OpenTTD-patches/npf.c
matthijs f5d9cb58eb (svn r2182) - Add: [NPF] There is now a debug class for NPF. Use -d npf<level> to enable debugging printouts from npf.
- Codechange: [NPF] Removed NPF_MARKROUTE macro, to mark routes just specify a npf debugging level >= 1 on the commandline.
2005-04-11 19:53:44 +00:00

853 lines
30 KiB
C

#include "stdafx.h"
#include "ttd.h"
#include "debug.h"
#include "npf.h"
#include "aystar.h"
#include "macros.h"
#include "pathfind.h"
#include "station.h"
#include "tile.h"
#include "depot.h"
AyStar _train_find_station;
AyStar _train_find_depot;
AyStar _road_find_station;
AyStar _road_find_depot;
AyStar _npf_aystar;
/* Maps a trackdir to the bit that stores its status in the map arrays, in the
* direction along with the trackdir */
const byte _signal_along_trackdir[14] = {
0x80, 0x80, 0x80, 0x20, 0x40, 0x10, 0, 0,
0x40, 0x40, 0x40, 0x10, 0x80, 0x20
};
/* Maps a trackdir to the bit that stores its status in the map arrays, in the
* direction against the trackdir */
const byte _signal_against_trackdir[14] = {
0x40, 0x40, 0x40, 0x10, 0x80, 0x20, 0, 0,
0x80, 0x80, 0x80, 0x20, 0x40, 0x10
};
/* Maps a trackdir to the trackdirs that can be reached from it (ie, when
* entering the next tile */
const uint16 _trackdir_reaches_trackdirs[14] = {
0x1009, 0x0016, 0x1009, 0x0016, 0x0520, 0x0016, 0, 0,
0x0520, 0x2A00, 0x2A00, 0x0520, 0x2A00, 0x1009
};
/* Maps a trackdir to all trackdirs that make 90 deg turns with it. */
const uint16 _trackdir_crosses_trackdirs[14] = {
0x0202, 0x0101, 0x3030, 0x3030, 0x0C0C, 0x0C0C, 0, 0,
0x0202, 0x0101, 0x3030, 0x3030, 0x0C0C, 0x0C0C
};
/* Maps a track to all tracks that make 90 deg turns with it. */
const byte _track_crosses_tracks[6] = {
0x2, /* Track 1 -> Track 2 */
0x1, /* Track 2 -> Track 1 */
0x30, /* Upper -> Left | Right */
0x30, /* Lower -> Left | Right */
0x0C, /* Left -> Upper | Lower */
0x0C, /* Right -> Upper | Lower */
};
/* Maps a trackdir to the (4-way) direction the tile is exited when following
* that trackdir */
const byte _trackdir_to_exitdir[14] = {
0,1,0,1,2,1, 0,0,
2,3,3,2,3,0,
};
const byte _track_exitdir_to_trackdir[6][4] = {
{0, 0xff, 8, 0xff},
{0xff, 1, 0xff, 9},
{2, 0xff, 0xff, 10},
{0xff, 3, 11, 0xf},
{0xff, 0xff, 4, 12},
{13, 5, 0xff, 0xff}
};
const byte _track_direction_to_trackdir[6][8] = {
{0xff, 0, 0xff, 0xff, 0xff, 8, 0xff, 0xff},
{0xff, 0xff, 0xff, 1, 0xff, 0xff, 0xff, 9},
{0xff, 0xff, 2, 0xff, 0xff, 0xff, 10, 0xff},
{0xff, 0xff, 3, 0xff, 0xff, 0xff, 11, 0xff},
{12, 0xff, 0xff, 0xff, 4, 0xff, 0xff, 0xff},
{13, 0xff, 0xff, 0xff, 5, 0xff, 0xff, 0xff}
};
const byte _dir_to_diag_trackdir[4] = {
0, 1, 8, 9,
};
const byte _reverse_dir[4] = {
2, 3, 0, 1
};
const byte _reverse_trackdir[14] = {
8, 9, 10, 11, 12, 13, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5
};
/* The cost of each trackdir. A diagonal piece is the full NPF_TILE_LENGTH,
* the shorter piece is sqrt(2)/2*NPF_TILE_LENGTH =~ 0.7071
*/
#define NPF_STRAIGHT_LENGTH (uint)(NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH)
static const uint _trackdir_length[14] = {
NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH,
0, 0,
NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH
};
uint NTPHash(uint key1, uint key2)
{
/* This function uses the old hash, which is fixed on 10 bits (1024 buckets) */
return PATHFIND_HASH_TILE(key1);
}
uint NPFHash(uint key1, uint key2)
{
/* TODO: think of a better hash? */
uint part1 = TileX(key1) & NPF_HASH_HALFMASK;
uint part2 = TileY(key1) & NPF_HASH_HALFMASK;
/* The value of 14 below is based on the maximum value of key2 (13) */
return ((((part1 << NPF_HASH_HALFBITS) | part2)) + (NPF_HASH_SIZE * key2 / 14)) % NPF_HASH_SIZE;
}
int32 NPFCalcZero(AyStar* as, AyStarNode* current, OpenListNode* parent) {
return 0;
}
/* Calcs the tile of given station that is closest to a given tile
* for this we assume the station is a rectangle,
* as defined by its top tile (st->train_tile) and its width/height (st->trainst_w, st->trainst_h)
*/
TileIndex CalcClosestStationTile(int station, TileIndex tile) {
const Station* st = GetStation(station);
int x1,x2,x3,tx;
int y1,y2,y3,ty;
x1 = TileX(st->train_tile); y1 = TileY(st->train_tile); // topmost corner of station
x2 = x1 + st->trainst_w - 1; y2 = y1 + st->trainst_h - 1; // lowermost corner of station
x3 = TileX(tile); y3 = TileY(tile); // tile we take the distance from
// we are going the aim for the x coordinate of the closest corner
// but if we are between those coordinates, we will aim for our own x coordinate
if (x3 < x1)
tx = x1;
else if (x3 > x2)
tx = x2;
else
tx = x3;
// same for y coordinate, see above comment
if (y3 < y1)
ty = y1;
else if (y3 > y2)
ty = y2;
else
ty = y3;
// return the tile of our target coordinates
return TILE_XY(tx,ty);
};
/* Calcs the heuristic to the target station or tile. For train stations, it
* takes into account the direction of approach.
*/
int32 NPFCalcStationOrTileHeuristic(AyStar* as, AyStarNode* current, OpenListNode* parent) {
NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
TileIndex from = current->tile;
TileIndex to = fstd->dest_coords;
uint dist;
// for train-stations, we are going to aim for the closest station tile
if ((as->user_data[NPF_TYPE] == TRANSPORT_RAIL) && (fstd->station_index != -1))
to = CalcClosestStationTile(fstd->station_index, from);
if (as->user_data[NPF_TYPE] == TRANSPORT_ROAD)
/* Since roads only have diagonal pieces, we use manhattan distance here */
dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH;
else
/* Ships and trains can also go diagonal, so the minimum distance is shorter */
dist = DistanceTrack(from, to) * NPF_TILE_LENGTH;
if (dist < ftd->best_bird_dist) {
ftd->best_bird_dist = dist;
ftd->best_trackdir = current->user_data[NPF_TRACKDIR_CHOICE];
}
DEBUG(npf, 4)("Calculating H for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), dist);
return dist;
}
/* Fills AyStarNode.user_data[NPF_TRACKDIRCHOICE] with the chosen direction to
* get here, either getting it from the current choice or from the parent's
* choice */
void NPFFillTrackdirChoice(AyStarNode* current, OpenListNode* parent)
{
if (parent->path.parent == NULL) {
byte trackdir = current->direction;
/* This is a first order decision, so we'd better save the
* direction we chose */
current->user_data[NPF_TRACKDIR_CHOICE] = trackdir;
DEBUG(npf, 6)("Saving trackdir: %#x", trackdir);
} else {
/* We've already made the decision, so just save our parent's
* decision */
current->user_data[NPF_TRACKDIR_CHOICE] = parent->path.node.user_data[NPF_TRACKDIR_CHOICE];
}
}
/* Will return the cost of the tunnel. If it is an entry, it will return the
* cost of that tile. If the tile is an exit, it will return the tunnel length
* including the exit tile. Requires that this is a Tunnel tile */
uint NPFTunnelCost(AyStarNode* current) {
byte exitdir = _trackdir_to_exitdir[current->direction];
TileIndex tile = current->tile;
if ( (uint)(_map5[tile] & 3) == _reverse_dir[exitdir]) {
/* We just popped out if this tunnel, since were
* facing the tunnel exit */
FindLengthOfTunnelResult flotr;
flotr = FindLengthOfTunnel(tile, _reverse_dir[exitdir]);
return flotr.length * NPF_TILE_LENGTH;
//TODO: Penalty for tunnels?
} else {
/* We are entering the tunnel, the enter tile is just a
* straight track */
return NPF_TILE_LENGTH;
}
}
uint NPFSlopeCost(AyStarNode* current) {
TileIndex next = current->tile + TileOffsByDir(_trackdir_to_exitdir[current->direction]);
int x,y;
int8 z1,z2;
x = TileX(current->tile) * 16;
y = TileY(current->tile) * 16;
z1 = GetSlopeZ(x+8, y+8);
x = TileX(next) * 16;
y = TileY(next) * 16;
z2 = GetSlopeZ(x+8, y+8);
if ((z2 - z1) > 1) {
/* Slope up */
return _patches.npf_rail_slope_penalty;
}
return 0;
/* Should we give a bonus for slope down? Probably not, we
* could just substract that bonus from the penalty, because
* there is only one level of steepness... */
}
/* Mark tiles by mowing the grass when npf debug level >= 1 */
void NPFMarkTile(TileIndex tile) {
#ifdef NO_DEBUG_MESSAGES
return;
#else
if (_debug_npf_level >= 1)
switch(GetTileType(tile)) {
case MP_RAILWAY:
case MP_STREET:
/* DEBUG: mark visited tiles by mowing the grass under them
* ;-) */
_map2[tile] &= ~15;
MarkTileDirtyByTile(tile);
break;
default:
break;
}
#endif
}
int32 NPFWaterPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
//TileIndex tile = current->tile;
int32 cost = 0;
byte trackdir = current->direction;
cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
/* TODO Penalties? */
return cost;
}
/* Determine the cost of this node, for road tracks */
int32 NPFRoadPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
TileIndex tile = current->tile;
int32 cost = 0;
/* Determine base length */
switch (GetTileType(tile)) {
case MP_TUNNELBRIDGE:
if ((_map5[tile] & 0xF0)==0) {
cost = NPFTunnelCost(current);
break;
}
/* Fall through if above if is false, it is a bridge
* then. We treat that as ordinary rail */
case MP_STREET:
cost = NPF_TILE_LENGTH;
break;
default:
break;
}
/* Determine extra costs */
/* Check for slope */
cost += NPFSlopeCost(current);
/* Check for turns */
//TODO
NPFMarkTile(tile);
DEBUG(npf, 4)("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
return cost;
}
/* Determine the cost of this node, for railway tracks */
int32 NPFRailPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
TileIndex tile = current->tile;
byte trackdir = current->direction;
int32 cost = 0;
OpenListNode new_node;
/* Determine base length */
switch (GetTileType(tile)) {
case MP_TUNNELBRIDGE:
if ((_map5[tile] & 0xF0)==0) {
cost = NPFTunnelCost(current);
break;
}
/* Fall through if above if is false, it is a bridge
* then. We treat that as ordinary rail */
case MP_RAILWAY:
cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
break;
case MP_STREET: /* Railway crossing */
cost = NPF_TILE_LENGTH;
break;
case MP_STATION:
/* We give a station tile a penalty. Logically we would only
* want to give station tiles that are not our destination
* this penalty. This would discourage trains to drive through
* busy stations. But, we can just give any station tile a
* penalty, because every possible route will get this penalty
* exactly once, on its end tile (if it's a station) and it
* will therefore not make a difference. */
cost = NPF_TILE_LENGTH + _patches.npf_rail_station_penalty;
break;
default:
break;
}
/* Determine extra costs */
/* Check for signals */
if (IsTileType(tile, MP_RAILWAY) && (_map5[tile] & 0xC0) == 0x40 && (_map3_lo[tile] & _signal_along_trackdir[trackdir]) != 0) {
/* Ordinary track with signals */
if ((_map2[tile] & _signal_along_trackdir[trackdir]) == 0) {
/* Signal facing us is red */
if (!NPFGetFlag(current, NPF_FLAG_SEEN_SIGNAL)) {
/* Penalize the first signal we
* encounter, if it is red */
/* Is this a presignal exit or combo? */
if ((_map3_hi[tile] & 0x3) == 0x2 || (_map3_hi[tile] & 0x3) == 0x3)
/* Penalise exit and combo signals differently (heavier) */
cost += _patches.npf_rail_firstred_exit_penalty;
else
cost += _patches.npf_rail_firstred_penalty;
}
/* Record the state of this signal */
NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, true);
} else {
/* Record the state of this signal */
NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, false);
}
NPFSetFlag(current, NPF_FLAG_SEEN_SIGNAL, true);
}
/* Penalise the tile if it is a target tile and the last signal was
* red */
new_node.path.node = *current;
if (as->EndNodeCheck(as, &new_node)==AYSTAR_FOUND_END_NODE && NPFGetFlag(current, NPF_FLAG_LAST_SIGNAL_RED))
cost += _patches.npf_rail_lastred_penalty;
/* Check for slope */
cost += NPFSlopeCost(current);
/* Check for turns */
if (current->direction != parent->path.node.direction)
cost += _patches.npf_rail_curve_penalty;
//TODO, with realistic acceleration, also the amount of straight track between
// curves should be taken into account, as this affects the speed limit.
/* Check for occupied track */
//TODO
NPFMarkTile(tile);
DEBUG(npf, 4)("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
return cost;
}
/* Will find any depot */
int32 NPFFindDepot(AyStar* as, OpenListNode *current) {
TileIndex tile = current->path.node.tile;
if (IsTileDepotType(tile, as->user_data[NPF_TYPE]))
return AYSTAR_FOUND_END_NODE;
else
return AYSTAR_DONE;
}
/* Will find a station identified using the NPFFindStationOrTileData */
int32 NPFFindStationOrTile(AyStar* as, OpenListNode *current) {
NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
AyStarNode *node = &current->path.node;
TileIndex tile = node->tile;
/* See if we checked this before */
if (NPFGetFlag(node, NPF_FLAG_TARGET_CHECKED))
return NPFGetFlag(node, NPF_FLAG_IS_TARGET);
/* We're gonna check this now and store the result, let's mark that */
NPFSetFlag(node, NPF_FLAG_TARGET_CHECKED, true);
/* If GetNeighbours said we could get here, we assume the station type
* is correct */
if (
(fstd->station_index == -1 && tile == fstd->dest_coords) || /* We've found the tile, or */
(IsTileType(tile, MP_STATION) && _map2[tile] == fstd->station_index) /* the station */
) {
NPFSetFlag(node, NPF_FLAG_TARGET_CHECKED, true);
return AYSTAR_FOUND_END_NODE;
} else {
NPFSetFlag(node, NPF_FLAG_TARGET_CHECKED, false);
return AYSTAR_DONE;
}
}
/* To be called when current contains the (shortest route to) the target node.
* Will fill the contents of the NPFFoundTargetData using
* AyStarNode[NPF_TRACKDIR_CHOICE].
*/
void NPFSaveTargetData(AyStar* as, OpenListNode* current) {
NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
ftd->best_trackdir = current->path.node.user_data[NPF_TRACKDIR_CHOICE];
ftd->best_path_dist = current->g;
ftd->best_bird_dist = 0;
ftd->node = current->path.node;
}
/* Will just follow the results of GetTileTrackStatus concerning where we can
* go and where not. Uses AyStar.user_data[NPF_TYPE] as the transport type and
* an argument to GetTileTrackStatus. Will skip tunnels, meaning that the
* entry and exit are neighbours. Will fill
* AyStarNode.user_data[NPF_TRACKDIR_CHOICE] with an appropriate value, and
* copy AyStarNode.user_data[NPF_NODE_FLAGS] from the parent */
void NPFFollowTrack(AyStar* aystar, OpenListNode* current) {
byte src_trackdir = current->path.node.direction;
TileIndex src_tile = current->path.node.tile;
byte src_exitdir = _trackdir_to_exitdir[src_trackdir];
FindLengthOfTunnelResult flotr;
TileIndex dst_tile;
int i = 0;
uint trackdirs, ts;
TransportType type = aystar->user_data[NPF_TYPE];
/* Initialize to 0, so we can jump out (return) somewhere an have no neighbours */
aystar->num_neighbours = 0;
DEBUG(npf, 4)("Expanding: (%d, %d, %d) [%d]", TileX(src_tile), TileY(src_tile), src_trackdir, src_tile);
/* Find dest tile */
if (IsTileType(src_tile, MP_TUNNELBRIDGE) && (_map5[src_tile] & 0xF0)==0 && (_map5[src_tile] & 3) == src_exitdir) {
/* This is a tunnel. We know this tunnel is our type,
* otherwise we wouldn't have got here. It is also facing us,
* so we should skip it's body */
flotr = FindLengthOfTunnel(src_tile, src_exitdir);
dst_tile = flotr.tile;
} else {
if (type != TRANSPORT_WATER && (IsRoadStationTile(src_tile) || IsTileDepotType(src_tile, type))){
/* This is a road station or a train or road depot. We can enter and exit
* those from one side only. Trackdirs don't support that (yet), so we'll
* do this here. */
byte exitdir;
/* Find out the exit direction first */
if (IsRoadStationTile(src_tile))
exitdir = GetRoadStationDir(src_tile);
else /* Train or road depot. Direction is stored the same for both, in map5 */
exitdir = GetDepotDirection(src_tile, type);
/* Let's see if were headed the right way */
if (src_trackdir == _dir_to_diag_trackdir[_reverse_dir[exitdir]])
/* We are headed inwards. We can only reverse here, so we'll not
* consider this direction, but jump ahead to the reverse direction.
* It would be nicer to return one neighbour here (the reverse
* trackdir of the one we are considering now) and then considering
* that one to return the tracks outside of the depot. But, because
* the code layout is cleaner this way, we will just pretend we are
* reversed already */
src_trackdir = _reverse_trackdir[src_trackdir];
}
/* This a normal tile, a bridge, a tunnel exit, etc. */
dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(_trackdir_to_exitdir[src_trackdir]));
if (dst_tile == INVALID_TILE) {
/* We reached the border of the map */
/* TODO Nicer control flow for this */
return;
}
}
// TODO: check correct rail type (mono, maglev, etc)
/* Check the owner of the tile */
if (
IsTileType(dst_tile, MP_RAILWAY) /* Rail tile (also rail depot) */
|| IsTrainStationTile(dst_tile) /* Rail station tile */
|| IsTileDepotType(dst_tile, TRANSPORT_ROAD) /* Road depot tile */
|| IsRoadStationTile(dst_tile) /* Road station tile */
|| IsTileDepotType(dst_tile, TRANSPORT_WATER) /* Water depot tile */
) /* TODO: Crossings, tunnels and bridges are "public" now */
/* The above cases are "private" tiles, we need to check the owner */
if (!IsTileOwner(dst_tile, aystar->user_data[NPF_OWNER]))
return;
/* Determine available tracks */
if (type != TRANSPORT_WATER && (IsRoadStationTile(dst_tile) || IsTileDepotType(dst_tile, type))){
/* Road stations and road and train depots return 0 on GTTS, so we have to do this by hand... */
byte exitdir;
if (IsRoadStationTile(dst_tile))
exitdir = GetRoadStationDir(dst_tile);
else /* Road or train depot */
exitdir = GetDepotDirection(dst_tile, type);
/* Find the trackdirs that are available for a depot or station with this
* orientation. They are only "inwards", since we are reaching this tile
* from some other tile. This prevents vehicles driving into depots from
* the back */
ts = (1 << _dir_to_diag_trackdir[_reverse_dir[exitdir]]);
} else {
ts = GetTileTrackStatus(dst_tile, type);
}
trackdirs = ts & 0x3F3F; /* Filter out signal status and the unused bits */
DEBUG(npf, 4)("Next node: (%d, %d) [%d], possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), dst_tile, trackdirs);
/* Select only trackdirs we can reach from our current trackdir */
trackdirs &= _trackdir_reaches_trackdirs[src_trackdir];
if (_patches.forbid_90_deg && (type == TRANSPORT_RAIL || type == TRANSPORT_WATER)) /* Filter out trackdirs that would make 90 deg turns for trains */
trackdirs &= ~_trackdir_crosses_trackdirs[src_trackdir];
DEBUG(npf,6)("After filtering: (%d, %d), possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), trackdirs);
/* Enumerate possible track */
while (trackdirs != 0) {
byte dst_trackdir;
dst_trackdir = FindFirstBit2x64(trackdirs);
trackdirs = KillFirstBit2x64(trackdirs);
DEBUG(npf, 5)("Expanded into trackdir: %d, remaining trackdirs: %#x", dst_trackdir, trackdirs);
/* Check for oneway signal against us */
if (IsTileType(dst_tile, MP_RAILWAY) && (_map5[dst_tile]&0xC0) == 0x40) {
// the tile has a signal
byte signal_present = _map3_lo[dst_tile];
if (!(signal_present & _signal_along_trackdir[dst_trackdir])) {
// if one way signal not pointing towards us, stop going in this direction.
if (signal_present & _signal_against_trackdir[dst_trackdir])
break;
}
}
{
/* We've found ourselves a neighbour :-) */
AyStarNode* neighbour = &aystar->neighbours[i];
neighbour->tile = dst_tile;
neighbour->direction = dst_trackdir;
/* Save user data */
neighbour->user_data[NPF_NODE_FLAGS] = current->path.node.user_data[NPF_NODE_FLAGS];
NPFFillTrackdirChoice(neighbour, current);
}
i++;
}
aystar->num_neighbours = i;
}
/*
* Plan a route to the specified target (which is checked by target_proc),
* from start1 and if not NULL, from start2 as well. The type of transport we
* are checking is in type.
* When we are looking for one specific target (optionally multiple tiles), we
* should use a good heuristic to perform aystar search. When we search for
* multiple targets that are spread around, we should perform a breadth first
* search by specifiying CalcZero as our heuristic.
*/
NPFFoundTargetData NPFRouteInternal(AyStarNode* start1, AyStarNode* start2, NPFFindStationOrTileData* target, AyStar_EndNodeCheck target_proc, AyStar_CalculateH heuristic_proc, TransportType type, Owner owner) {
int r;
NPFFoundTargetData result;
/* Initialize procs */
_npf_aystar.CalculateH = heuristic_proc;
_npf_aystar.EndNodeCheck = target_proc;
_npf_aystar.FoundEndNode = NPFSaveTargetData;
_npf_aystar.GetNeighbours = NPFFollowTrack;
if (type == TRANSPORT_RAIL)
_npf_aystar.CalculateG = NPFRailPathCost;
else if (type == TRANSPORT_ROAD)
_npf_aystar.CalculateG = NPFRoadPathCost;
else if (type == TRANSPORT_WATER)
_npf_aystar.CalculateG = NPFWaterPathCost;
else
assert(0);
/* Initialize Start Node(s) */
start1->user_data[NPF_TRACKDIR_CHOICE] = 0xff;
start1->user_data[NPF_NODE_FLAGS] = 0;
_npf_aystar.addstart(&_npf_aystar, start1);
if (start2) {
start2->user_data[NPF_TRACKDIR_CHOICE] = 0xff;
start2->user_data[NPF_NODE_FLAGS] = 0;
NPFSetFlag(start2, NPF_FLAG_REVERSE, true);
_npf_aystar.addstart(&_npf_aystar, start2);
}
/* Initialize result */
result.best_bird_dist = (uint)-1;
result.best_path_dist = (uint)-1;
result.best_trackdir = 0xff;
_npf_aystar.user_path = &result;
/* Initialize target */
_npf_aystar.user_target = target;
/* Initialize user_data */
_npf_aystar.user_data[NPF_TYPE] = type;
_npf_aystar.user_data[NPF_OWNER] = owner;
/* GO! */
r = AyStarMain_Main(&_npf_aystar);
assert(r != AYSTAR_STILL_BUSY);
if (result.best_bird_dist != 0) {
if (target) {
DEBUG(misc, 1) ("NPF: Could not find route to 0x%x from 0x%x.", target->dest_coords, start1->tile);
} else {
/* Assumption: target == NULL, so we are looking for a depot */
DEBUG(misc, 1) ("NPF: Could not find route to a depot from 0x%x.", start1->tile);
}
}
return result;
}
NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, byte trackdir1, TileIndex tile2, byte trackdir2, NPFFindStationOrTileData* target, TransportType type, Owner owner) {
AyStarNode start1;
AyStarNode start2;
start1.tile = tile1;
start2.tile = tile2;
start1.direction = trackdir1;
start2.direction = trackdir2;
return NPFRouteInternal(&start1, &start2, target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, owner);
}
NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, byte trackdir, NPFFindStationOrTileData* target, TransportType type, Owner owner) {
AyStarNode start;
assert(tile != 0);
start.tile = tile;
start.direction = trackdir;
/* We set this in case the target is also the start tile, we will just
* return a not found then */
start.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
return NPFRouteInternal(&start, NULL, target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, owner);
}
NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, byte trackdir, TransportType type, Owner owner) {
AyStarNode start;
start.tile = tile;
start.direction = trackdir;
/* We set this in case the target is also the start tile, we will just
* return a not found then */
start.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
/* perform a breadth first search. Target is NULL,
* since we are just looking for any depot...*/
return NPFRouteInternal(&start, NULL, NULL, NPFFindDepot, NPFCalcZero, type, owner);
}
NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, byte trackdir, TransportType type, Owner owner) {
/* Okay, what we're gonna do. First, we look at all depots, calculate
* the manhatten distance to get to each depot. We then sort them by
* distance. We start by trying to plan a route to the closest, then
* the next closest, etc. We stop when the best route we have found so
* far, is shorter than the manhattan distance. This will obviously
* always find the closest depot. It will probably be most efficient
* for ships, since the heuristic will not be to far off then. I hope.
*/
Queue depots;
int r;
NPFFoundTargetData best_result;
NPFFoundTargetData result;
NPFFindStationOrTileData target;
AyStarNode start;
Depot* current;
Depot *depot;
init_InsSort(&depots);
/* Okay, let's find all depots that we can use first */
FOR_ALL_DEPOTS(depot) {
/* Check if this is really a valid depot, it is of the needed type and
* owner */
if (IsValidDepot(depot) && IsTileDepotType(depot->xy, type) && IsTileOwner(depot->xy, owner))
/* If so, let's add it to the queue, sorted by distance */
depots.push(&depots, depot, DistanceManhattan(tile, depot->xy));
}
/* Now, let's initialise the aystar */
/* Initialize procs */
_npf_aystar.CalculateH = NPFCalcStationOrTileHeuristic;
_npf_aystar.EndNodeCheck = NPFFindStationOrTile;
_npf_aystar.FoundEndNode = NPFSaveTargetData;
_npf_aystar.GetNeighbours = NPFFollowTrack;
if (type == TRANSPORT_RAIL)
_npf_aystar.CalculateG = NPFRailPathCost;
else if (type == TRANSPORT_ROAD)
_npf_aystar.CalculateG = NPFRoadPathCost;
else if (type == TRANSPORT_WATER)
_npf_aystar.CalculateG = NPFWaterPathCost;
else
assert(0);
/* Initialize target */
target.station_index = -1; /* We will initialize dest_coords inside the loop below */
_npf_aystar.user_target = &target;
/* Initialize user_data */
_npf_aystar.user_data[NPF_TYPE] = type;
_npf_aystar.user_data[NPF_OWNER] = owner;
/* Initialize Start Node */
start.tile = tile;
start.direction = trackdir; /* We will initialize user_data inside the loop below */
/* Initialize Result */
_npf_aystar.user_path = &result;
best_result.best_path_dist = (uint)-1;
best_result.best_bird_dist = (uint)-1;
/* Just iterate the depots in order of increasing distance */
while ((current = depots.pop(&depots))) {
/* Check to see if we already have a path shorter than this
* depot's manhattan distance. HACK: We call DistanceManhattan
* again, we should probably modify the queue to give us that
* value... */
if ( DistanceManhattan(tile, current->xy * NPF_TILE_LENGTH) > best_result.best_path_dist)
break;
/* Initialize Start Node */
/* We set this in case the target is also the start tile, we will just
* return a not found then */
start.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
start.user_data[NPF_NODE_FLAGS] = 0;
_npf_aystar.addstart(&_npf_aystar, &start);
/* Initialize result */
result.best_bird_dist = (uint)-1;
result.best_path_dist = (uint)-1;
result.best_trackdir = 0xff;
/* Initialize target */
target.dest_coords = current->xy;
/* GO! */
r = AyStarMain_Main(&_npf_aystar);
assert(r != AYSTAR_STILL_BUSY);
/* This depot is closer */
if (result.best_path_dist < best_result.best_path_dist)
best_result = result;
}
if (result.best_bird_dist != 0) {
DEBUG(misc, 1) ("NPF: Could not find route to any depot from 0x%x.", tile);
}
return best_result;
}
void InitializeNPF(void)
{
init_AyStar(&_npf_aystar, NPFHash, NPF_HASH_SIZE);
_npf_aystar.loops_per_tick = 0;
_npf_aystar.max_path_cost = 0;
_npf_aystar.max_search_nodes = 0;
#if 0
init_AyStar(&_train_find_station, NTPHash, 1024);
init_AyStar(&_train_find_depot, NTPHash, 1024);
init_AyStar(&_road_find_station, NTPHash, 1024);
init_AyStar(&_road_find_depot, NTPHash, 1024);
_train_find_station.loops_per_tick = 0;
_train_find_depot.loops_per_tick = 0;
_road_find_station.loops_per_tick = 0;
_road_find_depot.loops_per_tick = 0;
_train_find_station.max_path_cost = 0;
_train_find_depot.max_path_cost = 0;
_road_find_station.max_path_cost = 0;
_road_find_depot.max_path_cost = 0;
_train_find_station.max_search_nodes = 0;
_train_find_depot.max_search_nodes = 0;
_road_find_station.max_search_nodes = 0;
_road_find_depot.max_search_nodes = 0;
_train_find_station.CalculateG = NPFRailPathCost;
_train_find_depot.CalculateG = NPFRailPathCost;
_road_find_station.CalculateG = NPFRoadPathCost;
_road_find_depot.CalculateG = NPFRoadPathCost;
_train_find_station.CalculateH = NPFCalcStationHeuristic;
_train_find_depot.CalculateH = NPFCalcStationHeuristic;
_road_find_station.CalculateH = NPFCalcStationHeuristic;
_road_find_depot.CalculateH = NPFCalcStationHeuristic;
_train_find_station.EndNodeCheck = NPFFindStationOrTile;
_train_find_depot.EndNodeCheck = NPFFindStationOrTile;
_road_find_station.EndNodeCheck = NPFFindStationOrTile;
_road_find_depot.EndNodeCheck = NPFFindStationOrTile;
_train_find_station.FoundEndNode = NPFSaveTargetData;
_train_find_depot.FoundEndNode = NPFSaveTargetData;
_road_find_station.FoundEndNode = NPFSaveTargetData;
_road_find_depot.FoundEndNode = NPFSaveTargetData;
_train_find_station.GetNeighbours = NPFFollowTrack;
_train_find_depot.GetNeighbours = NPFFollowTrack;
_road_find_station.GetNeighbours = NPFFollowTrack;
_road_find_depot.GetNeighbours = NPFFollowTrack;
#endif
}
void NPFFillWithOrderData(NPFFindStationOrTileData* fstd, Vehicle* v) {
/* Ships don't really reach their stations, but the tile in front. So don't
* save the station id for ships. For roadvehs we don't store it either,
* because multistop depends on vehicles actually reaching the exact
* dest_tile, not just any stop of that station.
* So only for train orders to stations we fill fstd->station_index, for all
* others only dest_coords */
if ((v->current_order.type) == OT_GOTO_STATION && v->type == VEH_Train) {
fstd->station_index = v->current_order.station;
/* Let's take the closest tile of the station as our target for trains */
fstd->dest_coords = CalcClosestStationTile(v->current_order.station, v->tile);
} else {
fstd->dest_coords = v->dest_tile;
fstd->station_index = -1;
}
}