mirror of
https://github.com/JGRennison/OpenTTD-patches.git
synced 2024-11-17 21:25:40 +00:00
1795 lines
60 KiB
C++
1795 lines
60 KiB
C++
/* $Id$ */
|
|
|
|
/*
|
|
* This file is part of OpenTTD.
|
|
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
|
|
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/** @file economy.cpp Handling of the economy. */
|
|
|
|
#include "stdafx.h"
|
|
#include "company_func.h"
|
|
#include "command_func.h"
|
|
#include "industry.h"
|
|
#include "town.h"
|
|
#include "news_func.h"
|
|
#include "network/network.h"
|
|
#include "network/network_func.h"
|
|
#include "ai/ai.hpp"
|
|
#include "aircraft.h"
|
|
#include "newgrf_engine.h"
|
|
#include "engine_base.h"
|
|
#include "ground_vehicle.hpp"
|
|
#include "newgrf_cargo.h"
|
|
#include "newgrf_sound.h"
|
|
#include "newgrf_industrytiles.h"
|
|
#include "newgrf_station.h"
|
|
#include "newgrf_airporttiles.h"
|
|
#include "object.h"
|
|
#include "strings_func.h"
|
|
#include "date_func.h"
|
|
#include "vehicle_func.h"
|
|
#include "sound_func.h"
|
|
#include "autoreplace_func.h"
|
|
#include "company_gui.h"
|
|
#include "signs_base.h"
|
|
#include "subsidy_base.h"
|
|
#include "subsidy_func.h"
|
|
#include "station_base.h"
|
|
#include "waypoint_base.h"
|
|
#include "economy_base.h"
|
|
#include "core/pool_func.hpp"
|
|
#include "core/backup_type.hpp"
|
|
#include "water.h"
|
|
#include "game/game.hpp"
|
|
|
|
#include "table/strings.h"
|
|
#include "table/pricebase.h"
|
|
|
|
|
|
/* Initialize the cargo payment-pool */
|
|
CargoPaymentPool _cargo_payment_pool("CargoPayment");
|
|
INSTANTIATE_POOL_METHODS(CargoPayment)
|
|
|
|
/**
|
|
* Multiply two integer values and shift the results to right.
|
|
*
|
|
* This function multiplies two integer values. The result is
|
|
* shifted by the amount of shift to right.
|
|
*
|
|
* @param a The first integer
|
|
* @param b The second integer
|
|
* @param shift The amount to shift the value to right.
|
|
* @return The shifted result
|
|
*/
|
|
static inline int32 BigMulS(const int32 a, const int32 b, const uint8 shift)
|
|
{
|
|
return (int32)((int64)a * (int64)b >> shift);
|
|
}
|
|
|
|
typedef SmallVector<Industry *, 16> SmallIndustryList;
|
|
|
|
/**
|
|
* Score info, values used for computing the detailed performance rating.
|
|
*/
|
|
const ScoreInfo _score_info[] = {
|
|
{ 120, 100}, // SCORE_VEHICLES
|
|
{ 80, 100}, // SCORE_STATIONS
|
|
{ 10000, 100}, // SCORE_MIN_PROFIT
|
|
{ 50000, 50}, // SCORE_MIN_INCOME
|
|
{ 100000, 100}, // SCORE_MAX_INCOME
|
|
{ 40000, 400}, // SCORE_DELIVERED
|
|
{ 8, 50}, // SCORE_CARGO
|
|
{10000000, 50}, // SCORE_MONEY
|
|
{ 250000, 50}, // SCORE_LOAN
|
|
{ 0, 0} // SCORE_TOTAL
|
|
};
|
|
|
|
int _score_part[MAX_COMPANIES][SCORE_END];
|
|
Economy _economy;
|
|
Prices _price;
|
|
Money _additional_cash_required;
|
|
static PriceMultipliers _price_base_multiplier;
|
|
|
|
/**
|
|
* Calculate the value of the company. That is the value of all
|
|
* assets (vehicles, stations, etc) and money minus the loan,
|
|
* except when including_loan is \c false which is useful when
|
|
* we want to calculate the value for bankruptcy.
|
|
* @param c the company to get the value of.
|
|
* @param including_loan include the loan in the company value.
|
|
* @return the value of the company.
|
|
*/
|
|
Money CalculateCompanyValue(const Company *c, bool including_loan)
|
|
{
|
|
Owner owner = c->index;
|
|
|
|
Station *st;
|
|
uint num = 0;
|
|
|
|
FOR_ALL_STATIONS(st) {
|
|
if (st->owner == owner) num += CountBits((byte)st->facilities);
|
|
}
|
|
|
|
Money value = num * _price[PR_STATION_VALUE] * 25;
|
|
|
|
Vehicle *v;
|
|
FOR_ALL_VEHICLES(v) {
|
|
if (v->owner != owner) continue;
|
|
|
|
if (v->type == VEH_TRAIN ||
|
|
v->type == VEH_ROAD ||
|
|
(v->type == VEH_AIRCRAFT && Aircraft::From(v)->IsNormalAircraft()) ||
|
|
v->type == VEH_SHIP) {
|
|
value += v->value * 3 >> 1;
|
|
}
|
|
}
|
|
|
|
/* Add real money value */
|
|
if (including_loan) value -= c->current_loan;
|
|
value += c->money;
|
|
|
|
return max(value, (Money)1);
|
|
}
|
|
|
|
/**
|
|
* if update is set to true, the economy is updated with this score
|
|
* (also the house is updated, should only be true in the on-tick event)
|
|
* @param update the economy with calculated score
|
|
* @param c company been evaluated
|
|
* @return actual score of this company
|
|
*
|
|
*/
|
|
int UpdateCompanyRatingAndValue(Company *c, bool update)
|
|
{
|
|
Owner owner = c->index;
|
|
int score = 0;
|
|
|
|
memset(_score_part[owner], 0, sizeof(_score_part[owner]));
|
|
|
|
/* Count vehicles */
|
|
{
|
|
Vehicle *v;
|
|
Money min_profit = 0;
|
|
bool min_profit_first = true;
|
|
uint num = 0;
|
|
|
|
FOR_ALL_VEHICLES(v) {
|
|
if (v->owner != owner) continue;
|
|
if (IsCompanyBuildableVehicleType(v->type) && v->IsPrimaryVehicle()) {
|
|
if (v->profit_last_year > 0) num++; // For the vehicle score only count profitable vehicles
|
|
if (v->age > 730) {
|
|
/* Find the vehicle with the lowest amount of profit */
|
|
if (min_profit_first || min_profit > v->profit_last_year) {
|
|
min_profit = v->profit_last_year;
|
|
min_profit_first = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
min_profit >>= 8; // remove the fract part
|
|
|
|
_score_part[owner][SCORE_VEHICLES] = num;
|
|
/* Don't allow negative min_profit to show */
|
|
if (min_profit > 0) {
|
|
_score_part[owner][SCORE_MIN_PROFIT] = ClampToI32(min_profit);
|
|
}
|
|
}
|
|
|
|
/* Count stations */
|
|
{
|
|
uint num = 0;
|
|
const Station *st;
|
|
|
|
FOR_ALL_STATIONS(st) {
|
|
/* Only count stations that are actually serviced */
|
|
if (st->owner == owner && (st->time_since_load <= 20 || st->time_since_unload <= 20)) num += CountBits((byte)st->facilities);
|
|
}
|
|
_score_part[owner][SCORE_STATIONS] = num;
|
|
}
|
|
|
|
/* Generate statistics depending on recent income statistics */
|
|
{
|
|
int numec = min(c->num_valid_stat_ent, 12);
|
|
if (numec != 0) {
|
|
const CompanyEconomyEntry *cee = c->old_economy;
|
|
Money min_income = cee->income + cee->expenses;
|
|
Money max_income = cee->income + cee->expenses;
|
|
|
|
do {
|
|
min_income = min(min_income, cee->income + cee->expenses);
|
|
max_income = max(max_income, cee->income + cee->expenses);
|
|
} while (++cee, --numec);
|
|
|
|
if (min_income > 0) {
|
|
_score_part[owner][SCORE_MIN_INCOME] = ClampToI32(min_income);
|
|
}
|
|
|
|
_score_part[owner][SCORE_MAX_INCOME] = ClampToI32(max_income);
|
|
}
|
|
}
|
|
|
|
/* Generate score depending on amount of transported cargo */
|
|
{
|
|
int numec = min(c->num_valid_stat_ent, 4);
|
|
if (numec != 0) {
|
|
const CompanyEconomyEntry *cee = c->old_economy;
|
|
OverflowSafeInt64 total_delivered = 0;
|
|
do {
|
|
total_delivered += cee->delivered_cargo.GetSum<OverflowSafeInt64>();
|
|
} while (++cee, --numec);
|
|
|
|
_score_part[owner][SCORE_DELIVERED] = ClampToI32(total_delivered);
|
|
}
|
|
}
|
|
|
|
/* Generate score for variety of cargo */
|
|
{
|
|
_score_part[owner][SCORE_CARGO] = c->old_economy->delivered_cargo.GetCount();
|
|
}
|
|
|
|
/* Generate score for company's money */
|
|
{
|
|
if (c->money > 0) {
|
|
_score_part[owner][SCORE_MONEY] = ClampToI32(c->money);
|
|
}
|
|
}
|
|
|
|
/* Generate score for loan */
|
|
{
|
|
_score_part[owner][SCORE_LOAN] = ClampToI32(_score_info[SCORE_LOAN].needed - c->current_loan);
|
|
}
|
|
|
|
/* Now we calculate the score for each item.. */
|
|
{
|
|
int total_score = 0;
|
|
int s;
|
|
score = 0;
|
|
for (ScoreID i = SCORE_BEGIN; i < SCORE_END; i++) {
|
|
/* Skip the total */
|
|
if (i == SCORE_TOTAL) continue;
|
|
/* Check the score */
|
|
s = Clamp(_score_part[owner][i], 0, _score_info[i].needed) * _score_info[i].score / _score_info[i].needed;
|
|
score += s;
|
|
total_score += _score_info[i].score;
|
|
}
|
|
|
|
_score_part[owner][SCORE_TOTAL] = score;
|
|
|
|
/* We always want the score scaled to SCORE_MAX (1000) */
|
|
if (total_score != SCORE_MAX) score = score * SCORE_MAX / total_score;
|
|
}
|
|
|
|
if (update) {
|
|
c->old_economy[0].performance_history = score;
|
|
UpdateCompanyHQ(c->location_of_HQ, score);
|
|
c->old_economy[0].company_value = CalculateCompanyValue(c);
|
|
}
|
|
|
|
SetWindowDirty(WC_PERFORMANCE_DETAIL, 0);
|
|
return score;
|
|
}
|
|
|
|
/**
|
|
* Change the ownership of all the items of a company.
|
|
* @param old_owner The company that gets removed.
|
|
* @param new_owner The company to merge to, or INVALID_OWNER to remove the company.
|
|
*/
|
|
void ChangeOwnershipOfCompanyItems(Owner old_owner, Owner new_owner)
|
|
{
|
|
/* We need to set _current_company to old_owner before we try to move
|
|
* the client. This is needed as it needs to know whether "you" really
|
|
* are the current local company. */
|
|
Backup<CompanyByte> cur_company(_current_company, old_owner, FILE_LINE);
|
|
#ifdef ENABLE_NETWORK
|
|
/* In all cases, make spectators of clients connected to that company */
|
|
if (_networking) NetworkClientsToSpectators(old_owner);
|
|
#endif /* ENABLE_NETWORK */
|
|
if (old_owner == _local_company) {
|
|
/* Single player cheated to AI company.
|
|
* There are no specatators in single player, so we must pick some other company. */
|
|
assert(!_networking);
|
|
Backup<CompanyByte> cur_company(_current_company, FILE_LINE);
|
|
Company *c;
|
|
FOR_ALL_COMPANIES(c) {
|
|
if (c->index != old_owner) {
|
|
SetLocalCompany(c->index);
|
|
break;
|
|
}
|
|
}
|
|
cur_company.Restore();
|
|
assert(old_owner != _local_company);
|
|
}
|
|
|
|
Town *t;
|
|
|
|
assert(old_owner != new_owner);
|
|
|
|
{
|
|
Company *c;
|
|
uint i;
|
|
|
|
/* See if the old_owner had shares in other companies */
|
|
FOR_ALL_COMPANIES(c) {
|
|
for (i = 0; i < 4; i++) {
|
|
if (c->share_owners[i] == old_owner) {
|
|
/* Sell his shares */
|
|
CommandCost res = DoCommand(0, c->index, 0, DC_EXEC | DC_BANKRUPT, CMD_SELL_SHARE_IN_COMPANY);
|
|
/* Because we are in a DoCommand, we can't just execute another one and
|
|
* expect the money to be removed. We need to do it ourself! */
|
|
SubtractMoneyFromCompany(res);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Sell all the shares that people have on this company */
|
|
Backup<CompanyByte> cur_company2(_current_company, FILE_LINE);
|
|
c = Company::Get(old_owner);
|
|
for (i = 0; i < 4; i++) {
|
|
cur_company2.Change(c->share_owners[i]);
|
|
if (_current_company != INVALID_OWNER) {
|
|
/* Sell the shares */
|
|
CommandCost res = DoCommand(0, old_owner, 0, DC_EXEC | DC_BANKRUPT, CMD_SELL_SHARE_IN_COMPANY);
|
|
/* Because we are in a DoCommand, we can't just execute another one and
|
|
* expect the money to be removed. We need to do it ourself! */
|
|
SubtractMoneyFromCompany(res);
|
|
}
|
|
}
|
|
cur_company2.Restore();
|
|
}
|
|
|
|
/* Temporarily increase the company's money, to be sure that
|
|
* removing his/her property doesn't fail because of lack of money.
|
|
* Not too drastically though, because it could overflow */
|
|
if (new_owner == INVALID_OWNER) {
|
|
Company::Get(old_owner)->money = UINT64_MAX >> 2; // jackpot ;p
|
|
}
|
|
|
|
Subsidy *s;
|
|
FOR_ALL_SUBSIDIES(s) {
|
|
if (s->awarded == old_owner) {
|
|
if (new_owner == INVALID_OWNER) {
|
|
delete s;
|
|
} else {
|
|
s->awarded = new_owner;
|
|
}
|
|
}
|
|
}
|
|
if (new_owner == INVALID_OWNER) RebuildSubsidisedSourceAndDestinationCache();
|
|
|
|
/* Take care of rating in towns */
|
|
FOR_ALL_TOWNS(t) {
|
|
/* If a company takes over, give the ratings to that company. */
|
|
if (new_owner != INVALID_OWNER) {
|
|
if (HasBit(t->have_ratings, old_owner)) {
|
|
if (HasBit(t->have_ratings, new_owner)) {
|
|
/* use max of the two ratings. */
|
|
t->ratings[new_owner] = max(t->ratings[new_owner], t->ratings[old_owner]);
|
|
} else {
|
|
SetBit(t->have_ratings, new_owner);
|
|
t->ratings[new_owner] = t->ratings[old_owner];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reset the ratings for the old owner */
|
|
t->ratings[old_owner] = RATING_INITIAL;
|
|
ClrBit(t->have_ratings, old_owner);
|
|
}
|
|
|
|
{
|
|
Vehicle *v;
|
|
FOR_ALL_VEHICLES(v) {
|
|
if (v->owner == old_owner && IsCompanyBuildableVehicleType(v->type)) {
|
|
if (new_owner == INVALID_OWNER) {
|
|
if (v->Previous() == NULL) delete v;
|
|
} else {
|
|
if (v->IsEngineCountable()) GroupStatistics::CountEngine(v, -1);
|
|
if (v->IsPrimaryVehicle()) GroupStatistics::CountVehicle(v, -1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* In all cases clear replace engine rules.
|
|
* Even if it was copied, it could interfere with new owner's rules */
|
|
RemoveAllEngineReplacementForCompany(Company::Get(old_owner));
|
|
|
|
if (new_owner == INVALID_OWNER) {
|
|
RemoveAllGroupsForCompany(old_owner);
|
|
} else {
|
|
Group *g;
|
|
FOR_ALL_GROUPS(g) {
|
|
if (g->owner == old_owner) g->owner = new_owner;
|
|
}
|
|
}
|
|
|
|
{
|
|
FreeUnitIDGenerator unitidgen[] = {
|
|
FreeUnitIDGenerator(VEH_TRAIN, new_owner), FreeUnitIDGenerator(VEH_ROAD, new_owner),
|
|
FreeUnitIDGenerator(VEH_SHIP, new_owner), FreeUnitIDGenerator(VEH_AIRCRAFT, new_owner)
|
|
};
|
|
|
|
Vehicle *v;
|
|
FOR_ALL_VEHICLES(v) {
|
|
if (v->owner == old_owner && IsCompanyBuildableVehicleType(v->type)) {
|
|
assert(new_owner != INVALID_OWNER);
|
|
|
|
v->owner = new_owner;
|
|
|
|
/* Owner changes, clear cache */
|
|
v->colourmap = PAL_NONE;
|
|
v->InvalidateNewGRFCache();
|
|
|
|
if (v->IsEngineCountable()) {
|
|
GroupStatistics::CountEngine(v, 1);
|
|
}
|
|
if (v->IsPrimaryVehicle()) {
|
|
GroupStatistics::CountVehicle(v, 1);
|
|
v->unitnumber = unitidgen[v->type].NextID();
|
|
}
|
|
|
|
/* Invalidate the vehicle's cargo payment "owner cache". */
|
|
if (v->cargo_payment != NULL) v->cargo_payment->owner = NULL;
|
|
}
|
|
}
|
|
|
|
if (new_owner != INVALID_OWNER) GroupStatistics::UpdateAutoreplace(new_owner);
|
|
}
|
|
|
|
/* Change ownership of tiles */
|
|
{
|
|
TileIndex tile = 0;
|
|
do {
|
|
ChangeTileOwner(tile, old_owner, new_owner);
|
|
} while (++tile != MapSize());
|
|
|
|
if (new_owner != INVALID_OWNER) {
|
|
/* Update all signals because there can be new segment that was owned by two companies
|
|
* and signals were not propagated
|
|
* Similiar with crossings - it is needed to bar crossings that weren't before
|
|
* because of different owner of crossing and approaching train */
|
|
tile = 0;
|
|
|
|
do {
|
|
if (IsTileType(tile, MP_RAILWAY) && IsTileOwner(tile, new_owner) && HasSignals(tile)) {
|
|
TrackBits tracks = GetTrackBits(tile);
|
|
do { // there may be two tracks with signals for TRACK_BIT_HORZ and TRACK_BIT_VERT
|
|
Track track = RemoveFirstTrack(&tracks);
|
|
if (HasSignalOnTrack(tile, track)) AddTrackToSignalBuffer(tile, track, new_owner);
|
|
} while (tracks != TRACK_BIT_NONE);
|
|
} else if (IsLevelCrossingTile(tile) && IsTileOwner(tile, new_owner)) {
|
|
UpdateLevelCrossing(tile);
|
|
}
|
|
} while (++tile != MapSize());
|
|
}
|
|
|
|
/* update signals in buffer */
|
|
UpdateSignalsInBuffer();
|
|
}
|
|
|
|
/* Add airport infrastructure count of the old company to the new one. */
|
|
if (new_owner != INVALID_OWNER) Company::Get(new_owner)->infrastructure.airport += Company::Get(old_owner)->infrastructure.airport;
|
|
|
|
/* convert owner of stations (including deleted ones, but excluding buoys) */
|
|
Station *st;
|
|
FOR_ALL_STATIONS(st) {
|
|
if (st->owner == old_owner) {
|
|
/* if a company goes bankrupt, set owner to OWNER_NONE so the sign doesn't disappear immediately
|
|
* also, drawing station window would cause reading invalid company's colour */
|
|
st->owner = new_owner == INVALID_OWNER ? OWNER_NONE : new_owner;
|
|
}
|
|
}
|
|
|
|
/* do the same for waypoints (we need to do this here so deleted waypoints are converted too) */
|
|
Waypoint *wp;
|
|
FOR_ALL_WAYPOINTS(wp) {
|
|
if (wp->owner == old_owner) {
|
|
wp->owner = new_owner == INVALID_OWNER ? OWNER_NONE : new_owner;
|
|
}
|
|
}
|
|
|
|
Sign *si;
|
|
FOR_ALL_SIGNS(si) {
|
|
if (si->owner == old_owner) si->owner = new_owner == INVALID_OWNER ? OWNER_NONE : new_owner;
|
|
}
|
|
|
|
/* Change colour of existing windows */
|
|
if (new_owner != INVALID_OWNER) ChangeWindowOwner(old_owner, new_owner);
|
|
|
|
cur_company.Restore();
|
|
|
|
MarkWholeScreenDirty();
|
|
}
|
|
|
|
/**
|
|
* Check for bankruptcy of a company. Called every three months.
|
|
* @param c Company to check.
|
|
*/
|
|
static void CompanyCheckBankrupt(Company *c)
|
|
{
|
|
/* If the company has money again, it does not go bankrupt */
|
|
if (c->money >= 0) {
|
|
c->quarters_of_bankruptcy = 0;
|
|
c->bankrupt_asked = 0;
|
|
return;
|
|
}
|
|
|
|
c->quarters_of_bankruptcy++;
|
|
|
|
switch (c->quarters_of_bankruptcy) {
|
|
case 0:
|
|
case 1:
|
|
break;
|
|
|
|
case 2: {
|
|
CompanyNewsInformation *cni = MallocT<CompanyNewsInformation>(1);
|
|
cni->FillData(c);
|
|
SetDParam(0, STR_NEWS_COMPANY_IN_TROUBLE_TITLE);
|
|
SetDParam(1, STR_NEWS_COMPANY_IN_TROUBLE_DESCRIPTION);
|
|
SetDParamStr(2, cni->company_name);
|
|
AddCompanyNewsItem(STR_MESSAGE_NEWS_FORMAT, NS_COMPANY_TROUBLE, cni);
|
|
AI::BroadcastNewEvent(new ScriptEventCompanyInTrouble(c->index));
|
|
Game::NewEvent(new ScriptEventCompanyInTrouble(c->index));
|
|
break;
|
|
}
|
|
|
|
case 3: {
|
|
/* Check if the company has any value.. if not, declare it bankrupt
|
|
* right now */
|
|
Money val = CalculateCompanyValue(c, false);
|
|
if (val > 0) {
|
|
c->bankrupt_value = val;
|
|
c->bankrupt_asked = 1 << c->index; // Don't ask the owner
|
|
c->bankrupt_timeout = 0;
|
|
break;
|
|
}
|
|
/* FALL THROUGH to case 4... */
|
|
}
|
|
default:
|
|
case 4:
|
|
if (!_networking && _local_company == c->index) {
|
|
/* If we are in offline mode, leave the company playing. Eg. there
|
|
* is no THE-END, otherwise mark the client as spectator to make sure
|
|
* he/she is no long in control of this company. However... when you
|
|
* join another company (cheat) the "unowned" company can bankrupt. */
|
|
c->bankrupt_asked = MAX_UVALUE(CompanyMask);
|
|
break;
|
|
}
|
|
|
|
/* Actually remove the company, but not when we're a network client.
|
|
* In case of network clients we will be getting a command from the
|
|
* server. It is done in this way as we are called from the
|
|
* StateGameLoop which can't change the current company, and thus
|
|
* updating the local company triggers an assert later on. In the
|
|
* case of a network game the command will be processed at a time
|
|
* that changing the current company is okay. In case of single
|
|
* player we are sure (the above check) that we are not the local
|
|
* company and thus we won't be moved. */
|
|
if (!_networking || _network_server) DoCommandP(0, 2 | (c->index << 16), CRR_BANKRUPT, CMD_COMPANY_CTRL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Update the finances of all companies.
|
|
* Pay for the stations, update the history graph, update ratings and company values, and deal with bankruptcy.
|
|
*/
|
|
static void CompaniesGenStatistics()
|
|
{
|
|
Station *st;
|
|
|
|
Backup<CompanyByte> cur_company(_current_company, FILE_LINE);
|
|
Company *c;
|
|
|
|
if (!_settings_game.economy.infrastructure_maintenance) {
|
|
FOR_ALL_STATIONS(st) {
|
|
cur_company.Change(st->owner);
|
|
CommandCost cost(EXPENSES_PROPERTY, _price[PR_STATION_VALUE] >> 1);
|
|
SubtractMoneyFromCompany(cost);
|
|
}
|
|
} else {
|
|
/* Improved monthly infrastructure costs. */
|
|
FOR_ALL_COMPANIES(c) {
|
|
cur_company.Change(c->index);
|
|
|
|
CommandCost cost(EXPENSES_PROPERTY);
|
|
uint32 rail_total = c->infrastructure.GetRailTotal();
|
|
for (RailType rt = RAILTYPE_BEGIN; rt < RAILTYPE_END; rt++) {
|
|
if (c->infrastructure.rail[rt] != 0) cost.AddCost(RailMaintenanceCost(rt, c->infrastructure.rail[rt], rail_total));
|
|
}
|
|
cost.AddCost(SignalMaintenanceCost(c->infrastructure.signal));
|
|
for (RoadType rt = ROADTYPE_BEGIN; rt < ROADTYPE_END; rt++) {
|
|
if (c->infrastructure.road[rt] != 0) cost.AddCost(RoadMaintenanceCost(rt, c->infrastructure.road[rt]));
|
|
}
|
|
cost.AddCost(CanalMaintenanceCost(c->infrastructure.water));
|
|
cost.AddCost(StationMaintenanceCost(c->infrastructure.station));
|
|
cost.AddCost(AirportMaintenanceCost(c->index));
|
|
|
|
SubtractMoneyFromCompany(cost);
|
|
}
|
|
}
|
|
cur_company.Restore();
|
|
|
|
/* Only run the economic statics and update company stats every 3rd month (1st of quarter). */
|
|
if (!HasBit(1 << 0 | 1 << 3 | 1 << 6 | 1 << 9, _cur_month)) return;
|
|
|
|
FOR_ALL_COMPANIES(c) {
|
|
memmove(&c->old_economy[1], &c->old_economy[0], sizeof(c->old_economy) - sizeof(c->old_economy[0]));
|
|
c->old_economy[0] = c->cur_economy;
|
|
memset(&c->cur_economy, 0, sizeof(c->cur_economy));
|
|
|
|
if (c->num_valid_stat_ent != MAX_HISTORY_QUARTERS) c->num_valid_stat_ent++;
|
|
|
|
UpdateCompanyRatingAndValue(c, true);
|
|
if (c->block_preview != 0) c->block_preview--;
|
|
CompanyCheckBankrupt(c);
|
|
}
|
|
|
|
SetWindowDirty(WC_INCOME_GRAPH, 0);
|
|
SetWindowDirty(WC_OPERATING_PROFIT, 0);
|
|
SetWindowDirty(WC_DELIVERED_CARGO, 0);
|
|
SetWindowDirty(WC_PERFORMANCE_HISTORY, 0);
|
|
SetWindowDirty(WC_COMPANY_VALUE, 0);
|
|
SetWindowDirty(WC_COMPANY_LEAGUE, 0);
|
|
}
|
|
|
|
/**
|
|
* Add monthly inflation
|
|
* @param check_year Shall the inflation get stopped after 170 years?
|
|
*/
|
|
void AddInflation(bool check_year)
|
|
{
|
|
/* The cargo payment inflation differs from the normal inflation, so the
|
|
* relative amount of money you make with a transport decreases slowly over
|
|
* the 170 years. After a few hundred years we reach a level in which the
|
|
* games will become unplayable as the maximum income will be less than
|
|
* the minimum running cost.
|
|
*
|
|
* Furthermore there are a lot of inflation related overflows all over the
|
|
* place. Solving them is hardly possible because inflation will always
|
|
* reach the overflow threshold some day. So we'll just perform the
|
|
* inflation mechanism during the first 170 years (the amount of years that
|
|
* one had in the original TTD) and stop doing the inflation after that
|
|
* because it only causes problems that can't be solved nicely and the
|
|
* inflation doesn't add anything after that either; it even makes playing
|
|
* it impossible due to the diverging cost and income rates.
|
|
*/
|
|
if (check_year && (_cur_year - _settings_game.game_creation.starting_year) >= (ORIGINAL_MAX_YEAR - ORIGINAL_BASE_YEAR)) return;
|
|
|
|
/* Approximation for (100 + infl_amount)% ** (1 / 12) - 100%
|
|
* scaled by 65536
|
|
* 12 -> months per year
|
|
* This is only a good approxiamtion for small values
|
|
*/
|
|
_economy.inflation_prices += min((_economy.inflation_prices * _economy.infl_amount * 54) >> 16, MAX_INFLATION);
|
|
_economy.inflation_payment += min((_economy.inflation_payment * _economy.infl_amount_pr * 54) >> 16, MAX_INFLATION);
|
|
}
|
|
|
|
/**
|
|
* Computes all prices, payments and maximum loan.
|
|
*/
|
|
void RecomputePrices()
|
|
{
|
|
/* Setup maximum loan */
|
|
_economy.max_loan = (_settings_game.difficulty.max_loan * _economy.inflation_prices >> 16) / 50000 * 50000;
|
|
|
|
/* Setup price bases */
|
|
for (Price i = PR_BEGIN; i < PR_END; i++) {
|
|
Money price = _price_base_specs[i].start_price;
|
|
|
|
/* Apply difficulty settings */
|
|
uint mod = 1;
|
|
switch (_price_base_specs[i].category) {
|
|
case PCAT_RUNNING:
|
|
mod = _settings_game.difficulty.vehicle_costs;
|
|
break;
|
|
|
|
case PCAT_CONSTRUCTION:
|
|
mod = _settings_game.difficulty.construction_cost;
|
|
break;
|
|
|
|
default: break;
|
|
}
|
|
switch (mod) {
|
|
case 0: price *= 6; break;
|
|
case 1: price *= 8; break; // normalised to 1 below
|
|
case 2: price *= 9; break;
|
|
default: NOT_REACHED();
|
|
}
|
|
|
|
/* Apply inflation */
|
|
price = (int64)price * _economy.inflation_prices;
|
|
|
|
/* Apply newgrf modifiers, remove fractional part of inflation, and normalise on medium difficulty. */
|
|
int shift = _price_base_multiplier[i] - 16 - 3;
|
|
if (shift >= 0) {
|
|
price <<= shift;
|
|
} else {
|
|
price >>= -shift;
|
|
}
|
|
|
|
/* Make sure the price does not get reduced to zero.
|
|
* Zero breaks quite a few commands that use a zero
|
|
* cost to see whether something got changed or not
|
|
* and based on that cause an error. When the price
|
|
* is zero that fails even when things are done. */
|
|
if (price == 0) {
|
|
price = Clamp(_price_base_specs[i].start_price, -1, 1);
|
|
/* No base price should be zero, but be sure. */
|
|
assert(price != 0);
|
|
}
|
|
/* Store value */
|
|
_price[i] = price;
|
|
}
|
|
|
|
/* Setup cargo payment */
|
|
CargoSpec *cs;
|
|
FOR_ALL_CARGOSPECS(cs) {
|
|
cs->current_payment = ((int64)cs->initial_payment * _economy.inflation_payment) >> 16;
|
|
}
|
|
|
|
SetWindowClassesDirty(WC_BUILD_VEHICLE);
|
|
SetWindowClassesDirty(WC_REPLACE_VEHICLE);
|
|
SetWindowClassesDirty(WC_VEHICLE_DETAILS);
|
|
SetWindowClassesDirty(WC_COMPANY_INFRASTRUCTURE);
|
|
InvalidateWindowData(WC_PAYMENT_RATES, 0);
|
|
}
|
|
|
|
/** Let all companies pay the monthly interest on their loan. */
|
|
static void CompaniesPayInterest()
|
|
{
|
|
const Company *c;
|
|
|
|
Backup<CompanyByte> cur_company(_current_company, FILE_LINE);
|
|
FOR_ALL_COMPANIES(c) {
|
|
cur_company.Change(c->index);
|
|
|
|
/* Over a year the paid interest should be "loan * interest percentage",
|
|
* but... as that number is likely not dividable by 12 (pay each month),
|
|
* one needs to account for that in the monthly fee calculations.
|
|
* To easily calculate what one should pay "this" month, you calculate
|
|
* what (total) should have been paid up to this month and you subtract
|
|
* whatever has been paid in the previous months. This will mean one month
|
|
* it'll be a bit more and the other it'll be a bit less than the average
|
|
* monthly fee, but on average it will be exact. */
|
|
Money yearly_fee = c->current_loan * _economy.interest_rate / 100;
|
|
Money up_to_previous_month = yearly_fee * _cur_month / 12;
|
|
Money up_to_this_month = yearly_fee * (_cur_month + 1) / 12;
|
|
|
|
SubtractMoneyFromCompany(CommandCost(EXPENSES_LOAN_INT, up_to_this_month - up_to_previous_month));
|
|
|
|
SubtractMoneyFromCompany(CommandCost(EXPENSES_OTHER, _price[PR_STATION_VALUE] >> 2));
|
|
}
|
|
cur_company.Restore();
|
|
}
|
|
|
|
static void HandleEconomyFluctuations()
|
|
{
|
|
if (_settings_game.difficulty.economy != 0) {
|
|
/* When economy is Fluctuating, decrease counter */
|
|
_economy.fluct--;
|
|
} else if (EconomyIsInRecession()) {
|
|
/* When it's Steady and we are in recession, end it now */
|
|
_economy.fluct = -12;
|
|
} else {
|
|
/* No need to do anything else in other cases */
|
|
return;
|
|
}
|
|
|
|
if (_economy.fluct == 0) {
|
|
_economy.fluct = -(int)GB(Random(), 0, 2);
|
|
AddNewsItem(STR_NEWS_BEGIN_OF_RECESSION, NS_ECONOMY);
|
|
} else if (_economy.fluct == -12) {
|
|
_economy.fluct = GB(Random(), 0, 8) + 312;
|
|
AddNewsItem(STR_NEWS_END_OF_RECESSION, NS_ECONOMY);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Reset changes to the price base multipliers.
|
|
*/
|
|
void ResetPriceBaseMultipliers()
|
|
{
|
|
memset(_price_base_multiplier, 0, sizeof(_price_base_multiplier));
|
|
}
|
|
|
|
/**
|
|
* Change a price base by the given factor.
|
|
* The price base is altered by factors of two.
|
|
* NewBaseCost = OldBaseCost * 2^n
|
|
* @param price Index of price base to change.
|
|
* @param factor Amount to change by.
|
|
*/
|
|
void SetPriceBaseMultiplier(Price price, int factor)
|
|
{
|
|
assert(price < PR_END);
|
|
_price_base_multiplier[price] = Clamp(factor, MIN_PRICE_MODIFIER, MAX_PRICE_MODIFIER);
|
|
}
|
|
|
|
/**
|
|
* Initialize the variables that will maintain the daily industry change system.
|
|
* @param init_counter specifies if the counter is required to be initialized
|
|
*/
|
|
void StartupIndustryDailyChanges(bool init_counter)
|
|
{
|
|
uint map_size = MapLogX() + MapLogY();
|
|
/* After getting map size, it needs to be scaled appropriately and divided by 31,
|
|
* which stands for the days in a month.
|
|
* Using just 31 will make it so that a monthly reset (based on the real number of days of that month)
|
|
* would not be needed.
|
|
* Since it is based on "fractionnal parts", the leftover days will not make much of a difference
|
|
* on the overall total number of changes performed */
|
|
_economy.industry_daily_increment = (1 << map_size) / 31;
|
|
|
|
if (init_counter) {
|
|
/* A new game or a savegame from an older version will require the counter to be initialized */
|
|
_economy.industry_daily_change_counter = 0;
|
|
}
|
|
}
|
|
|
|
void StartupEconomy()
|
|
{
|
|
_economy.interest_rate = _settings_game.difficulty.initial_interest;
|
|
_economy.infl_amount = _settings_game.difficulty.initial_interest;
|
|
_economy.infl_amount_pr = max(0, _settings_game.difficulty.initial_interest - 1);
|
|
_economy.fluct = GB(Random(), 0, 8) + 168;
|
|
|
|
/* Set up prices */
|
|
RecomputePrices();
|
|
|
|
StartupIndustryDailyChanges(true); // As we are starting a new game, initialize the counter too
|
|
|
|
}
|
|
|
|
/**
|
|
* Resets economy to initial values
|
|
*/
|
|
void InitializeEconomy()
|
|
{
|
|
_economy.inflation_prices = _economy.inflation_payment = 1 << 16;
|
|
}
|
|
|
|
/**
|
|
* Determine a certain price
|
|
* @param index Price base
|
|
* @param cost_factor Price factor
|
|
* @param grf_file NewGRF to use local price multipliers from.
|
|
* @param shift Extra bit shifting after the computation
|
|
* @return Price
|
|
*/
|
|
Money GetPrice(Price index, uint cost_factor, const GRFFile *grf_file, int shift)
|
|
{
|
|
if (index >= PR_END) return 0;
|
|
|
|
Money cost = _price[index] * cost_factor;
|
|
if (grf_file != NULL) shift += grf_file->price_base_multipliers[index];
|
|
|
|
if (shift >= 0) {
|
|
cost <<= shift;
|
|
} else {
|
|
cost >>= -shift;
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
|
|
Money GetTransportedGoodsIncome(uint num_pieces, uint dist, byte transit_days, CargoID cargo_type)
|
|
{
|
|
const CargoSpec *cs = CargoSpec::Get(cargo_type);
|
|
if (!cs->IsValid()) {
|
|
/* User changed newgrfs and some vehicle still carries some cargo which is no longer available. */
|
|
return 0;
|
|
}
|
|
|
|
/* Use callback to calculate cargo profit, if available */
|
|
if (HasBit(cs->callback_mask, CBM_CARGO_PROFIT_CALC)) {
|
|
uint32 var18 = min(dist, 0xFFFF) | (min(num_pieces, 0xFF) << 16) | (transit_days << 24);
|
|
uint16 callback = GetCargoCallback(CBID_CARGO_PROFIT_CALC, 0, var18, cs);
|
|
if (callback != CALLBACK_FAILED) {
|
|
int result = GB(callback, 0, 14);
|
|
|
|
/* Simulate a 15 bit signed value */
|
|
if (HasBit(callback, 14)) result -= 0x4000;
|
|
|
|
/* "The result should be a signed multiplier that gets multiplied
|
|
* by the amount of cargo moved and the price factor, then gets
|
|
* divided by 8192." */
|
|
return result * num_pieces * cs->current_payment / 8192;
|
|
}
|
|
}
|
|
|
|
static const int MIN_TIME_FACTOR = 31;
|
|
static const int MAX_TIME_FACTOR = 255;
|
|
|
|
const int days1 = cs->transit_days[0];
|
|
const int days2 = cs->transit_days[1];
|
|
const int days_over_days1 = max( transit_days - days1, 0);
|
|
const int days_over_days2 = max(days_over_days1 - days2, 0);
|
|
|
|
/*
|
|
* The time factor is calculated based on the time it took
|
|
* (transit_days) compared two cargo-depending values. The
|
|
* range is divided into three parts:
|
|
*
|
|
* - constant for fast transits
|
|
* - linear decreasing with time with a slope of -1 for medium transports
|
|
* - linear decreasing with time with a slope of -2 for slow transports
|
|
*
|
|
*/
|
|
const int time_factor = max(MAX_TIME_FACTOR - days_over_days1 - days_over_days2, MIN_TIME_FACTOR);
|
|
|
|
return BigMulS(dist * time_factor * num_pieces, cs->current_payment, 21);
|
|
}
|
|
|
|
/** The industries we've currently brought cargo to. */
|
|
static SmallIndustryList _cargo_delivery_destinations;
|
|
|
|
/**
|
|
* Transfer goods from station to industry.
|
|
* All cargo is delivered to the nearest (Manhattan) industry to the station sign, which is inside the acceptance rectangle and actually accepts the cargo.
|
|
* @param st The station that accepted the cargo
|
|
* @param cargo_type Type of cargo delivered
|
|
* @param num_pieces Amount of cargo delivered
|
|
* @param source The source of the cargo
|
|
* @return actually accepted pieces of cargo
|
|
*/
|
|
static uint DeliverGoodsToIndustry(const Station *st, CargoID cargo_type, uint num_pieces, IndustryID source)
|
|
{
|
|
/* Find the nearest industrytile to the station sign inside the catchment area, whose industry accepts the cargo.
|
|
* This fails in three cases:
|
|
* 1) The station accepts the cargo because there are enough houses around it accepting the cargo.
|
|
* 2) The industries in the catchment area temporarily reject the cargo, and the daily station loop has not yet updated station acceptance.
|
|
* 3) The results of callbacks CBID_INDUSTRY_REFUSE_CARGO and CBID_INDTILE_CARGO_ACCEPTANCE are inconsistent. (documented behaviour)
|
|
*/
|
|
|
|
uint accepted = 0;
|
|
|
|
for (uint i = 0; i < st->industries_near.Length() && num_pieces != 0; i++) {
|
|
Industry *ind = st->industries_near[i];
|
|
if (ind->index == source) continue;
|
|
|
|
uint cargo_index;
|
|
for (cargo_index = 0; cargo_index < lengthof(ind->accepts_cargo); cargo_index++) {
|
|
if (cargo_type == ind->accepts_cargo[cargo_index]) break;
|
|
}
|
|
/* Check if matching cargo has been found */
|
|
if (cargo_index >= lengthof(ind->accepts_cargo)) continue;
|
|
|
|
/* Check if industry temporarily refuses acceptance */
|
|
if (IndustryTemporarilyRefusesCargo(ind, cargo_type)) continue;
|
|
|
|
/* Insert the industry into _cargo_delivery_destinations, if not yet contained */
|
|
_cargo_delivery_destinations.Include(ind);
|
|
|
|
uint amount = min(num_pieces, 0xFFFFU - ind->incoming_cargo_waiting[cargo_index]);
|
|
ind->incoming_cargo_waiting[cargo_index] += amount;
|
|
num_pieces -= amount;
|
|
accepted += amount;
|
|
}
|
|
|
|
return accepted;
|
|
}
|
|
|
|
/**
|
|
* Delivers goods to industries/towns and calculates the payment
|
|
* @param num_pieces amount of cargo delivered
|
|
* @param cargo_type the type of cargo that is delivered
|
|
* @param dest Station the cargo has been unloaded
|
|
* @param source_tile The origin of the cargo for distance calculation
|
|
* @param days_in_transit Travel time
|
|
* @param company The company delivering the cargo
|
|
* @param src_type Type of source of cargo (industry, town, headquarters)
|
|
* @param src Index of source of cargo
|
|
* @return Revenue for delivering cargo
|
|
* @note The cargo is just added to the stockpile of the industry. It is due to the caller to trigger the industry's production machinery
|
|
*/
|
|
static Money DeliverGoods(int num_pieces, CargoID cargo_type, StationID dest, TileIndex source_tile, byte days_in_transit, Company *company, SourceType src_type, SourceID src)
|
|
{
|
|
assert(num_pieces > 0);
|
|
|
|
Station *st = Station::Get(dest);
|
|
|
|
/* Give the goods to the industry. */
|
|
uint accepted = DeliverGoodsToIndustry(st, cargo_type, num_pieces, src_type == ST_INDUSTRY ? src : INVALID_INDUSTRY);
|
|
|
|
/* If this cargo type is always accepted, accept all */
|
|
if (HasBit(st->always_accepted, cargo_type)) accepted = num_pieces;
|
|
|
|
/* Update station statistics */
|
|
if (accepted > 0) {
|
|
SetBit(st->goods[cargo_type].acceptance_pickup, GoodsEntry::GES_EVER_ACCEPTED);
|
|
SetBit(st->goods[cargo_type].acceptance_pickup, GoodsEntry::GES_CURRENT_MONTH);
|
|
SetBit(st->goods[cargo_type].acceptance_pickup, GoodsEntry::GES_ACCEPTED_BIGTICK);
|
|
}
|
|
|
|
/* Update company statistics */
|
|
company->cur_economy.delivered_cargo[cargo_type] += accepted;
|
|
|
|
/* Increase town's counter for town effects */
|
|
const CargoSpec *cs = CargoSpec::Get(cargo_type);
|
|
st->town->received[cs->town_effect].new_act += accepted;
|
|
|
|
/* Determine profit */
|
|
Money profit = GetTransportedGoodsIncome(accepted, DistanceManhattan(source_tile, st->xy), days_in_transit, cargo_type);
|
|
|
|
/* Modify profit if a subsidy is in effect */
|
|
if (CheckSubsidised(cargo_type, company->index, src_type, src, st)) {
|
|
switch (_settings_game.difficulty.subsidy_multiplier) {
|
|
case 0: profit += profit >> 1; break;
|
|
case 1: profit *= 2; break;
|
|
case 2: profit *= 3; break;
|
|
default: profit *= 4; break;
|
|
}
|
|
}
|
|
|
|
return profit;
|
|
}
|
|
|
|
/**
|
|
* Inform the industry about just delivered cargo
|
|
* DeliverGoodsToIndustry() silently incremented incoming_cargo_waiting, now it is time to do something with the new cargo.
|
|
* @param i The industry to process
|
|
*/
|
|
static void TriggerIndustryProduction(Industry *i)
|
|
{
|
|
const IndustrySpec *indspec = GetIndustrySpec(i->type);
|
|
uint16 callback = indspec->callback_mask;
|
|
|
|
i->was_cargo_delivered = true;
|
|
i->last_cargo_accepted_at = _date;
|
|
|
|
if (HasBit(callback, CBM_IND_PRODUCTION_CARGO_ARRIVAL) || HasBit(callback, CBM_IND_PRODUCTION_256_TICKS)) {
|
|
if (HasBit(callback, CBM_IND_PRODUCTION_CARGO_ARRIVAL)) {
|
|
IndustryProductionCallback(i, 0);
|
|
} else {
|
|
SetWindowDirty(WC_INDUSTRY_VIEW, i->index);
|
|
}
|
|
} else {
|
|
for (uint cargo_index = 0; cargo_index < lengthof(i->incoming_cargo_waiting); cargo_index++) {
|
|
uint cargo_waiting = i->incoming_cargo_waiting[cargo_index];
|
|
if (cargo_waiting == 0) continue;
|
|
|
|
i->produced_cargo_waiting[0] = min(i->produced_cargo_waiting[0] + (cargo_waiting * indspec->input_cargo_multiplier[cargo_index][0] / 256), 0xFFFF);
|
|
i->produced_cargo_waiting[1] = min(i->produced_cargo_waiting[1] + (cargo_waiting * indspec->input_cargo_multiplier[cargo_index][1] / 256), 0xFFFF);
|
|
|
|
i->incoming_cargo_waiting[cargo_index] = 0;
|
|
}
|
|
}
|
|
|
|
TriggerIndustry(i, INDUSTRY_TRIGGER_RECEIVED_CARGO);
|
|
StartStopIndustryTileAnimation(i, IAT_INDUSTRY_RECEIVED_CARGO);
|
|
}
|
|
|
|
/**
|
|
* Makes us a new cargo payment helper.
|
|
* @param front The front of the train
|
|
*/
|
|
CargoPayment::CargoPayment(Vehicle *front) :
|
|
front(front),
|
|
current_station(front->last_station_visited)
|
|
{
|
|
}
|
|
|
|
CargoPayment::~CargoPayment()
|
|
{
|
|
if (this->CleaningPool()) return;
|
|
|
|
this->front->cargo_payment = NULL;
|
|
|
|
if (this->visual_profit == 0) return;
|
|
|
|
Backup<CompanyByte> cur_company(_current_company, this->front->owner, FILE_LINE);
|
|
|
|
SubtractMoneyFromCompany(CommandCost(this->front->GetExpenseType(true), -this->route_profit));
|
|
this->front->profit_this_year += this->visual_profit << 8;
|
|
|
|
if (this->route_profit != 0) {
|
|
if (IsLocalCompany() && !PlayVehicleSound(this->front, VSE_LOAD_UNLOAD)) {
|
|
SndPlayVehicleFx(SND_14_CASHTILL, this->front);
|
|
}
|
|
|
|
ShowCostOrIncomeAnimation(this->front->x_pos, this->front->y_pos, this->front->z_pos, -this->visual_profit);
|
|
} else {
|
|
ShowFeederIncomeAnimation(this->front->x_pos, this->front->y_pos, this->front->z_pos, this->visual_profit);
|
|
}
|
|
|
|
cur_company.Restore();
|
|
}
|
|
|
|
/**
|
|
* Handle payment for final delivery of the given cargo packet.
|
|
* @param cp The cargo packet to pay for.
|
|
* @param count The number of packets to pay for.
|
|
*/
|
|
void CargoPayment::PayFinalDelivery(const CargoPacket *cp, uint count)
|
|
{
|
|
if (this->owner == NULL) {
|
|
this->owner = Company::Get(this->front->owner);
|
|
}
|
|
|
|
/* Handle end of route payment */
|
|
Money profit = DeliverGoods(count, this->ct, this->current_station, cp->SourceStationXY(), cp->DaysInTransit(), this->owner, cp->SourceSubsidyType(), cp->SourceSubsidyID());
|
|
this->route_profit += profit;
|
|
|
|
/* The vehicle's profit is whatever route profit there is minus feeder shares. */
|
|
this->visual_profit += profit - cp->FeederShare();
|
|
}
|
|
|
|
/**
|
|
* Handle payment for transfer of the given cargo packet.
|
|
* @param cp The cargo packet to pay for; actual payment won't be made!.
|
|
* @param count The number of packets to pay for.
|
|
* @return The amount of money paid for the transfer.
|
|
*/
|
|
Money CargoPayment::PayTransfer(const CargoPacket *cp, uint count)
|
|
{
|
|
Money profit = GetTransportedGoodsIncome(
|
|
count,
|
|
/* pay transfer vehicle for only the part of transfer it has done: ie. cargo_loaded_at_xy to here */
|
|
DistanceManhattan(cp->LoadedAtXY(), Station::Get(this->current_station)->xy),
|
|
cp->DaysInTransit(),
|
|
this->ct);
|
|
|
|
profit = profit * _settings_game.economy.feeder_payment_share / 100;
|
|
|
|
this->visual_profit += profit; // accumulate transfer profits for whole vehicle
|
|
return profit; // account for the (virtual) profit already made for the cargo packet
|
|
}
|
|
|
|
/**
|
|
* Prepare the vehicle to be unloaded.
|
|
* @param front_v the vehicle to be unloaded
|
|
*/
|
|
void PrepareUnload(Vehicle *front_v)
|
|
{
|
|
/* At this moment loading cannot be finished */
|
|
ClrBit(front_v->vehicle_flags, VF_LOADING_FINISHED);
|
|
|
|
/* Start unloading in at the first possible moment */
|
|
front_v->load_unload_ticks = 1;
|
|
|
|
if ((front_v->current_order.GetUnloadType() & OUFB_NO_UNLOAD) == 0) {
|
|
for (Vehicle *v = front_v; v != NULL; v = v->Next()) {
|
|
if (v->cargo_cap > 0 && !v->cargo.Empty()) {
|
|
SetBit(v->vehicle_flags, VF_CARGO_UNLOADING);
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(front_v->cargo_payment == NULL);
|
|
/* One CargoPayment per vehicle and the vehicle limit equals the
|
|
* limit in number of CargoPayments. Can't go wrong. */
|
|
assert_compile(CargoPaymentPool::MAX_SIZE == VehiclePool::MAX_SIZE);
|
|
assert(CargoPayment::CanAllocateItem());
|
|
front_v->cargo_payment = new CargoPayment(front_v);
|
|
}
|
|
|
|
/**
|
|
* Checks whether an articulated vehicle is empty.
|
|
* @param v Vehicle
|
|
* @return true if all parts are empty.
|
|
*/
|
|
static bool IsArticulatedVehicleEmpty(Vehicle *v)
|
|
{
|
|
v = v->GetFirstEnginePart();
|
|
|
|
for (; v != NULL; v = v->HasArticulatedPart() ? v->GetNextArticulatedPart() : NULL) {
|
|
if (v->cargo.Count() != 0) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Loads/unload the vehicle if possible.
|
|
* @param front the vehicle to be (un)loaded
|
|
* @param cargo_left the amount of each cargo type that is
|
|
* virtually left on the platform to be
|
|
* picked up by another vehicle when all
|
|
* previous vehicles have loaded.
|
|
*/
|
|
static void LoadUnloadVehicle(Vehicle *front, int *cargo_left)
|
|
{
|
|
assert(front->current_order.IsType(OT_LOADING));
|
|
|
|
/* We have not waited enough time till the next round of loading/unloading */
|
|
if (front->load_unload_ticks != 0) {
|
|
if (_settings_game.order.improved_load && (front->current_order.GetLoadType() & OLFB_FULL_LOAD)) {
|
|
/* 'Reserve' this cargo for this vehicle, because we were first. */
|
|
for (Vehicle *v = front; v != NULL; v = v->Next()) {
|
|
int cap_left = v->cargo_cap - v->cargo.Count();
|
|
if (cap_left > 0) cargo_left[v->cargo_type] -= cap_left;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
StationID last_visited = front->last_station_visited;
|
|
Station *st = Station::Get(last_visited);
|
|
|
|
if (front->type == VEH_TRAIN && (!IsTileType(front->tile, MP_STATION) || GetStationIndex(front->tile) != st->index)) {
|
|
/* The train reversed in the station. Take the "easy" way
|
|
* out and let the train just leave as it always did. */
|
|
SetBit(front->vehicle_flags, VF_LOADING_FINISHED);
|
|
front->load_unload_ticks = 1;
|
|
return;
|
|
}
|
|
|
|
int unloading_time = 0;
|
|
bool dirty_vehicle = false;
|
|
bool dirty_station = false;
|
|
|
|
bool completely_emptied = true;
|
|
bool anything_unloaded = false;
|
|
bool anything_loaded = false;
|
|
uint32 full_load_amount = 0;
|
|
uint32 cargo_not_full = 0;
|
|
uint32 cargo_full = 0;
|
|
|
|
front->cur_speed = 0;
|
|
|
|
CargoPayment *payment = front->cargo_payment;
|
|
|
|
uint artic_part = 0; // Articulated part we are currently trying to load. (not counting parts without capacity)
|
|
for (Vehicle *v = front; v != NULL; v = v->Next()) {
|
|
if (v == front || !v->Previous()->HasArticulatedPart()) artic_part = 0;
|
|
if (v->cargo_cap == 0) continue;
|
|
artic_part++;
|
|
|
|
const Engine *e = v->GetEngine();
|
|
byte load_amount = e->info.load_amount;
|
|
|
|
/* The default loadamount for mail is 1/4 of the load amount for passengers */
|
|
if (v->type == VEH_AIRCRAFT && !Aircraft::From(v)->IsNormalAircraft()) load_amount = CeilDiv(load_amount, 4);
|
|
|
|
if (_settings_game.order.gradual_loading) {
|
|
uint16 cb_load_amount = CALLBACK_FAILED;
|
|
if (e->GetGRF() != NULL && e->GetGRF()->grf_version >= 8) {
|
|
/* Use callback 36 */
|
|
cb_load_amount = GetVehicleProperty(v, PROP_VEHICLE_LOAD_AMOUNT, CALLBACK_FAILED);
|
|
} else if (HasBit(e->info.callback_mask, CBM_VEHICLE_LOAD_AMOUNT)) {
|
|
/* Use callback 12 */
|
|
cb_load_amount = GetVehicleCallback(CBID_VEHICLE_LOAD_AMOUNT, 0, 0, v->engine_type, v);
|
|
}
|
|
if (cb_load_amount != CALLBACK_FAILED) {
|
|
if (e->GetGRF()->grf_version < 8) cb_load_amount = GB(cb_load_amount, 0, 8);
|
|
if (cb_load_amount >= 0x100) {
|
|
ErrorUnknownCallbackResult(e->GetGRFID(), CBID_VEHICLE_LOAD_AMOUNT, cb_load_amount);
|
|
} else if (cb_load_amount != 0) {
|
|
load_amount = cb_load_amount;
|
|
}
|
|
}
|
|
}
|
|
|
|
GoodsEntry *ge = &st->goods[v->cargo_type];
|
|
|
|
if (HasBit(v->vehicle_flags, VF_CARGO_UNLOADING) && (front->current_order.GetUnloadType() & OUFB_NO_UNLOAD) == 0) {
|
|
uint cargo_count = v->cargo.Count();
|
|
uint amount_unloaded = _settings_game.order.gradual_loading ? min(cargo_count, load_amount) : cargo_count;
|
|
bool remaining = false; // Are there cargo entities in this vehicle that can still be unloaded here?
|
|
bool accepted = false; // Is the cargo accepted by the station?
|
|
|
|
payment->SetCargo(v->cargo_type);
|
|
|
|
if (HasBit(ge->acceptance_pickup, GoodsEntry::GES_ACCEPTANCE) && !(front->current_order.GetUnloadType() & OUFB_TRANSFER)) {
|
|
/* The cargo has reached its final destination, the packets may now be destroyed */
|
|
remaining = v->cargo.MoveTo<StationCargoList>(NULL, amount_unloaded, VehicleCargoList::MTA_FINAL_DELIVERY, payment, last_visited);
|
|
|
|
dirty_vehicle = true;
|
|
accepted = true;
|
|
}
|
|
|
|
/* The !accepted || v->cargo.Count == cargo_count clause is there
|
|
* to make it possible to force unload vehicles at the station where
|
|
* they were loaded, but to not force unload the vehicle when the
|
|
* station is still accepting the cargo in the vehicle. It doesn't
|
|
* accept cargo that was loaded at the same station. */
|
|
if ((front->current_order.GetUnloadType() & (OUFB_UNLOAD | OUFB_TRANSFER)) && (!accepted || v->cargo.Count() == cargo_count)) {
|
|
remaining = v->cargo.MoveTo(&ge->cargo, amount_unloaded, front->current_order.GetUnloadType() & OUFB_TRANSFER ? VehicleCargoList::MTA_TRANSFER : VehicleCargoList::MTA_UNLOAD, payment);
|
|
if (!HasBit(ge->acceptance_pickup, GoodsEntry::GES_PICKUP)) {
|
|
InvalidateWindowData(WC_STATION_LIST, last_visited);
|
|
SetBit(ge->acceptance_pickup, GoodsEntry::GES_PICKUP);
|
|
}
|
|
|
|
dirty_vehicle = dirty_station = true;
|
|
} else if (!accepted) {
|
|
/* The order changed while unloading (unset unload/transfer) or the
|
|
* station does not accept our goods. */
|
|
ClrBit(v->vehicle_flags, VF_CARGO_UNLOADING);
|
|
|
|
/* Say we loaded something, otherwise we'll think we didn't unload
|
|
* something and we didn't load something, so we must be finished
|
|
* at this station. Setting the unloaded means that we will get a
|
|
* retry for loading in the next cycle. */
|
|
anything_unloaded = true;
|
|
continue;
|
|
}
|
|
|
|
/* Deliver goods to the station */
|
|
st->time_since_unload = 0;
|
|
|
|
unloading_time += amount_unloaded;
|
|
|
|
anything_unloaded = true;
|
|
if (_settings_game.order.gradual_loading && remaining) {
|
|
completely_emptied = false;
|
|
} else {
|
|
/* We have finished unloading (cargo count == 0) */
|
|
ClrBit(v->vehicle_flags, VF_CARGO_UNLOADING);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
/* Do not pick up goods when we have no-load set or loading is stopped. */
|
|
if (front->current_order.GetLoadType() & OLFB_NO_LOAD || HasBit(front->vehicle_flags, VF_STOP_LOADING)) continue;
|
|
|
|
/* This order has a refit, if this is the first vehicle part carrying cargo and the whole vehicle is empty, try refitting. */
|
|
if (front->current_order.IsRefit() && artic_part == 1 && IsArticulatedVehicleEmpty(v) &&
|
|
(v->type != VEH_AIRCRAFT || (Aircraft::From(v)->IsNormalAircraft() && v->Next()->cargo.Count() == 0))) {
|
|
Vehicle *v_start = v->GetFirstEnginePart();
|
|
CargoID new_cid = front->current_order.GetRefitCargo();
|
|
byte new_subtype = front->current_order.GetRefitSubtype();
|
|
|
|
Backup<CompanyByte> cur_company(_current_company, front->owner, FILE_LINE);
|
|
|
|
/* Check if all articulated parts are empty and collect refit mask. */
|
|
uint32 refit_mask = e->info.refit_mask;
|
|
Vehicle *w = v_start;
|
|
while (w->HasArticulatedPart()) {
|
|
w = w->GetNextArticulatedPart();
|
|
if (w->cargo.Count() > 0) new_cid = CT_NO_REFIT;
|
|
refit_mask |= EngInfo(w->engine_type)->refit_mask;
|
|
}
|
|
|
|
if (new_cid == CT_AUTO_REFIT) {
|
|
/* Get refittable cargo type with the most waiting cargo. */
|
|
int amount = 0;
|
|
CargoID cid;
|
|
FOR_EACH_SET_CARGO_ID(cid, refit_mask) {
|
|
if (cargo_left[cid] > amount) {
|
|
/* Try to find out if auto-refitting would succeed. In case the refit is allowed,
|
|
* the returned refit capacity will be greater than zero. */
|
|
new_subtype = GetBestFittingSubType(v, v, cid);
|
|
DoCommand(v_start->tile, v_start->index, cid | 1U << 6 | new_subtype << 8 | 1U << 16, DC_QUERY_COST, GetCmdRefitVeh(v_start)); // Auto-refit and only this vehicle including artic parts.
|
|
if (_returned_refit_capacity > 0) {
|
|
amount = cargo_left[cid];
|
|
new_cid = cid;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Refit if given a valid cargo. */
|
|
if (new_cid < NUM_CARGO) {
|
|
CommandCost cost = DoCommand(v_start->tile, v_start->index, new_cid | 1U << 6 | new_subtype << 8 | 1U << 16, DC_EXEC, GetCmdRefitVeh(v_start)); // Auto-refit and only this vehicle including artic parts.
|
|
if (cost.Succeeded()) front->profit_this_year -= cost.GetCost() << 8;
|
|
ge = &st->goods[v->cargo_type];
|
|
}
|
|
|
|
cur_company.Restore();
|
|
}
|
|
|
|
/* update stats */
|
|
int t;
|
|
switch (front->type) {
|
|
case VEH_TRAIN: /* FALL THROUGH */
|
|
case VEH_SHIP:
|
|
t = front->vcache.cached_max_speed;
|
|
break;
|
|
|
|
case VEH_ROAD:
|
|
t = front->vcache.cached_max_speed / 2;
|
|
break;
|
|
|
|
case VEH_AIRCRAFT:
|
|
t = Aircraft::From(front)->GetSpeedOldUnits(); // Convert to old units.
|
|
break;
|
|
|
|
default: NOT_REACHED();
|
|
}
|
|
|
|
/* if last speed is 0, we treat that as if no vehicle has ever visited the station. */
|
|
ge->last_speed = min(t, 255);
|
|
ge->last_age = _cur_year - front->build_year;
|
|
ge->days_since_pickup = 0;
|
|
|
|
/* If there's goods waiting at the station, and the vehicle
|
|
* has capacity for it, load it on the vehicle. */
|
|
int cap_left = v->cargo_cap - v->cargo.Count();
|
|
if (!ge->cargo.Empty() && cap_left > 0) {
|
|
uint cap = cap_left;
|
|
uint count = ge->cargo.Count();
|
|
|
|
/* Skip loading this vehicle if another train/vehicle is already handling
|
|
* the same cargo type at this station */
|
|
if (_settings_game.order.improved_load && cargo_left[v->cargo_type] <= 0) {
|
|
SetBit(cargo_not_full, v->cargo_type);
|
|
continue;
|
|
}
|
|
|
|
if (cap > count) cap = count;
|
|
if (_settings_game.order.gradual_loading) {
|
|
cap = min(cap, load_amount);
|
|
cap_left = min(cap_left, load_amount);
|
|
}
|
|
if (_settings_game.order.improved_load) {
|
|
/* Don't load stuff that is already 'reserved' for other vehicles */
|
|
cap = min((uint)cargo_left[v->cargo_type], cap);
|
|
count = cargo_left[v->cargo_type];
|
|
cargo_left[v->cargo_type] -= cap;
|
|
}
|
|
|
|
/* Store whether the maximum possible load amount was loaded or not.*/
|
|
if (count >= (uint)cap_left) {
|
|
SetBit(full_load_amount, v->cargo_type);
|
|
} else {
|
|
ClrBit(full_load_amount, v->cargo_type);
|
|
}
|
|
|
|
if (v->cargo.Empty()) TriggerVehicle(v, VEHICLE_TRIGGER_NEW_CARGO);
|
|
|
|
/* TODO: Regarding this, when we do gradual loading, we
|
|
* should first unload all vehicles and then start
|
|
* loading them. Since this will cause
|
|
* VEHICLE_TRIGGER_EMPTY to be called at the time when
|
|
* the whole vehicle chain is really totally empty, the
|
|
* completely_emptied assignment can then be safely
|
|
* removed; that's how TTDPatch behaves too. --pasky */
|
|
completely_emptied = false;
|
|
anything_loaded = true;
|
|
|
|
ge->cargo.MoveTo(&v->cargo, cap, StationCargoList::MTA_CARGO_LOAD, NULL, st->xy);
|
|
|
|
st->time_since_load = 0;
|
|
st->last_vehicle_type = v->type;
|
|
|
|
if (ge->cargo.Empty()) {
|
|
TriggerStationAnimation(st, st->xy, SAT_CARGO_TAKEN, v->cargo_type);
|
|
AirportAnimationTrigger(st, AAT_STATION_CARGO_TAKEN, v->cargo_type);
|
|
}
|
|
|
|
unloading_time += cap;
|
|
|
|
dirty_vehicle = dirty_station = true;
|
|
}
|
|
|
|
if (v->cargo.Count() >= v->cargo_cap) {
|
|
SetBit(cargo_full, v->cargo_type);
|
|
} else {
|
|
SetBit(cargo_not_full, v->cargo_type);
|
|
}
|
|
}
|
|
|
|
if (anything_loaded || anything_unloaded) {
|
|
if (front->type == VEH_TRAIN) TriggerStationAnimation(st, st->xy, SAT_TRAIN_LOADS);
|
|
}
|
|
|
|
/* Only set completely_emptied, if we just unloaded all remaining cargo */
|
|
completely_emptied &= anything_unloaded;
|
|
|
|
/* We update these variables here, so gradual loading still fills
|
|
* all wagons at the same time instead of using the same 'improved'
|
|
* loading algorithm for the wagons (only fill wagon when there is
|
|
* enough to fill the previous wagons) */
|
|
if (_settings_game.order.improved_load && (front->current_order.GetLoadType() & OLFB_FULL_LOAD)) {
|
|
/* Update left cargo */
|
|
for (Vehicle *v = front; v != NULL; v = v->Next()) {
|
|
int cap_left = v->cargo_cap - v->cargo.Count();
|
|
if (cap_left > 0) cargo_left[v->cargo_type] -= cap_left;
|
|
}
|
|
}
|
|
|
|
if (!anything_unloaded) delete payment;
|
|
|
|
ClrBit(front->vehicle_flags, VF_STOP_LOADING);
|
|
if (anything_loaded || anything_unloaded) {
|
|
if (_settings_game.order.gradual_loading) {
|
|
/* The time it takes to load one 'slice' of cargo or passengers depends
|
|
* on the vehicle type - the values here are those found in TTDPatch */
|
|
const uint gradual_loading_wait_time[] = { 40, 20, 10, 20 };
|
|
|
|
unloading_time = gradual_loading_wait_time[front->type];
|
|
}
|
|
/* We loaded less cargo than possible for all cargo types and it's not full
|
|
* load and we're not supposed to wait any longer: stop loading. */
|
|
if (!anything_unloaded && full_load_amount == 0 && !(front->current_order.GetLoadType() & OLFB_FULL_LOAD) &&
|
|
front->current_order_time >= (uint)max(front->current_order.wait_time - front->lateness_counter, 0)) {
|
|
SetBit(front->vehicle_flags, VF_STOP_LOADING);
|
|
}
|
|
} else {
|
|
bool finished_loading = true;
|
|
if (front->current_order.GetLoadType() & OLFB_FULL_LOAD) {
|
|
if (front->current_order.GetLoadType() == OLF_FULL_LOAD_ANY) {
|
|
/* if the aircraft carries passengers and is NOT full, then
|
|
* continue loading, no matter how much mail is in */
|
|
if ((front->type == VEH_AIRCRAFT && IsCargoInClass(front->cargo_type, CC_PASSENGERS) && front->cargo_cap > front->cargo.Count()) ||
|
|
(cargo_not_full && (cargo_full & ~cargo_not_full) == 0)) { // There are still non-full cargoes
|
|
finished_loading = false;
|
|
}
|
|
} else if (cargo_not_full != 0) {
|
|
finished_loading = false;
|
|
}
|
|
}
|
|
unloading_time = 20;
|
|
|
|
SB(front->vehicle_flags, VF_LOADING_FINISHED, 1, finished_loading);
|
|
}
|
|
|
|
if (front->type == VEH_TRAIN) {
|
|
/* Each platform tile is worth 2 rail vehicles. */
|
|
int overhang = front->GetGroundVehicleCache()->cached_total_length - st->GetPlatformLength(front->tile) * TILE_SIZE;
|
|
if (overhang > 0) {
|
|
unloading_time <<= 1;
|
|
unloading_time += (overhang * unloading_time) / 8;
|
|
}
|
|
}
|
|
|
|
/* Calculate the loading indicator fill percent and display
|
|
* In the Game Menu do not display indicators
|
|
* If _settings_client.gui.loading_indicators == 2, show indicators (bool can be promoted to int as 0 or 1 - results in 2 > 0,1 )
|
|
* if _settings_client.gui.loading_indicators == 1, _local_company must be the owner or must be a spectator to show ind., so 1 > 0
|
|
* if _settings_client.gui.loading_indicators == 0, do not display indicators ... 0 is never greater than anything
|
|
*/
|
|
if (_game_mode != GM_MENU && (_settings_client.gui.loading_indicators > (uint)(front->owner != _local_company && _local_company != COMPANY_SPECTATOR))) {
|
|
StringID percent_up_down = STR_NULL;
|
|
int percent = CalcPercentVehicleFilled(front, &percent_up_down);
|
|
if (front->fill_percent_te_id == INVALID_TE_ID) {
|
|
front->fill_percent_te_id = ShowFillingPercent(front->x_pos, front->y_pos, front->z_pos + 20, percent, percent_up_down);
|
|
} else {
|
|
UpdateFillingPercent(front->fill_percent_te_id, percent, percent_up_down);
|
|
}
|
|
}
|
|
|
|
/* Always wait at least 1, otherwise we'll wait 'infinitively' long. */
|
|
front->load_unload_ticks = max(1, unloading_time);
|
|
|
|
if (completely_emptied) {
|
|
TriggerVehicle(front, VEHICLE_TRIGGER_EMPTY);
|
|
}
|
|
|
|
if (dirty_vehicle) {
|
|
SetWindowDirty(GetWindowClassForVehicleType(front->type), front->owner);
|
|
SetWindowDirty(WC_VEHICLE_DETAILS, front->index);
|
|
front->MarkDirty();
|
|
}
|
|
if (dirty_station) {
|
|
st->MarkTilesDirty(true);
|
|
SetWindowDirty(WC_STATION_VIEW, last_visited);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Load/unload the vehicles in this station according to the order
|
|
* they entered.
|
|
* @param st the station to do the loading/unloading for
|
|
*/
|
|
void LoadUnloadStation(Station *st)
|
|
{
|
|
/* No vehicle is here... */
|
|
if (st->loading_vehicles.empty()) return;
|
|
|
|
Vehicle *last_loading = NULL;
|
|
std::list<Vehicle *>::iterator iter;
|
|
|
|
/* Check if anything will be loaded at all. Otherwise we don't need to reserve either. */
|
|
for (iter = st->loading_vehicles.begin(); iter != st->loading_vehicles.end(); ++iter) {
|
|
Vehicle *v = *iter;
|
|
|
|
if ((v->vehstatus & (VS_STOPPED | VS_CRASHED))) continue;
|
|
|
|
assert(v->load_unload_ticks != 0);
|
|
if (--v->load_unload_ticks == 0) last_loading = v;
|
|
}
|
|
|
|
/* We only need to reserve and load/unload up to the last loading vehicle.
|
|
* Anything else will be forgotten anyway after returning from this function.
|
|
*
|
|
* Especially this means we do _not_ need to reserve cargo for a single
|
|
* consist in a station which is not allowed to load yet because its
|
|
* load_unload_ticks is still not 0.
|
|
*/
|
|
if (last_loading == NULL) return;
|
|
|
|
int cargo_left[NUM_CARGO];
|
|
|
|
for (uint i = 0; i < NUM_CARGO; i++) cargo_left[i] = st->goods[i].cargo.Count();
|
|
|
|
for (iter = st->loading_vehicles.begin(); iter != st->loading_vehicles.end(); ++iter) {
|
|
Vehicle *v = *iter;
|
|
if (!(v->vehstatus & (VS_STOPPED | VS_CRASHED))) LoadUnloadVehicle(v, cargo_left);
|
|
if (v == last_loading) break;
|
|
}
|
|
|
|
/* Call the production machinery of industries */
|
|
const Industry * const *isend = _cargo_delivery_destinations.End();
|
|
for (Industry **iid = _cargo_delivery_destinations.Begin(); iid != isend; iid++) {
|
|
TriggerIndustryProduction(*iid);
|
|
}
|
|
_cargo_delivery_destinations.Clear();
|
|
}
|
|
|
|
/**
|
|
* Monthly update of the economic data (of the companies as well as economic fluctuations).
|
|
*/
|
|
void CompaniesMonthlyLoop()
|
|
{
|
|
CompaniesGenStatistics();
|
|
if (_settings_game.economy.inflation) {
|
|
AddInflation();
|
|
RecomputePrices();
|
|
}
|
|
CompaniesPayInterest();
|
|
HandleEconomyFluctuations();
|
|
}
|
|
|
|
static void DoAcquireCompany(Company *c)
|
|
{
|
|
CompanyID ci = c->index;
|
|
|
|
CompanyNewsInformation *cni = MallocT<CompanyNewsInformation>(1);
|
|
cni->FillData(c, Company::Get(_current_company));
|
|
|
|
SetDParam(0, STR_NEWS_COMPANY_MERGER_TITLE);
|
|
SetDParam(1, c->bankrupt_value == 0 ? STR_NEWS_MERGER_TAKEOVER_TITLE : STR_NEWS_COMPANY_MERGER_DESCRIPTION);
|
|
SetDParamStr(2, cni->company_name);
|
|
SetDParamStr(3, cni->other_company_name);
|
|
SetDParam(4, c->bankrupt_value);
|
|
AddCompanyNewsItem(STR_MESSAGE_NEWS_FORMAT, NS_COMPANY_MERGER, cni);
|
|
AI::BroadcastNewEvent(new ScriptEventCompanyMerger(ci, _current_company));
|
|
Game::NewEvent(new ScriptEventCompanyMerger(ci, _current_company));
|
|
|
|
ChangeOwnershipOfCompanyItems(ci, _current_company);
|
|
|
|
if (c->bankrupt_value == 0) {
|
|
Company *owner = Company::Get(_current_company);
|
|
owner->current_loan += c->current_loan;
|
|
}
|
|
|
|
if (c->is_ai) AI::Stop(c->index);
|
|
|
|
DeleteCompanyWindows(ci);
|
|
InvalidateWindowClassesData(WC_TRAINS_LIST, 0);
|
|
InvalidateWindowClassesData(WC_SHIPS_LIST, 0);
|
|
InvalidateWindowClassesData(WC_ROADVEH_LIST, 0);
|
|
InvalidateWindowClassesData(WC_AIRCRAFT_LIST, 0);
|
|
|
|
delete c;
|
|
}
|
|
|
|
extern int GetAmountOwnedBy(const Company *c, Owner owner);
|
|
|
|
/**
|
|
* Acquire shares in an opposing company.
|
|
* @param tile unused
|
|
* @param flags type of operation
|
|
* @param p1 company to buy the shares from
|
|
* @param p2 unused
|
|
* @param text unused
|
|
* @return the cost of this operation or an error
|
|
*/
|
|
CommandCost CmdBuyShareInCompany(TileIndex tile, DoCommandFlag flags, uint32 p1, uint32 p2, const char *text)
|
|
{
|
|
CommandCost cost(EXPENSES_OTHER);
|
|
CompanyID target_company = (CompanyID)p1;
|
|
Company *c = Company::GetIfValid(target_company);
|
|
|
|
/* Check if buying shares is allowed (protection against modified clients)
|
|
* Cannot buy own shares */
|
|
if (c == NULL || !_settings_game.economy.allow_shares || _current_company == target_company) return CMD_ERROR;
|
|
|
|
/* Protect new companies from hostile takeovers */
|
|
if (_cur_year - c->inaugurated_year < 6) return_cmd_error(STR_ERROR_PROTECTED);
|
|
|
|
/* Those lines are here for network-protection (clients can be slow) */
|
|
if (GetAmountOwnedBy(c, COMPANY_SPECTATOR) == 0) return cost;
|
|
|
|
if (GetAmountOwnedBy(c, COMPANY_SPECTATOR) == 1) {
|
|
if (!c->is_ai) return cost; // We can not buy out a real company (temporarily). TODO: well, enable it obviously.
|
|
|
|
if (GetAmountOwnedBy(c, _current_company) == 3 && !MayCompanyTakeOver(_current_company, target_company)) return_cmd_error(STR_ERROR_TOO_MANY_VEHICLES_IN_GAME);
|
|
}
|
|
|
|
|
|
cost.AddCost(CalculateCompanyValue(c) >> 2);
|
|
if (flags & DC_EXEC) {
|
|
OwnerByte *b = c->share_owners;
|
|
|
|
while (*b != COMPANY_SPECTATOR) b++; // share owners is guaranteed to contain at least one COMPANY_SPECTATOR
|
|
*b = _current_company;
|
|
|
|
for (int i = 0; c->share_owners[i] == _current_company;) {
|
|
if (++i == 4) {
|
|
c->bankrupt_value = 0;
|
|
DoAcquireCompany(c);
|
|
break;
|
|
}
|
|
}
|
|
SetWindowDirty(WC_COMPANY, target_company);
|
|
CompanyAdminUpdate(c);
|
|
}
|
|
return cost;
|
|
}
|
|
|
|
/**
|
|
* Sell shares in an opposing company.
|
|
* @param tile unused
|
|
* @param flags type of operation
|
|
* @param p1 company to sell the shares from
|
|
* @param p2 unused
|
|
* @param text unused
|
|
* @return the cost of this operation or an error
|
|
*/
|
|
CommandCost CmdSellShareInCompany(TileIndex tile, DoCommandFlag flags, uint32 p1, uint32 p2, const char *text)
|
|
{
|
|
CompanyID target_company = (CompanyID)p1;
|
|
Company *c = Company::GetIfValid(target_company);
|
|
|
|
/* Cannot sell own shares */
|
|
if (c == NULL || _current_company == target_company) return CMD_ERROR;
|
|
|
|
/* Check if selling shares is allowed (protection against modified clients).
|
|
* However, we must sell shares of companies being closed down. */
|
|
if (!_settings_game.economy.allow_shares && !(flags & DC_BANKRUPT)) return CMD_ERROR;
|
|
|
|
/* Those lines are here for network-protection (clients can be slow) */
|
|
if (GetAmountOwnedBy(c, _current_company) == 0) return CommandCost();
|
|
|
|
/* adjust it a little to make it less profitable to sell and buy */
|
|
Money cost = CalculateCompanyValue(c) >> 2;
|
|
cost = -(cost - (cost >> 7));
|
|
|
|
if (flags & DC_EXEC) {
|
|
OwnerByte *b = c->share_owners;
|
|
while (*b != _current_company) b++; // share owners is guaranteed to contain company
|
|
*b = COMPANY_SPECTATOR;
|
|
SetWindowDirty(WC_COMPANY, target_company);
|
|
CompanyAdminUpdate(c);
|
|
}
|
|
return CommandCost(EXPENSES_OTHER, cost);
|
|
}
|
|
|
|
/**
|
|
* Buy up another company.
|
|
* When a competing company is gone bankrupt you get the chance to purchase
|
|
* that company.
|
|
* @todo currently this only works for AI companies
|
|
* @param tile unused
|
|
* @param flags type of operation
|
|
* @param p1 company to buy up
|
|
* @param p2 unused
|
|
* @param text unused
|
|
* @return the cost of this operation or an error
|
|
*/
|
|
CommandCost CmdBuyCompany(TileIndex tile, DoCommandFlag flags, uint32 p1, uint32 p2, const char *text)
|
|
{
|
|
CompanyID target_company = (CompanyID)p1;
|
|
Company *c = Company::GetIfValid(target_company);
|
|
if (c == NULL) return CMD_ERROR;
|
|
|
|
/* Disable takeovers when not asked */
|
|
if (!HasBit(c->bankrupt_asked, _current_company)) return CMD_ERROR;
|
|
|
|
/* Disable taking over the local company in single player */
|
|
if (!_networking && _local_company == c->index) return CMD_ERROR;
|
|
|
|
/* Do not allow companies to take over themselves */
|
|
if (target_company == _current_company) return CMD_ERROR;
|
|
|
|
/* Disable taking over when not allowed. */
|
|
if (!MayCompanyTakeOver(_current_company, target_company)) return CMD_ERROR;
|
|
|
|
/* Get the cost here as the company is deleted in DoAcquireCompany. */
|
|
CommandCost cost(EXPENSES_OTHER, c->bankrupt_value);
|
|
|
|
if (flags & DC_EXEC) {
|
|
DoAcquireCompany(c);
|
|
}
|
|
return cost;
|
|
}
|