|
|
#include "variables.h"
|
|
#include "depot.h"
|
|
|
|
// remember which tiles we have already visited so we don't visit them again.
|
|
static bool TPFSetTileBit(TrackPathFinder *tpf, TileIndex tile, int dir)
|
|
{
|
|
uint hash, val, offs;
|
|
TrackPathFinderLink *link, *new_link;
|
|
uint bits = 1 << dir;
|
|
|
|
if (tpf->disable_tile_hash)
|
|
return true;
|
|
|
|
hash = PATHFIND_HASH_TILE(tile);
|
|
|
|
val = tpf->hash_head[hash];
|
|
|
|
if (val == 0) {
|
|
/* unused hash entry, set the appropriate bit in it and return true
|
|
* to indicate that a bit was set. */
|
|
tpf->hash_head[hash] = bits;
|
|
tpf->hash_tile[hash] = tile;
|
|
return true;
|
|
} else if (!(val & 0x8000)) {
|
|
/* single tile */
|
|
|
|
if (tile == tpf->hash_tile[hash]) {
|
|
/* found another bit for the same tile,
|
|
* check if this bit is already set, if so, return false */
|
|
if (val & bits)
|
|
return false;
|
|
|
|
/* otherwise set the bit and return true to indicate that the bit
|
|
* was set */
|
|
tpf->hash_head[hash] = val | bits;
|
|
return true;
|
|
} else {
|
|
/* two tiles with the same hash, need to make a link */
|
|
|
|
/* allocate a link. if out of links, handle this by returning
|
|
* that a tile was already visisted. */
|
|
if (tpf->num_links_left == 0) {
|
|
return false;
|
|
}
|
|
tpf->num_links_left--;
|
|
link = tpf->new_link++;
|
|
|
|
/* move the data that was previously in the hash_??? variables
|
|
* to the link struct, and let the hash variables point to the link */
|
|
link->tile = tpf->hash_tile[hash];
|
|
tpf->hash_tile[hash] = PATHFIND_GET_LINK_OFFS(tpf, link);
|
|
|
|
link->flags = tpf->hash_head[hash];
|
|
tpf->hash_head[hash] = 0xFFFF; /* multi link */
|
|
|
|
link->next = 0xFFFF;
|
|
}
|
|
} else {
|
|
/* a linked list of many tiles,
|
|
* find the one corresponding to the tile, if it exists.
|
|
* otherwise make a new link */
|
|
|
|
offs = tpf->hash_tile[hash];
|
|
do {
|
|
link = PATHFIND_GET_LINK_PTR(tpf, offs);
|
|
if (tile == link->tile) {
|
|
/* found the tile in the link list,
|
|
* check if the bit was alrady set, if so return false to indicate that the
|
|
* bit was already set */
|
|
if (link->flags & bits)
|
|
return false;
|
|
link->flags |= bits;
|
|
return true;
|
|
}
|
|
} while ((offs=link->next) != 0xFFFF);
|
|
}
|
|
|
|
/* get here if we need to add a new link to link,
|
|
* first, allocate a new link, in the same way as before */
|
|
if (tpf->num_links_left == 0) {
|
|
return false;
|
|
}
|
|
tpf->num_links_left--;
|
|
new_link = tpf->new_link++;
|
|
|
|
/* then fill the link with the new info, and establish a ptr from the old
|
|
* link to the new one */
|
|
new_link->tile = tile;
|
|
new_link->flags = bits;
|
|
new_link->next = 0xFFFF;
|
|
|
|
link->next = PATHFIND_GET_LINK_OFFS(tpf, new_link);
|
|
return true;
|
|
}
|
|
|
|
static const byte _bits_mask[4] = {
|
|
0x19,
|
|
0x16,
|
|
0x25,
|
|
0x2A,
|
|
};
|
|
|
|
static const byte _tpf_new_direction[14] = {
|
|
0,1,0,1,2,1, 0,0,
|
|
2,3,3,2,3,0,
|
|
};
|
|
|
|
static const byte _tpf_prev_direction[14] = {
|
|
0,1,1,0,1,2, 0,0,
|
|
2,3,2,3,0,3,
|
|
};
|
|
|
|
|
|
static const byte _otherdir_mask[4] = {
|
|
0x10,
|
|
0,
|
|
0x5,
|
|
0x2A,
|
|
};
|
|
|
|
static void TPFMode2(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
|
|
{
|
|
uint bits;
|
|
int i;
|
|
RememberData rd;
|
|
|
|
assert(tpf->tracktype == TRANSPORT_WATER);
|
|
|
|
// This addition will sometimes overflow by a single tile.
|
|
// The use of TILE_MASK here makes sure that we still point at a valid
|
|
// tile, and then this tile will be in the sentinel row/col, so GetTileTrackStatus will fail.
|
|
tile = TILE_MASK(tile + TileOffsByDir(direction));
|
|
|
|
if (++tpf->rd.cur_length > 50)
|
|
return;
|
|
|
|
bits = GetTileTrackStatus(tile, tpf->tracktype);
|
|
bits = (byte)((bits | (bits >> 8)) & _bits_mask[direction]);
|
|
if (bits == 0)
|
|
return;
|
|
|
|
assert(TileX(tile) != MapMaxX() && TileY(tile) != MapMaxY());
|
|
|
|
if ( (bits & (bits - 1)) == 0 ) {
|
|
/* only one direction */
|
|
i = 0;
|
|
while (!(bits&1))
|
|
i++, bits>>=1;
|
|
|
|
rd = tpf->rd;
|
|
goto continue_here;
|
|
}
|
|
/* several directions */
|
|
i=0;
|
|
do {
|
|
if (!(bits & 1)) continue;
|
|
rd = tpf->rd;
|
|
|
|
// Change direction 4 times only
|
|
if ((byte)i != tpf->rd.pft_var6) {
|
|
if (++tpf->rd.depth > 4) {
|
|
tpf->rd = rd;
|
|
return;
|
|
}
|
|
tpf->rd.pft_var6 = (byte)i;
|
|
}
|
|
|
|
continue_here:;
|
|
tpf->the_dir = HASBIT(_otherdir_mask[direction],i) ? (i+8) : i;
|
|
|
|
if (!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, NULL)) {
|
|
TPFMode2(tpf, tile, _tpf_new_direction[tpf->the_dir]);
|
|
}
|
|
|
|
tpf->rd = rd;
|
|
} while (++i, bits>>=1);
|
|
|
|
}
|
|
|
|
|
|
/* Returns the end tile and the length of a tunnel. The length does not
|
|
* include the starting tile (entry), it does include the end tile (exit).
|
|
*/
|
|
FindLengthOfTunnelResult FindLengthOfTunnel(TileIndex tile, DiagDirection dir)
|
|
{
|
|
TileIndexDiff delta = TileOffsByDir(dir);
|
|
uint z = GetTileZ(tile);
|
|
FindLengthOfTunnelResult flotr;
|
|
|
|
flotr.length = 0;
|
|
|
|
dir = ReverseDiagDir(dir);
|
|
do {
|
|
flotr.length++;
|
|
tile += delta;
|
|
} while(
|
|
!IsTunnelTile(tile) ||
|
|
GetTunnelDirection(tile) != dir ||
|
|
GetTileZ(tile) != z
|
|
);
|
|
|
|
flotr.tile = tile;
|
|
return flotr;
|
|
}
|
|
|
|
static const uint16 _tpfmode1_and[4] = { 0x1009, 0x16, 0x520, 0x2A00 };
|
|
|
|
static uint SkipToEndOfTunnel(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
|
|
{
|
|
FindLengthOfTunnelResult flotr;
|
|
TPFSetTileBit(tpf, tile, 14);
|
|
flotr = FindLengthOfTunnel(tile, direction);
|
|
tpf->rd.cur_length += flotr.length;
|
|
TPFSetTileBit(tpf, flotr.tile, 14);
|
|
return flotr.tile;
|
|
}
|
|
|
|
const byte _ffb_64[128] = {
|
|
0,0,1,0,2,0,1,0,
|
|
3,0,1,0,2,0,1,0,
|
|
4,0,1,0,2,0,1,0,
|
|
3,0,1,0,2,0,1,0,
|
|
5,0,1,0,2,0,1,0,
|
|
3,0,1,0,2,0,1,0,
|
|
4,0,1,0,2,0,1,0,
|
|
3,0,1,0,2,0,1,0,
|
|
|
|
0,0,0,2,0,4,4,6,
|
|
0,8,8,10,8,12,12,14,
|
|
0,16,16,18,16,20,20,22,
|
|
16,24,24,26,24,28,28,30,
|
|
0,32,32,34,32,36,36,38,
|
|
32,40,40,42,40,44,44,46,
|
|
32,48,48,50,48,52,52,54,
|
|
48,56,56,58,56,60,60,62,
|
|
};
|
|
|
|
static void TPFMode1(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
|
|
{
|
|
uint bits;
|
|
int i;
|
|
RememberData rd;
|
|
TileIndex tile_org = tile;
|
|
|
|
if (IsTileType(tile, MP_TUNNELBRIDGE)) {
|
|
if (IsTunnel(tile)) {
|
|
if (GetTunnelDirection(tile) != direction ||
|
|
GetTunnelTransportType(tile) != tpf->tracktype) {
|
|
return;
|
|
}
|
|
tile = SkipToEndOfTunnel(tpf, tile, direction);
|
|
} else {
|
|
TileIndex tile_end;
|
|
if (GetBridgeRampDirection(tile) != direction ||
|
|
GetBridgeTransportType(tile) != tpf->tracktype) {
|
|
return;
|
|
}
|
|
//fprintf(stderr, "%s: Planning over bridge\n", __func__);
|
|
// TODO doesn't work - WHAT doesn't work?
|
|
TPFSetTileBit(tpf, tile, 14);
|
|
tile_end = GetOtherBridgeEnd(tile);
|
|
tpf->rd.cur_length += DistanceManhattan(tile, tile_end);
|
|
tile = tile_end;
|
|
TPFSetTileBit(tpf, tile, 14);
|
|
}
|
|
}
|
|
tile += TileOffsByDir(direction);
|
|
|
|
/* Check in case of rail if the owner is the same */
|
|
if (tpf->tracktype == TRANSPORT_RAIL) {
|
|
// don't enter train depot from the back
|
|
if (IsTileDepotType(tile, TRANSPORT_RAIL) && GetRailDepotDirection(tile) == direction) return;
|
|
|
|
if (IsTileType(tile_org, MP_RAILWAY) || IsTileType(tile_org, MP_STATION) || IsTileType(tile_org, MP_TUNNELBRIDGE))
|
|
if (IsTileType(tile, MP_RAILWAY) || IsTileType(tile, MP_STATION) || IsTileType(tile, MP_TUNNELBRIDGE))
|
|
if (GetTileOwner(tile_org) != GetTileOwner(tile)) return;
|
|
}
|
|
|
|
// check if the new tile can be entered from that direction
|
|
if (tpf->tracktype == TRANSPORT_ROAD) {
|
|
// road stops and depots now have a track (r4419)
|
|
// don't enter road stop from the back
|
|
if (IsRoadStopTile(tile) && GetRoadStopDir(tile) == direction) return;
|
|
// don't enter road depot from the back
|
|
if (IsTileDepotType(tile, TRANSPORT_ROAD) && GetRoadDepotDirection(tile) == direction) return;
|
|
}
|
|
|
|
tpf->rd.cur_length++;
|
|
|
|
bits = GetTileTrackStatus(tile, tpf->tracktype);
|
|
|
|
if ((byte)bits != tpf->var2) {
|
|
bits &= _tpfmode1_and[direction];
|
|
bits = bits | (bits>>8);
|
|
}
|
|
bits &= 0xBF;
|
|
|
|
if (bits != 0) {
|
|
if (!tpf->disable_tile_hash || (tpf->rd.cur_length <= 64 && (KILL_FIRST_BIT(bits) == 0 || ++tpf->rd.depth <= 7))) {
|
|
do {
|
|
i = FIND_FIRST_BIT(bits);
|
|
bits = KILL_FIRST_BIT(bits);
|
|
|
|
tpf->the_dir = (_otherdir_mask[direction] & (byte)(1 << i)) ? (i+8) : i;
|
|
rd = tpf->rd;
|
|
|
|
if (TPFSetTileBit(tpf, tile, tpf->the_dir) &&
|
|
!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, &tpf->rd.pft_var6) ) {
|
|
TPFMode1(tpf, tile, _tpf_new_direction[tpf->the_dir]);
|
|
}
|
|
tpf->rd = rd;
|
|
} while (bits != 0);
|
|
}
|
|
}
|
|
|
|
/* the next is only used when signals are checked.
|
|
* seems to go in 2 directions simultaneously */
|
|
|
|
/* if i can get rid of this, tail end recursion can be used to minimize
|
|
* stack space dramatically. */
|
|
|
|
/* If we are doing signal setting, we must reverse at evere tile, so we
|
|
* iterate all the tracks in a signal block, even when a normal train would
|
|
* not reach it (for example, when two lines merge */
|
|
if (tpf->hasbit_13)
|
|
return;
|
|
|
|
tile = tile_org;
|
|
direction = ReverseDiagDir(direction);
|
|
|
|
bits = GetTileTrackStatus(tile, tpf->tracktype);
|
|
bits |= (bits >> 8);
|
|
|
|
if ( (byte)bits != tpf->var2) {
|
|
bits &= _bits_mask[direction];
|
|
}
|
|
|
|
bits &= 0xBF;
|
|
if (bits == 0)
|
|
return;
|
|
|
|
do {
|
|
i = FIND_FIRST_BIT(bits);
|
|
bits = KILL_FIRST_BIT(bits);
|
|
|
|
tpf->the_dir = (_otherdir_mask[direction] & (byte)(1 << i)) ? (i+8) : i;
|
|
rd = tpf->rd;
|
|
if (TPFSetTileBit(tpf, tile, tpf->the_dir) &&
|
|
!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, &tpf->rd.pft_var6) ) {
|
|
TPFMode1(tpf, tile, _tpf_new_direction[tpf->the_dir]);
|
|
}
|
|
tpf->rd = rd;
|
|
} while (bits != 0);
|
|
}
|
|
|
|
void FollowTrack(TileIndex tile, uint16 flags, DiagDirection direction, TPFEnumProc *enum_proc, TPFAfterProc *after_proc, void *data)
|
|
{
|
|
TrackPathFinder tpf;
|
|
|
|
assert(direction < 4);
|
|
|
|
/* initialize path finder variables */
|
|
tpf.userdata = data;
|
|
tpf.enum_proc = enum_proc;
|
|
tpf.new_link = tpf.links;
|
|
tpf.num_links_left = lengthof(tpf.links);
|
|
|
|
tpf.rd.cur_length = 0;
|
|
tpf.rd.depth = 0;
|
|
tpf.rd.pft_var6 = 0;
|
|
|
|
tpf.var2 = HASBIT(flags, 15) ? 0x43 : 0xFF; /* 0x8000 */
|
|
|
|
tpf.disable_tile_hash = HASBIT(flags, 12); /* 0x1000 */
|
|
tpf.hasbit_13 = HASBIT(flags, 13); /* 0x2000 */
|
|
|
|
|
|
tpf.tracktype = (byte)flags;
|
|
|
|
if (HASBIT(flags, 11)) {
|
|
tpf.rd.pft_var6 = 0xFF;
|
|
tpf.enum_proc(tile, data, 0, 0, 0);
|
|
TPFMode2(&tpf, tile, direction);
|
|
} else {
|
|
/* clear the hash_heads */
|
|
memset(tpf.hash_head, 0, sizeof(tpf.hash_head));
|
|
TPFMode1(&tpf, tile, direction);
|
|
}
|
|
|
|
if (after_proc != NULL)
|
|
after_proc(&tpf);
|
|
}
|
|
|
|
typedef struct {
|
|
TileIndex tile;
|
|
uint16 cur_length; // This is the current length to this tile.
|
|
uint16 priority; // This is the current length + estimated length to the goal.
|
|
byte track;
|
|
byte depth;
|
|
byte state;
|
|
byte first_track;
|
|
} StackedItem;
|
|
|
|
static const byte _new_track[6][4] = {
|
|
{0,0xff,8,0xff,},
|
|
{0xff,1,0xff,9,},
|
|
{0xff,2,10,0xff,},
|
|
{3,0xff,0xff,11,},
|
|
{12,4,0xff,0xff,},
|
|
{0xff,0xff,5,13,},
|
|
};
|
|
|
|
typedef struct HashLink {
|
|
TileIndex tile;
|
|
uint16 typelength;
|
|
uint16 next;
|
|
} HashLink;
|
|
|
|
typedef struct {
|
|
NTPEnumProc *enum_proc;
|
|
void *userdata;
|
|
TileIndex dest;
|
|
|
|
TransportType tracktype;
|
|
RailTypeMask railtypes;
|
|
uint maxlength;
|
|
|
|
HashLink *new_link;
|
|
uint num_links_left;
|
|
|
|
uint nstack;
|
|
StackedItem stack[256]; // priority queue of stacked items
|
|
|
|
uint16 hash_head[0x400]; // hash heads. 0 means unused. 0xFFFC = length, 0x3 = dir
|
|
TileIndex hash_tile[0x400]; // tiles. or links.
|
|
|
|
HashLink links[0x400]; // hash links
|
|
|
|
} NewTrackPathFinder;
|
|
#define NTP_GET_LINK_OFFS(tpf, link) ((byte*)(link) - (byte*)tpf->links)
|
|
#define NTP_GET_LINK_PTR(tpf, link_offs) (HashLink*)((byte*)tpf->links + (link_offs))
|
|
|
|
#define ARR(i) tpf->stack[(i)-1]
|
|
|
|
// called after a new element was added in the queue at the last index.
|
|
// move it down to the proper position
|
|
static inline void HeapifyUp(NewTrackPathFinder *tpf)
|
|
{
|
|
StackedItem si;
|
|
int i = ++tpf->nstack;
|
|
|
|
while (i != 1 && ARR(i).priority < ARR(i>>1).priority) {
|
|
// the child element is larger than the parent item.
|
|
// swap the child item and the parent item.
|
|
si = ARR(i); ARR(i) = ARR(i>>1); ARR(i>>1) = si;
|
|
i>>=1;
|
|
}
|
|
}
|
|
|
|
// called after the element 0 was eaten. fill it with a new element
|
|
static inline void HeapifyDown(NewTrackPathFinder *tpf)
|
|
{
|
|
StackedItem si;
|
|
int i = 1, j;
|
|
int n;
|
|
|
|
assert(tpf->nstack > 0);
|
|
n = --tpf->nstack;
|
|
|
|
if (n == 0) return; // heap is empty so nothing to do?
|
|
|
|
// copy the last item to index 0. we use it as base for heapify.
|
|
ARR(1) = ARR(n+1);
|
|
|
|
while ((j=i*2) <= n) {
|
|
// figure out which is smaller of the children.
|
|
if (j != n && ARR(j).priority > ARR(j+1).priority)
|
|
j++; // right item is smaller
|
|
|
|
assert(i <= n && j <= n);
|
|
if (ARR(i).priority <= ARR(j).priority)
|
|
break; // base elem smaller than smallest, done!
|
|
|
|
// swap parent with the child
|
|
si = ARR(i); ARR(i) = ARR(j); ARR(j) = si;
|
|
i = j;
|
|
}
|
|
}
|
|
|
|
// mark a tile as visited and store the length of the path.
|
|
// if we already had a better path to this tile, return false.
|
|
// otherwise return true.
|
|
static bool NtpVisit(NewTrackPathFinder* tpf, TileIndex tile, DiagDirection dir, uint length)
|
|
{
|
|
uint hash,head;
|
|
HashLink *link, *new_link;
|
|
|
|
assert(length < 16384-1);
|
|
|
|
hash = PATHFIND_HASH_TILE(tile);
|
|
|
|
// never visited before?
|
|
if ((head=tpf->hash_head[hash]) == 0) {
|
|
tpf->hash_tile[hash] = tile;
|
|
tpf->hash_head[hash] = dir | (length << 2);
|
|
return true;
|
|
}
|
|
|
|
if (head != 0xffff) {
|
|
if (tile == tpf->hash_tile[hash] && (head & 0x3) == dir) {
|
|
|
|
// longer length
|
|
if (length >= (head >> 2)) return false;
|
|
|
|
tpf->hash_head[hash] = dir | (length << 2);
|
|
return true;
|
|
}
|
|
// two tiles with the same hash, need to make a link
|
|
// allocate a link. if out of links, handle this by returning
|
|
// that a tile was already visisted.
|
|
if (tpf->num_links_left == 0) {
|
|
DEBUG(ntp, 1) ("[NTP] no links left");
|
|
return false;
|
|
}
|
|
|
|
tpf->num_links_left--;
|
|
link = tpf->new_link++;
|
|
|
|
/* move the data that was previously in the hash_??? variables
|
|
* to the link struct, and let the hash variables point to the link */
|
|
link->tile = tpf->hash_tile[hash];
|
|
tpf->hash_tile[hash] = NTP_GET_LINK_OFFS(tpf, link);
|
|
|
|
link->typelength = tpf->hash_head[hash];
|
|
tpf->hash_head[hash] = 0xFFFF; /* multi link */
|
|
link->next = 0xFFFF;
|
|
} else {
|
|
// a linked list of many tiles,
|
|
// find the one corresponding to the tile, if it exists.
|
|
// otherwise make a new link
|
|
|
|
uint offs = tpf->hash_tile[hash];
|
|
do {
|
|
link = NTP_GET_LINK_PTR(tpf, offs);
|
|
if (tile == link->tile && (link->typelength & 0x3U) == dir) {
|
|
if (length >= (uint)(link->typelength >> 2)) return false;
|
|
link->typelength = dir | (length << 2);
|
|
return true;
|
|
}
|
|
} while ((offs = link->next) != 0xFFFF);
|
|
}
|
|
|
|
/* get here if we need to add a new link to link,
|
|
* first, allocate a new link, in the same way as before */
|
|
if (tpf->num_links_left == 0) {
|
|
DEBUG(ntp, 1) ("[NTP] no links left");
|
|
return false;
|
|
}
|
|
tpf->num_links_left--;
|
|
new_link = tpf->new_link++;
|
|
|
|
/* then fill the link with the new info, and establish a ptr from the old
|
|
* link to the new one */
|
|
new_link->tile = tile;
|
|
new_link->typelength = dir | (length << 2);
|
|
new_link->next = 0xFFFF;
|
|
|
|
link->next = NTP_GET_LINK_OFFS(tpf, new_link);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Checks if the shortest path to the given tile/dir so far is still the given
|
|
* length.
|
|
* @return true if the length is still the same
|
|
* @pre The given tile/dir combination should be present in the hash, by a
|
|
* previous call to NtpVisit().
|
|
*/
|
|
static bool NtpCheck(NewTrackPathFinder *tpf, TileIndex tile, uint dir, uint length)
|
|
{
|
|
uint hash,head,offs;
|
|
HashLink *link;
|
|
|
|
hash = PATHFIND_HASH_TILE(tile);
|
|
head=tpf->hash_head[hash];
|
|
assert(head);
|
|
|
|
if (head != 0xffff) {
|
|
assert( tpf->hash_tile[hash] == tile && (head & 3) == dir);
|
|
assert( (head >> 2) <= length);
|
|
return length == (head >> 2);
|
|
}
|
|
|
|
// else it's a linked list of many tiles
|
|
offs = tpf->hash_tile[hash];
|
|
for (;;) {
|
|
link = NTP_GET_LINK_PTR(tpf, offs);
|
|
if (tile == link->tile && (link->typelength & 0x3U) == dir) {
|
|
assert((uint)(link->typelength >> 2) <= length);
|
|
return length == (uint)(link->typelength >> 2);
|
|
}
|
|
offs = link->next;
|
|
assert(offs != 0xffff);
|
|
}
|
|
}
|
|
|
|
|
|
static const uint16 _is_upwards_slope[15] = {
|
|
0, // no tileh
|
|
(1 << TRACKDIR_X_SW) | (1 << TRACKDIR_Y_NW), // 1
|
|
(1 << TRACKDIR_X_SW) | (1 << TRACKDIR_Y_SE), // 2
|
|
(1 << TRACKDIR_X_SW), // 3
|
|
(1 << TRACKDIR_X_NE) | (1 << TRACKDIR_Y_SE), // 4
|
|
0, // 5
|
|
(1 << TRACKDIR_Y_SE), // 6
|
|
0, // 7
|
|
(1 << TRACKDIR_X_NE) | (1 << TRACKDIR_Y_NW), // 8,
|
|
(1 << TRACKDIR_Y_NW), // 9
|
|
0, //10
|
|
0, //11,
|
|
(1 << TRACKDIR_X_NE), //12
|
|
0, //13
|
|
0, //14
|
|
};
|
|
|
|
|
|
#define DIAG_FACTOR 3
|
|
#define STR_FACTOR 2
|
|
|
|
|
|
static uint DistanceMoo(TileIndex t0, TileIndex t1)
|
|
{
|
|
const uint dx = abs(TileX(t0) - TileX(t1));
|
|
const uint dy = abs(TileY(t0) - TileY(t1));
|
|
|
|
const uint straightTracks = 2 * min(dx, dy); /* The number of straight (not full length) tracks */
|
|
/* OPTIMISATION:
|
|
* Original: diagTracks = max(dx, dy) - min(dx,dy);
|
|
* Proof:
|
|
* (dx-dy) - straightTracks == (min + max) - straightTracks = min + // max - 2 * min = max - min */
|
|
const uint diagTracks = dx + dy - straightTracks; /* The number of diagonal (full tile length) tracks. */
|
|
|
|
return diagTracks*DIAG_FACTOR + straightTracks*STR_FACTOR;
|
|
}
|
|
|
|
// These has to be small cause the max length of a track
|
|
// is currently limited to 16384
|
|
|
|
static const byte _length_of_track[16] = {
|
|
DIAG_FACTOR,DIAG_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,0,0,
|
|
DIAG_FACTOR,DIAG_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,0,0
|
|
};
|
|
|
|
// new more optimized pathfinder for trains...
|
|
// Tile is the tile the train is at.
|
|
// direction is the tile the train is moving towards.
|
|
|
|
static void NTPEnum(NewTrackPathFinder* tpf, TileIndex tile, DiagDirection direction)
|
|
{
|
|
TrackBits bits, allbits;
|
|
uint track;
|
|
TileIndex tile_org;
|
|
StackedItem si;
|
|
int estimation;
|
|
|
|
|
|
|
|
// Need to have a special case for the start.
|
|
// We shouldn't call the callback for the current tile.
|
|
si.cur_length = 1; // Need to start at 1 cause 0 is a reserved value.
|
|
si.depth = 0;
|
|
si.state = 0;
|
|
si.first_track = 0xFF;
|
|
goto start_at;
|
|
|
|
for (;;) {
|
|
// Get the next item to search from from the priority queue
|
|
do {
|
|
if (tpf->nstack == 0)
|
|
return; // nothing left? then we're done!
|
|
si = tpf->stack[0];
|
|
tile = si.tile;
|
|
|
|
HeapifyDown(tpf);
|
|
// Make sure we havn't already visited this tile.
|
|
} while (!NtpCheck(tpf, tile, _tpf_prev_direction[si.track], si.cur_length));
|
|
|
|
// Add the length of this track.
|
|
si.cur_length += _length_of_track[si.track];
|
|
|
|
callback_and_continue:
|
|
if (tpf->enum_proc(tile, tpf->userdata, si.first_track, si.cur_length))
|
|
return;
|
|
|
|
assert(si.track <= 13);
|
|
direction = _tpf_new_direction[si.track];
|
|
|
|
start_at:
|
|
// If the tile is the entry tile of a tunnel, and we're not going out of the tunnel,
|
|
// need to find the exit of the tunnel.
|
|
if (IsTileType(tile, MP_TUNNELBRIDGE)) {
|
|
if (IsTunnel(tile)) {
|
|
if (GetTunnelDirection(tile) != ReverseDiagDir(direction)) {
|
|
FindLengthOfTunnelResult flotr;
|
|
|
|
/* We are not just driving out of the tunnel */
|
|
if (GetTunnelDirection(tile) != direction ||
|
|
GetTunnelTransportType(tile) != tpf->tracktype) {
|
|
// We are not driving into the tunnel, or it is an invalid tunnel
|
|
continue;
|
|
}
|
|
if (!HASBIT(tpf->railtypes, GetRailType(tile))) {
|
|
bits = 0;
|
|
break;
|
|
}
|
|
flotr = FindLengthOfTunnel(tile, direction);
|
|
si.cur_length += flotr.length * DIAG_FACTOR;
|
|
tile = flotr.tile;
|
|
// tile now points to the exit tile of the tunnel
|
|
}
|
|
} else {
|
|
TileIndex tile_end;
|
|
if (GetBridgeRampDirection(tile) != ReverseDiagDir(direction)) {
|
|
// We are not just leaving the bridge
|
|
if (GetBridgeRampDirection(tile) != direction ||
|
|
GetBridgeTransportType(tile) != tpf->tracktype) {
|
|
// Not entering the bridge or not compatible
|
|
continue;
|
|
}
|
|
}
|
|
tile_end = GetOtherBridgeEnd(tile);
|
|
si.cur_length += DistanceManhattan(tile, tile_end) * DIAG_FACTOR;
|
|
tile = tile_end;
|
|
}
|
|
}
|
|
|
|
// This is a special loop used to go through
|
|
// a rail net and find the first intersection
|
|
tile_org = tile;
|
|
for (;;) {
|
|
assert(direction <= 3);
|
|
tile += TileOffsByDir(direction);
|
|
|
|
// too long search length? bail out.
|
|
if (si.cur_length >= tpf->maxlength) {
|
|
DEBUG(ntp,1) ("[NTP] cur_length too big");
|
|
bits = 0;
|
|
break;
|
|
}
|
|
|
|
// Not a regular rail tile?
|
|
// Then we can't use the code below, but revert to more general code.
|
|
if (!IsTileType(tile, MP_RAILWAY) || !IsPlainRailTile(tile)) {
|
|
// We found a tile which is not a normal railway tile.
|
|
// Determine which tracks that exist on this tile.
|
|
bits = GetTileTrackStatus(tile, TRANSPORT_RAIL) & _tpfmode1_and[direction];
|
|
bits = (bits | (bits >> 8)) & 0x3F;
|
|
|
|
// Check that the tile contains exactly one track
|
|
if (bits == 0 || KILL_FIRST_BIT(bits) != 0) break;
|
|
|
|
if (IsTileType(tile, MP_STREET) ? !HASBIT(tpf->railtypes, GetRailTypeCrossing(tile)) : !HASBIT(tpf->railtypes, GetRailType(tile))) {
|
|
bits = 0;
|
|
break;
|
|
}
|
|
|
|
///////////////////
|
|
// If we reach here, the tile has exactly one track.
|
|
// tile - index to a tile that is not rail tile, but still straight (with optional signals)
|
|
// bits - bitmask of which track that exist on the tile (exactly one bit is set)
|
|
// direction - which direction are we moving in?
|
|
///////////////////
|
|
si.track = _new_track[FIND_FIRST_BIT(bits)][direction];
|
|
si.cur_length += _length_of_track[si.track];
|
|
goto callback_and_continue;
|
|
}
|
|
|
|
/* Regular rail tile, determine which tracks exist. */
|
|
allbits = GetTrackBits(tile);
|
|
/* Which tracks are reachable? */
|
|
bits = allbits & DiagdirReachesTracks(direction);
|
|
|
|
/* The tile has no reachable tracks => End of rail segment
|
|
* or Intersection => End of rail segment. We check this agains all the
|
|
* bits, not just reachable ones, to prevent infinite loops. */
|
|
if (bits == 0 || TracksOverlap(allbits)) break;
|
|
|
|
if (!HASBIT(tpf->railtypes, GetRailType(tile))) {
|
|
bits = 0;
|
|
break;
|
|
}
|
|
|
|
/* If we reach here, the tile has exactly one track, and this
|
|
track is reachable => Rail segment continues */
|
|
|
|
track = _new_track[FIND_FIRST_BIT(bits)][direction];
|
|
assert(track != 0xff);
|
|
|
|
si.cur_length += _length_of_track[track];
|
|
|
|
// Check if this rail is an upwards slope. If it is, then add a penalty.
|
|
// Small optimization here.. if (track&7)>1 then it can't be a slope so we avoid calling GetTileSlope
|
|
if ((track & 7) <= 1 && (_is_upwards_slope[GetTileSlope(tile, NULL)] & (1 << track)) ) {
|
|
// upwards slope. add some penalty.
|
|
si.cur_length += 4*DIAG_FACTOR;
|
|
}
|
|
|
|
// railway tile with signals..?
|
|
if (HasSignals(tile)) {
|
|
byte m3;
|
|
|
|
m3 = _m[tile].m3;
|
|
if (!(m3 & SignalAlongTrackdir(track))) {
|
|
// if one way signal not pointing towards us, stop going in this direction => End of rail segment.
|
|
if (m3 & SignalAgainstTrackdir(track)) {
|
|
bits = 0;
|
|
break;
|
|
}
|
|
} else if (_m[tile].m2 & SignalAlongTrackdir(track)) {
|
|
// green signal in our direction. either one way or two way.
|
|
si.state |= 3;
|
|
} else {
|
|
// reached a red signal.
|
|
if (m3 & SignalAgainstTrackdir(track)) {
|
|
// two way red signal. unless we passed another green signal on the way,
|
|
// stop going in this direction => End of rail segment.
|
|
// this is to prevent us from going into a full platform.
|
|
if (!(si.state&1)) {
|
|
bits = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (!(si.state & 2)) {
|
|
// Is this the first signal we see? And it's red... add penalty
|
|
si.cur_length += 10*DIAG_FACTOR;
|
|
si.state += 2; // remember that we added penalty.
|
|
// Because we added a penalty, we can't just continue as usual.
|
|
// Need to get out and let A* do it's job with
|
|
// possibly finding an even shorter path.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (tpf->enum_proc(tile, tpf->userdata, si.first_track, si.cur_length))
|
|
return; /* Don't process this tile any further */
|
|
}
|
|
|
|
// continue with the next track
|
|
direction = _tpf_new_direction[track];
|
|
|
|
// safety check if we're running around chasing our tail... (infinite loop)
|
|
if (tile == tile_org) {
|
|
bits = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// There are no tracks to choose between.
|
|
// Stop searching in this direction
|
|
if (bits == 0)
|
|
continue;
|
|
|
|
////////////////
|
|
// We got multiple tracks to choose between (intersection).
|
|
// Branch the search space into several branches.
|
|
////////////////
|
|
|
|
// Check if we've already visited this intersection.
|
|
// If we've already visited it with a better length, then
|
|
// there's no point in visiting it again.
|
|
if (!NtpVisit(tpf, tile, direction, si.cur_length))
|
|
continue;
|
|
|
|
// Push all possible alternatives that we can reach from here
|
|
// onto the priority heap.
|
|
// 'bits' contains the tracks that we can choose between.
|
|
|
|
// First compute the estimated distance to the target.
|
|
// This is used to implement A*
|
|
estimation = 0;
|
|
if (tpf->dest != 0)
|
|
estimation = DistanceMoo(tile, tpf->dest);
|
|
|
|
si.depth++;
|
|
if (si.depth == 0)
|
|
continue; /* We overflowed our depth. No more searching in this direction. */
|
|
si.tile = tile;
|
|
do {
|
|
si.track = _new_track[FIND_FIRST_BIT(bits)][direction];
|
|
assert(si.track != 0xFF);
|
|
si.priority = si.cur_length + estimation;
|
|
|
|
// out of stack items, bail out?
|
|
if (tpf->nstack >= lengthof(tpf->stack)) {
|
|
DEBUG(ntp, 1) ("[NTP] out of stack");
|
|
break;
|
|
}
|
|
|
|
tpf->stack[tpf->nstack] = si;
|
|
HeapifyUp(tpf);
|
|
} while ((bits = KILL_FIRST_BIT(bits)) != 0);
|
|
|
|
// If this is the first intersection, we need to fill the first_track member.
|
|
// so the code outside knows which path is better.
|
|
// also randomize the order in which we search through them.
|
|
if (si.depth == 1) {
|
|
assert(tpf->nstack == 1 || tpf->nstack == 2 || tpf->nstack == 3);
|
|
if (tpf->nstack != 1) {
|
|
uint32 r = Random();
|
|
if (r&1) swap_byte(&tpf->stack[0].track, &tpf->stack[1].track);
|
|
if (tpf->nstack != 2) {
|
|
byte t = tpf->stack[2].track;
|
|
if (r&2) swap_byte(&tpf->stack[0].track, &t);
|
|
if (r&4) swap_byte(&tpf->stack[1].track, &t);
|
|
tpf->stack[2].first_track = tpf->stack[2].track = t;
|
|
}
|
|
tpf->stack[0].first_track = tpf->stack[0].track;
|
|
tpf->stack[1].first_track = tpf->stack[1].track;
|
|
}
|
|
}
|
|
|
|
// Continue with the next from the queue...
|
|
}
|
|
}
|
|
|
|
|
|
// new pathfinder for trains. better and faster.
|
|
void NewTrainPathfind(TileIndex tile, TileIndex dest, RailTypeMask railtypes, DiagDirection direction, NTPEnumProc* enum_proc, void* data)
|
|
{
|
|
NewTrackPathFinder tpf;
|
|
|
|
tpf.dest = dest;
|
|
tpf.userdata = data;
|
|
tpf.enum_proc = enum_proc;
|
|
tpf.tracktype = TRANSPORT_RAIL;
|
|
tpf.railtypes = railtypes;
|
|
tpf.maxlength = min(_patches.pf_maxlength * 3, 10000);
|
|
tpf.nstack = 0;
|
|
tpf.new_link = tpf.links;
|
|
tpf.num_links_left = lengthof(tpf.links);
|
|
memset(tpf.hash_head, 0, sizeof(tpf.hash_head));
|
|
|
|
NTPEnum(&tpf, tile, direction);
|
|
}
|