mirror of
https://github.com/JGRennison/OpenTTD-patches.git
synced 2024-11-19 15:25:39 +00:00
1680 lines
59 KiB
C++
1680 lines
59 KiB
C++
/*
|
|
* This file is part of OpenTTD.
|
|
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
|
|
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/** @file landscape.cpp Functions related to the landscape (slopes etc.). */
|
|
|
|
/** @defgroup SnowLineGroup Snowline functions and data structures */
|
|
|
|
#include "stdafx.h"
|
|
#include "heightmap.h"
|
|
#include "clear_map.h"
|
|
#include "spritecache.h"
|
|
#include "viewport_func.h"
|
|
#include "command_func.h"
|
|
#include "landscape.h"
|
|
#include "void_map.h"
|
|
#include "tgp.h"
|
|
#include "genworld.h"
|
|
#include "fios.h"
|
|
#include "error_func.h"
|
|
#include "timer/timer_game_calendar.h"
|
|
#include "timer/timer_game_tick.h"
|
|
#include "water.h"
|
|
#include "effectvehicle_func.h"
|
|
#include "landscape_type.h"
|
|
#include "animated_tile_func.h"
|
|
#include "core/random_func.hpp"
|
|
#include "object_base.h"
|
|
#include "company_func.h"
|
|
#include "pathfinder/npf/aystar.h"
|
|
#include "saveload/saveload.h"
|
|
#include "framerate_type.h"
|
|
#include "landscape_cmd.h"
|
|
#include "terraform_cmd.h"
|
|
#include "station_func.h"
|
|
#include "pathfinder/water_regions.h"
|
|
|
|
#include "table/strings.h"
|
|
#include "table/sprites.h"
|
|
|
|
#include "safeguards.h"
|
|
|
|
extern const TileTypeProcs
|
|
_tile_type_clear_procs,
|
|
_tile_type_rail_procs,
|
|
_tile_type_road_procs,
|
|
_tile_type_town_procs,
|
|
_tile_type_trees_procs,
|
|
_tile_type_station_procs,
|
|
_tile_type_water_procs,
|
|
_tile_type_void_procs,
|
|
_tile_type_industry_procs,
|
|
_tile_type_tunnelbridge_procs,
|
|
_tile_type_object_procs;
|
|
|
|
/**
|
|
* Tile callback functions for each type of tile.
|
|
* @ingroup TileCallbackGroup
|
|
* @see TileType
|
|
*/
|
|
const TileTypeProcs * const _tile_type_procs[16] = {
|
|
&_tile_type_clear_procs, ///< Callback functions for MP_CLEAR tiles
|
|
&_tile_type_rail_procs, ///< Callback functions for MP_RAILWAY tiles
|
|
&_tile_type_road_procs, ///< Callback functions for MP_ROAD tiles
|
|
&_tile_type_town_procs, ///< Callback functions for MP_HOUSE tiles
|
|
&_tile_type_trees_procs, ///< Callback functions for MP_TREES tiles
|
|
&_tile_type_station_procs, ///< Callback functions for MP_STATION tiles
|
|
&_tile_type_water_procs, ///< Callback functions for MP_WATER tiles
|
|
&_tile_type_void_procs, ///< Callback functions for MP_VOID tiles
|
|
&_tile_type_industry_procs, ///< Callback functions for MP_INDUSTRY tiles
|
|
&_tile_type_tunnelbridge_procs, ///< Callback functions for MP_TUNNELBRIDGE tiles
|
|
&_tile_type_object_procs, ///< Callback functions for MP_OBJECT tiles
|
|
};
|
|
|
|
/** landscape slope => sprite */
|
|
extern const uint8_t _slope_to_sprite_offset[32] = {
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 17, 0, 15, 18, 0,
|
|
};
|
|
|
|
/**
|
|
* Description of the snow line throughout the year.
|
|
*
|
|
* If it is \c nullptr, a static snowline height is used, as set by \c _settings_game.game_creation.snow_line_height.
|
|
* Otherwise it points to a table loaded from a newGRF file that describes the variable snowline.
|
|
* @ingroup SnowLineGroup
|
|
* @see GetSnowLine() GameCreationSettings
|
|
*/
|
|
static SnowLine *_snow_line = nullptr;
|
|
|
|
/**
|
|
* Map 2D viewport or smallmap coordinate to 3D world or tile coordinate.
|
|
* Function takes into account height of tiles and foundations.
|
|
*
|
|
* @param x X viewport 2D coordinate.
|
|
* @param y Y viewport 2D coordinate.
|
|
* @param clamp_to_map Clamp the coordinate outside of the map to the closest, non-void tile within the map.
|
|
* @param[out] clamped Whether coordinates were clamped.
|
|
* @return 3D world coordinate of point visible at the given screen coordinate (3D perspective).
|
|
*
|
|
* @note Inverse of #RemapCoords2 function. Smaller values may get rounded.
|
|
* @see InverseRemapCoords
|
|
*/
|
|
Point InverseRemapCoords2(int x, int y, bool clamp_to_map, bool *clamped)
|
|
{
|
|
if (clamped != nullptr) *clamped = false; // Not clamping yet.
|
|
|
|
/* Initial x/y world coordinate is like if the landscape
|
|
* was completely flat on height 0. */
|
|
Point pt = InverseRemapCoords(x, y);
|
|
|
|
const uint min_coord = _settings_game.construction.freeform_edges ? TILE_SIZE : 0;
|
|
const uint max_x = Map::MaxX() * TILE_SIZE - 1;
|
|
const uint max_y = Map::MaxY() * TILE_SIZE - 1;
|
|
|
|
if (clamp_to_map) {
|
|
/* Bring the coordinates near to a valid range. At the top we allow a number
|
|
* of extra tiles. This is mostly due to the tiles on the north side of
|
|
* the map possibly being drawn higher due to the extra height levels. */
|
|
int extra_tiles = CeilDiv(_settings_game.construction.map_height_limit * TILE_HEIGHT, TILE_PIXELS);
|
|
Point old_pt = pt;
|
|
pt.x = Clamp(pt.x, -extra_tiles * TILE_SIZE, max_x);
|
|
pt.y = Clamp(pt.y, -extra_tiles * TILE_SIZE, max_y);
|
|
if (clamped != nullptr) *clamped = (pt.x != old_pt.x) || (pt.y != old_pt.y);
|
|
}
|
|
|
|
/* Now find the Z-world coordinate by fix point iteration.
|
|
* This is a bit tricky because the tile height is non-continuous at foundations.
|
|
* The clicked point should be approached from the back, otherwise there are regions that are not clickable.
|
|
* (FOUNDATION_HALFTILE_LOWER on SLOPE_STEEP_S hides north halftile completely)
|
|
* So give it a z-malus of 4 in the first iterations. */
|
|
int z = 0;
|
|
if (clamp_to_map) {
|
|
for (int i = 0; i < 5; i++) z = GetSlopePixelZ(Clamp(pt.x + std::max(z, 4) - 4, min_coord, max_x), Clamp(pt.y + std::max(z, 4) - 4, min_coord, max_y)) / 2;
|
|
for (int m = 3; m > 0; m--) z = GetSlopePixelZ(Clamp(pt.x + std::max(z, m) - m, min_coord, max_x), Clamp(pt.y + std::max(z, m) - m, min_coord, max_y)) / 2;
|
|
for (int i = 0; i < 5; i++) z = GetSlopePixelZ(Clamp(pt.x + z, min_coord, max_x), Clamp(pt.y + z, min_coord, max_y)) / 2;
|
|
} else {
|
|
for (int i = 0; i < 5; i++) z = GetSlopePixelZOutsideMap(pt.x + std::max(z, 4) - 4, pt.y + std::max(z, 4) - 4) / 2;
|
|
for (int m = 3; m > 0; m--) z = GetSlopePixelZOutsideMap(pt.x + std::max(z, m) - m, pt.y + std::max(z, m) - m) / 2;
|
|
for (int i = 0; i < 5; i++) z = GetSlopePixelZOutsideMap(pt.x + z, pt.y + z ) / 2;
|
|
}
|
|
|
|
pt.x += z;
|
|
pt.y += z;
|
|
if (clamp_to_map) {
|
|
Point old_pt = pt;
|
|
pt.x = Clamp(pt.x, min_coord, max_x);
|
|
pt.y = Clamp(pt.y, min_coord, max_y);
|
|
if (clamped != nullptr) *clamped = *clamped || (pt.x != old_pt.x) || (pt.y != old_pt.y);
|
|
}
|
|
|
|
return pt;
|
|
}
|
|
|
|
/**
|
|
* Applies a foundation to a slope.
|
|
*
|
|
* @pre Foundation and slope must be valid combined.
|
|
* @param f The #Foundation.
|
|
* @param s The #Slope to modify.
|
|
* @return Increment to the tile Z coordinate.
|
|
*/
|
|
uint ApplyFoundationToSlope(Foundation f, Slope &s)
|
|
{
|
|
if (!IsFoundation(f)) return 0;
|
|
|
|
if (IsLeveledFoundation(f)) {
|
|
uint dz = 1 + (IsSteepSlope(s) ? 1 : 0);
|
|
s = SLOPE_FLAT;
|
|
return dz;
|
|
}
|
|
|
|
if (f != FOUNDATION_STEEP_BOTH && IsNonContinuousFoundation(f)) {
|
|
s = HalftileSlope(s, GetHalftileFoundationCorner(f));
|
|
return 0;
|
|
}
|
|
|
|
if (IsSpecialRailFoundation(f)) {
|
|
s = SlopeWithThreeCornersRaised(OppositeCorner(GetRailFoundationCorner(f)));
|
|
return 0;
|
|
}
|
|
|
|
uint dz = IsSteepSlope(s) ? 1 : 0;
|
|
Corner highest_corner = GetHighestSlopeCorner(s);
|
|
|
|
switch (f) {
|
|
case FOUNDATION_INCLINED_X:
|
|
s = (((highest_corner == CORNER_W) || (highest_corner == CORNER_S)) ? SLOPE_SW : SLOPE_NE);
|
|
break;
|
|
|
|
case FOUNDATION_INCLINED_Y:
|
|
s = (((highest_corner == CORNER_S) || (highest_corner == CORNER_E)) ? SLOPE_SE : SLOPE_NW);
|
|
break;
|
|
|
|
case FOUNDATION_STEEP_LOWER:
|
|
s = SlopeWithOneCornerRaised(highest_corner);
|
|
break;
|
|
|
|
case FOUNDATION_STEEP_BOTH:
|
|
s = HalftileSlope(SlopeWithOneCornerRaised(highest_corner), highest_corner);
|
|
break;
|
|
|
|
default: NOT_REACHED();
|
|
}
|
|
return dz;
|
|
}
|
|
|
|
|
|
/**
|
|
* Determines height at given coordinate of a slope.
|
|
*
|
|
* At the northern corner (0, 0) the result is always a multiple of TILE_HEIGHT.
|
|
* When the height is a fractional Z, then the height is rounded down. For example,
|
|
* when at the height is 0 at x = 0 and the height is 8 at x = 16 (actually x = 0
|
|
* of the next tile), then height is 0 at x = 1, 1 at x = 2, and 7 at x = 15.
|
|
* @param x x coordinate (value from 0 to 15)
|
|
* @param y y coordinate (value from 0 to 15)
|
|
* @param corners slope to examine
|
|
* @return height of given point of given slope
|
|
*/
|
|
uint GetPartialPixelZ(int x, int y, Slope corners)
|
|
{
|
|
if (IsHalftileSlope(corners)) {
|
|
/* A foundation is placed on half the tile at a specific corner. This means that,
|
|
* depending on the corner, that one half of the tile is at the maximum height. */
|
|
switch (GetHalftileSlopeCorner(corners)) {
|
|
case CORNER_W:
|
|
if (x > y) return GetSlopeMaxPixelZ(corners);
|
|
break;
|
|
|
|
case CORNER_S:
|
|
if (x + y >= (int)TILE_SIZE) return GetSlopeMaxPixelZ(corners);
|
|
break;
|
|
|
|
case CORNER_E:
|
|
if (x <= y) return GetSlopeMaxPixelZ(corners);
|
|
break;
|
|
|
|
case CORNER_N:
|
|
if (x + y < (int)TILE_SIZE) return GetSlopeMaxPixelZ(corners);
|
|
break;
|
|
|
|
default: NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
switch (RemoveHalftileSlope(corners)) {
|
|
case SLOPE_FLAT: return 0;
|
|
|
|
/* One corner is up.*/
|
|
case SLOPE_N: return x + y <= (int)TILE_SIZE ? (TILE_SIZE - x - y) >> 1 : 0;
|
|
case SLOPE_E: return y >= x ? (1 + y - x) >> 1 : 0;
|
|
case SLOPE_S: return x + y >= (int)TILE_SIZE ? (1 + x + y - TILE_SIZE) >> 1 : 0;
|
|
case SLOPE_W: return x >= y ? (x - y) >> 1 : 0;
|
|
|
|
/* Two corners next to eachother are up. */
|
|
case SLOPE_NE: return (TILE_SIZE - x) >> 1;
|
|
case SLOPE_SE: return (y + 1) >> 1;
|
|
case SLOPE_SW: return (x + 1) >> 1;
|
|
case SLOPE_NW: return (TILE_SIZE - y) >> 1;
|
|
|
|
/* Three corners are up on the same level. */
|
|
case SLOPE_ENW: return x + y >= (int)TILE_SIZE ? TILE_HEIGHT - ((1 + x + y - TILE_SIZE) >> 1) : TILE_HEIGHT;
|
|
case SLOPE_SEN: return y < x ? TILE_HEIGHT - ((x - y) >> 1) : TILE_HEIGHT;
|
|
case SLOPE_WSE: return x + y <= (int)TILE_SIZE ? TILE_HEIGHT - ((TILE_SIZE - x - y) >> 1) : TILE_HEIGHT;
|
|
case SLOPE_NWS: return x < y ? TILE_HEIGHT - ((1 + y - x) >> 1) : TILE_HEIGHT;
|
|
|
|
/* Two corners at opposite sides are up. */
|
|
case SLOPE_NS: return x + y < (int)TILE_SIZE ? (TILE_SIZE - x - y) >> 1 : (1 + x + y - TILE_SIZE) >> 1;
|
|
case SLOPE_EW: return x >= y ? (x - y) >> 1 : (1 + y - x) >> 1;
|
|
|
|
/* Very special cases. */
|
|
case SLOPE_ELEVATED: return TILE_HEIGHT;
|
|
|
|
/* Steep slopes. The top is at 2 * TILE_HEIGHT. */
|
|
case SLOPE_STEEP_N: return (TILE_SIZE - x + TILE_SIZE - y) >> 1;
|
|
case SLOPE_STEEP_E: return (TILE_SIZE + 1 + y - x) >> 1;
|
|
case SLOPE_STEEP_S: return (1 + x + y) >> 1;
|
|
case SLOPE_STEEP_W: return (TILE_SIZE + x - y) >> 1;
|
|
|
|
default: NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return world \c Z coordinate of a given point of a tile. Normally this is the
|
|
* Z of the ground/foundation at the given location, but in some cases the
|
|
* ground/foundation can differ from the Z coordinate that the (ground) vehicle
|
|
* passing over it would take. For example when entering a tunnel or bridge.
|
|
*
|
|
* @param x World X coordinate in tile "units".
|
|
* @param y World Y coordinate in tile "units".
|
|
* @param ground_vehicle Whether to get the Z coordinate of the ground vehicle, or the ground.
|
|
* @return World Z coordinate at tile ground (vehicle) level, including slopes and foundations.
|
|
*/
|
|
int GetSlopePixelZ(int x, int y, bool ground_vehicle)
|
|
{
|
|
TileIndex tile = TileVirtXY(x, y);
|
|
|
|
return _tile_type_procs[GetTileType(tile)]->get_slope_z_proc(tile, x, y, ground_vehicle);
|
|
}
|
|
|
|
/**
|
|
* Return world \c z coordinate of a given point of a tile,
|
|
* also for tiles outside the map (virtual "black" tiles).
|
|
*
|
|
* @param x World X coordinate in tile "units", may be outside the map.
|
|
* @param y World Y coordinate in tile "units", may be outside the map.
|
|
* @return World Z coordinate at tile ground level, including slopes and foundations.
|
|
*/
|
|
int GetSlopePixelZOutsideMap(int x, int y)
|
|
{
|
|
if (IsInsideBS(x, 0, Map::SizeX() * TILE_SIZE) && IsInsideBS(y, 0, Map::SizeY() * TILE_SIZE)) {
|
|
return GetSlopePixelZ(x, y, false);
|
|
} else {
|
|
return _tile_type_procs[MP_VOID]->get_slope_z_proc(INVALID_TILE, x, y, false);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Determine the Z height of a corner relative to TileZ.
|
|
*
|
|
* @pre The slope must not be a halftile slope.
|
|
*
|
|
* @param tileh The slope.
|
|
* @param corner The corner.
|
|
* @return Z position of corner relative to TileZ.
|
|
*/
|
|
int GetSlopeZInCorner(Slope tileh, Corner corner)
|
|
{
|
|
assert(!IsHalftileSlope(tileh));
|
|
return ((tileh & SlopeWithOneCornerRaised(corner)) != 0 ? 1 : 0) + (tileh == SteepSlope(corner) ? 1 : 0);
|
|
}
|
|
|
|
/**
|
|
* Determine the Z height of the corners of a specific tile edge
|
|
*
|
|
* @note If a tile has a non-continuous halftile foundation, a corner can have different heights wrt. its edges.
|
|
*
|
|
* @pre z1 and z2 must be initialized (typ. with TileZ). The corner heights just get added.
|
|
*
|
|
* @param tileh The slope of the tile.
|
|
* @param edge The edge of interest.
|
|
* @param z1 Gets incremented by the height of the first corner of the edge. (near corner wrt. the camera)
|
|
* @param z2 Gets incremented by the height of the second corner of the edge. (far corner wrt. the camera)
|
|
*/
|
|
void GetSlopePixelZOnEdge(Slope tileh, DiagDirection edge, int &z1, int &z2)
|
|
{
|
|
static const Slope corners[4][4] = {
|
|
/* corner | steep slope
|
|
* z1 z2 | z1 z2 */
|
|
{SLOPE_E, SLOPE_N, SLOPE_STEEP_E, SLOPE_STEEP_N}, // DIAGDIR_NE, z1 = E, z2 = N
|
|
{SLOPE_S, SLOPE_E, SLOPE_STEEP_S, SLOPE_STEEP_E}, // DIAGDIR_SE, z1 = S, z2 = E
|
|
{SLOPE_S, SLOPE_W, SLOPE_STEEP_S, SLOPE_STEEP_W}, // DIAGDIR_SW, z1 = S, z2 = W
|
|
{SLOPE_W, SLOPE_N, SLOPE_STEEP_W, SLOPE_STEEP_N}, // DIAGDIR_NW, z1 = W, z2 = N
|
|
};
|
|
|
|
int halftile_test = (IsHalftileSlope(tileh) ? SlopeWithOneCornerRaised(GetHalftileSlopeCorner(tileh)) : 0);
|
|
if (halftile_test == corners[edge][0]) z2 += TILE_HEIGHT; // The slope is non-continuous in z2. z2 is on the upper side.
|
|
if (halftile_test == corners[edge][1]) z1 += TILE_HEIGHT; // The slope is non-continuous in z1. z1 is on the upper side.
|
|
|
|
if ((tileh & corners[edge][0]) != 0) z1 += TILE_HEIGHT; // z1 is raised
|
|
if ((tileh & corners[edge][1]) != 0) z2 += TILE_HEIGHT; // z2 is raised
|
|
if (RemoveHalftileSlope(tileh) == corners[edge][2]) z1 += TILE_HEIGHT; // z1 is highest corner of a steep slope
|
|
if (RemoveHalftileSlope(tileh) == corners[edge][3]) z2 += TILE_HEIGHT; // z2 is highest corner of a steep slope
|
|
}
|
|
|
|
/**
|
|
* Get slope of a tile on top of a (possible) foundation
|
|
* If a tile does not have a foundation, the function returns the same as GetTileSlope.
|
|
*
|
|
* @param tile The tile of interest.
|
|
* @return The slope on top of the foundation and the z of the foundation slope.
|
|
*/
|
|
std::tuple<Slope, int> GetFoundationSlope(TileIndex tile)
|
|
{
|
|
auto [tileh, z] = GetTileSlopeZ(tile);
|
|
Foundation f = _tile_type_procs[GetTileType(tile)]->get_foundation_proc(tile, tileh);
|
|
z += ApplyFoundationToSlope(f, tileh);
|
|
return {tileh, z};
|
|
}
|
|
|
|
|
|
bool HasFoundationNW(TileIndex tile, Slope slope_here, uint z_here)
|
|
{
|
|
int z_W_here = z_here;
|
|
int z_N_here = z_here;
|
|
GetSlopePixelZOnEdge(slope_here, DIAGDIR_NW, z_W_here, z_N_here);
|
|
|
|
auto [slope, z] = GetFoundationPixelSlope(TileAddXY(tile, 0, -1));
|
|
int z_W = z;
|
|
int z_N = z;
|
|
GetSlopePixelZOnEdge(slope, DIAGDIR_SE, z_W, z_N);
|
|
|
|
return (z_N_here > z_N) || (z_W_here > z_W);
|
|
}
|
|
|
|
|
|
bool HasFoundationNE(TileIndex tile, Slope slope_here, uint z_here)
|
|
{
|
|
int z_E_here = z_here;
|
|
int z_N_here = z_here;
|
|
GetSlopePixelZOnEdge(slope_here, DIAGDIR_NE, z_E_here, z_N_here);
|
|
|
|
auto [slope, z] = GetFoundationPixelSlope(TileAddXY(tile, -1, 0));
|
|
int z_E = z;
|
|
int z_N = z;
|
|
GetSlopePixelZOnEdge(slope, DIAGDIR_SW, z_E, z_N);
|
|
|
|
return (z_N_here > z_N) || (z_E_here > z_E);
|
|
}
|
|
|
|
/**
|
|
* Draw foundation \a f at tile \a ti. Updates \a ti.
|
|
* @param ti Tile to draw foundation on
|
|
* @param f Foundation to draw
|
|
*/
|
|
void DrawFoundation(TileInfo *ti, Foundation f)
|
|
{
|
|
if (!IsFoundation(f)) return;
|
|
|
|
/* Two part foundations must be drawn separately */
|
|
assert(f != FOUNDATION_STEEP_BOTH);
|
|
|
|
uint sprite_block = 0;
|
|
auto [slope, z] = GetFoundationPixelSlope(ti->tile);
|
|
|
|
/* Select the needed block of foundations sprites
|
|
* Block 0: Walls at NW and NE edge
|
|
* Block 1: Wall at NE edge
|
|
* Block 2: Wall at NW edge
|
|
* Block 3: No walls at NW or NE edge
|
|
*/
|
|
if (!HasFoundationNW(ti->tile, slope, z)) sprite_block += 1;
|
|
if (!HasFoundationNE(ti->tile, slope, z)) sprite_block += 2;
|
|
|
|
/* Use the original slope sprites if NW and NE borders should be visible */
|
|
SpriteID leveled_base = (sprite_block == 0 ? (int)SPR_FOUNDATION_BASE : (SPR_SLOPES_VIRTUAL_BASE + sprite_block * SPR_TRKFOUND_BLOCK_SIZE));
|
|
SpriteID inclined_base = SPR_SLOPES_VIRTUAL_BASE + SPR_SLOPES_INCLINED_OFFSET + sprite_block * SPR_TRKFOUND_BLOCK_SIZE;
|
|
SpriteID halftile_base = SPR_HALFTILE_FOUNDATION_BASE + sprite_block * SPR_HALFTILE_BLOCK_SIZE;
|
|
|
|
if (IsSteepSlope(ti->tileh)) {
|
|
if (!IsNonContinuousFoundation(f)) {
|
|
/* Lower part of foundation */
|
|
AddSortableSpriteToDraw(
|
|
leveled_base + (ti->tileh & ~SLOPE_STEEP), PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z
|
|
);
|
|
}
|
|
|
|
Corner highest_corner = GetHighestSlopeCorner(ti->tileh);
|
|
ti->z += ApplyPixelFoundationToSlope(f, ti->tileh);
|
|
|
|
if (IsInclinedFoundation(f)) {
|
|
/* inclined foundation */
|
|
uint8_t inclined = highest_corner * 2 + (f == FOUNDATION_INCLINED_Y ? 1 : 0);
|
|
|
|
AddSortableSpriteToDraw(inclined_base + inclined, PAL_NONE, ti->x, ti->y,
|
|
f == FOUNDATION_INCLINED_X ? TILE_SIZE : 1,
|
|
f == FOUNDATION_INCLINED_Y ? TILE_SIZE : 1,
|
|
TILE_HEIGHT, ti->z
|
|
);
|
|
OffsetGroundSprite(0, 0);
|
|
} else if (IsLeveledFoundation(f)) {
|
|
AddSortableSpriteToDraw(leveled_base + SlopeWithOneCornerRaised(highest_corner), PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z - TILE_HEIGHT);
|
|
OffsetGroundSprite(0, -(int)TILE_HEIGHT);
|
|
} else if (f == FOUNDATION_STEEP_LOWER) {
|
|
/* one corner raised */
|
|
OffsetGroundSprite(0, -(int)TILE_HEIGHT);
|
|
} else {
|
|
/* halftile foundation */
|
|
int x_bb = (((highest_corner == CORNER_W) || (highest_corner == CORNER_S)) ? TILE_SIZE / 2 : 0);
|
|
int y_bb = (((highest_corner == CORNER_S) || (highest_corner == CORNER_E)) ? TILE_SIZE / 2 : 0);
|
|
|
|
AddSortableSpriteToDraw(halftile_base + highest_corner, PAL_NONE, ti->x + x_bb, ti->y + y_bb, TILE_SIZE / 2, TILE_SIZE / 2, TILE_HEIGHT - 1, ti->z + TILE_HEIGHT);
|
|
/* Reposition ground sprite back to original position after bounding box change above. This is similar to
|
|
* RemapCoords() but without zoom scaling. */
|
|
Point pt = {(y_bb - x_bb) * 2, y_bb + x_bb};
|
|
OffsetGroundSprite(-pt.x, -pt.y);
|
|
}
|
|
} else {
|
|
if (IsLeveledFoundation(f)) {
|
|
/* leveled foundation */
|
|
AddSortableSpriteToDraw(leveled_base + ti->tileh, PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z);
|
|
OffsetGroundSprite(0, -(int)TILE_HEIGHT);
|
|
} else if (IsNonContinuousFoundation(f)) {
|
|
/* halftile foundation */
|
|
Corner halftile_corner = GetHalftileFoundationCorner(f);
|
|
int x_bb = (((halftile_corner == CORNER_W) || (halftile_corner == CORNER_S)) ? TILE_SIZE / 2 : 0);
|
|
int y_bb = (((halftile_corner == CORNER_S) || (halftile_corner == CORNER_E)) ? TILE_SIZE / 2 : 0);
|
|
|
|
AddSortableSpriteToDraw(halftile_base + halftile_corner, PAL_NONE, ti->x + x_bb, ti->y + y_bb, TILE_SIZE / 2, TILE_SIZE / 2, TILE_HEIGHT - 1, ti->z);
|
|
/* Reposition ground sprite back to original position after bounding box change above. This is similar to
|
|
* RemapCoords() but without zoom scaling. */
|
|
Point pt = {(y_bb - x_bb) * 2, y_bb + x_bb};
|
|
OffsetGroundSprite(-pt.x, -pt.y);
|
|
} else if (IsSpecialRailFoundation(f)) {
|
|
/* anti-zig-zag foundation */
|
|
SpriteID spr;
|
|
if (ti->tileh == SLOPE_NS || ti->tileh == SLOPE_EW) {
|
|
/* half of leveled foundation under track corner */
|
|
spr = leveled_base + SlopeWithThreeCornersRaised(GetRailFoundationCorner(f));
|
|
} else {
|
|
/* tile-slope = sloped along X/Y, foundation-slope = three corners raised */
|
|
spr = inclined_base + 2 * GetRailFoundationCorner(f) + ((ti->tileh == SLOPE_SW || ti->tileh == SLOPE_NE) ? 1 : 0);
|
|
}
|
|
AddSortableSpriteToDraw(spr, PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z);
|
|
OffsetGroundSprite(0, 0);
|
|
} else {
|
|
/* inclined foundation */
|
|
uint8_t inclined = GetHighestSlopeCorner(ti->tileh) * 2 + (f == FOUNDATION_INCLINED_Y ? 1 : 0);
|
|
|
|
AddSortableSpriteToDraw(inclined_base + inclined, PAL_NONE, ti->x, ti->y,
|
|
f == FOUNDATION_INCLINED_X ? TILE_SIZE : 1,
|
|
f == FOUNDATION_INCLINED_Y ? TILE_SIZE : 1,
|
|
TILE_HEIGHT, ti->z
|
|
);
|
|
OffsetGroundSprite(0, 0);
|
|
}
|
|
ti->z += ApplyPixelFoundationToSlope(f, ti->tileh);
|
|
}
|
|
}
|
|
|
|
void DoClearSquare(TileIndex tile)
|
|
{
|
|
/* If the tile can have animation and we clear it, delete it from the animated tile list. */
|
|
if (_tile_type_procs[GetTileType(tile)]->animate_tile_proc != nullptr) DeleteAnimatedTile(tile);
|
|
|
|
bool remove = IsDockingTile(tile);
|
|
MakeClear(tile, CLEAR_GRASS, _generating_world ? 3 : 0);
|
|
MarkTileDirtyByTile(tile);
|
|
if (remove) RemoveDockingTile(tile);
|
|
|
|
InvalidateWaterRegion(tile);
|
|
}
|
|
|
|
/**
|
|
* Returns information about trackdirs and signal states.
|
|
* If there is any trackbit at 'side', return all trackdirbits.
|
|
* For TRANSPORT_ROAD, return no trackbits if there is no roadbit (of given subtype) at given side.
|
|
* @param tile tile to get info about
|
|
* @param mode transport type
|
|
* @param sub_mode for TRANSPORT_ROAD, roadtypes to check
|
|
* @param side side we are entering from, INVALID_DIAGDIR to return all trackbits
|
|
* @return trackdirbits and other info depending on 'mode'
|
|
*/
|
|
TrackStatus GetTileTrackStatus(TileIndex tile, TransportType mode, uint sub_mode, DiagDirection side)
|
|
{
|
|
return _tile_type_procs[GetTileType(tile)]->get_tile_track_status_proc(tile, mode, sub_mode, side);
|
|
}
|
|
|
|
/**
|
|
* Change the owner of a tile
|
|
* @param tile Tile to change
|
|
* @param old_owner Current owner of the tile
|
|
* @param new_owner New owner of the tile
|
|
*/
|
|
void ChangeTileOwner(TileIndex tile, Owner old_owner, Owner new_owner)
|
|
{
|
|
_tile_type_procs[GetTileType(tile)]->change_tile_owner_proc(tile, old_owner, new_owner);
|
|
}
|
|
|
|
void GetTileDesc(TileIndex tile, TileDesc *td)
|
|
{
|
|
_tile_type_procs[GetTileType(tile)]->get_tile_desc_proc(tile, td);
|
|
}
|
|
|
|
/**
|
|
* Has a snow line table already been loaded.
|
|
* @return true if the table has been loaded already.
|
|
* @ingroup SnowLineGroup
|
|
*/
|
|
bool IsSnowLineSet()
|
|
{
|
|
return _snow_line != nullptr;
|
|
}
|
|
|
|
/**
|
|
* Set a variable snow line, as loaded from a newgrf file.
|
|
* @param table the 12 * 32 byte table containing the snowline for each day
|
|
* @ingroup SnowLineGroup
|
|
*/
|
|
void SetSnowLine(uint8_t table[SNOW_LINE_MONTHS][SNOW_LINE_DAYS])
|
|
{
|
|
_snow_line = CallocT<SnowLine>(1);
|
|
_snow_line->lowest_value = 0xFF;
|
|
memcpy(_snow_line->table, table, sizeof(_snow_line->table));
|
|
|
|
for (uint i = 0; i < SNOW_LINE_MONTHS; i++) {
|
|
for (uint j = 0; j < SNOW_LINE_DAYS; j++) {
|
|
_snow_line->highest_value = std::max(_snow_line->highest_value, table[i][j]);
|
|
_snow_line->lowest_value = std::min(_snow_line->lowest_value, table[i][j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get the current snow line, either variable or static.
|
|
* @return the snow line height.
|
|
* @ingroup SnowLineGroup
|
|
*/
|
|
uint8_t GetSnowLine()
|
|
{
|
|
if (_snow_line == nullptr) return _settings_game.game_creation.snow_line_height;
|
|
|
|
TimerGameCalendar::YearMonthDay ymd = TimerGameCalendar::ConvertDateToYMD(TimerGameCalendar::date);
|
|
return _snow_line->table[ymd.month][ymd.day];
|
|
}
|
|
|
|
/**
|
|
* Get the highest possible snow line height, either variable or static.
|
|
* @return the highest snow line height.
|
|
* @ingroup SnowLineGroup
|
|
*/
|
|
uint8_t HighestSnowLine()
|
|
{
|
|
return _snow_line == nullptr ? _settings_game.game_creation.snow_line_height : _snow_line->highest_value;
|
|
}
|
|
|
|
/**
|
|
* Get the lowest possible snow line height, either variable or static.
|
|
* @return the lowest snow line height.
|
|
* @ingroup SnowLineGroup
|
|
*/
|
|
uint8_t LowestSnowLine()
|
|
{
|
|
return _snow_line == nullptr ? _settings_game.game_creation.snow_line_height : _snow_line->lowest_value;
|
|
}
|
|
|
|
/**
|
|
* Clear the variable snow line table and free the memory.
|
|
* @ingroup SnowLineGroup
|
|
*/
|
|
void ClearSnowLine()
|
|
{
|
|
free(_snow_line);
|
|
_snow_line = nullptr;
|
|
}
|
|
|
|
/**
|
|
* Clear a piece of landscape
|
|
* @param flags of operation to conduct
|
|
* @param tile tile to clear
|
|
* @return the cost of this operation or an error
|
|
*/
|
|
CommandCost CmdLandscapeClear(DoCommandFlag flags, TileIndex tile)
|
|
{
|
|
CommandCost cost(EXPENSES_CONSTRUCTION);
|
|
bool do_clear = false;
|
|
/* Test for stuff which results in water when cleared. Then add the cost to also clear the water. */
|
|
if ((flags & DC_FORCE_CLEAR_TILE) && HasTileWaterClass(tile) && IsTileOnWater(tile) && !IsWaterTile(tile) && !IsCoastTile(tile)) {
|
|
if ((flags & DC_AUTO) && GetWaterClass(tile) == WATER_CLASS_CANAL) return_cmd_error(STR_ERROR_MUST_DEMOLISH_CANAL_FIRST);
|
|
do_clear = true;
|
|
cost.AddCost(GetWaterClass(tile) == WATER_CLASS_CANAL ? _price[PR_CLEAR_CANAL] : _price[PR_CLEAR_WATER]);
|
|
}
|
|
|
|
Company *c = (flags & (DC_AUTO | DC_BANKRUPT)) ? nullptr : Company::GetIfValid(_current_company);
|
|
if (c != nullptr && (int)GB(c->clear_limit, 16, 16) < 1) {
|
|
return_cmd_error(STR_ERROR_CLEARING_LIMIT_REACHED);
|
|
}
|
|
|
|
const ClearedObjectArea *coa = FindClearedObject(tile);
|
|
|
|
/* If this tile was the first tile which caused object destruction, always
|
|
* pass it on to the tile_type_proc. That way multiple test runs and the exec run stay consistent. */
|
|
if (coa != nullptr && coa->first_tile != tile) {
|
|
/* If this tile belongs to an object which was already cleared via another tile, pretend it has been
|
|
* already removed.
|
|
* However, we need to check stuff, which is not the same for all object tiles. (e.g. being on water or not) */
|
|
|
|
/* If a object is removed, it leaves either bare land or water. */
|
|
if ((flags & DC_NO_WATER) && HasTileWaterClass(tile) && IsTileOnWater(tile)) {
|
|
return_cmd_error(STR_ERROR_CAN_T_BUILD_ON_WATER);
|
|
}
|
|
} else {
|
|
cost.AddCost(_tile_type_procs[GetTileType(tile)]->clear_tile_proc(tile, flags));
|
|
}
|
|
|
|
if (flags & DC_EXEC) {
|
|
if (c != nullptr) c->clear_limit -= 1 << 16;
|
|
if (do_clear) DoClearSquare(tile);
|
|
}
|
|
return cost;
|
|
}
|
|
|
|
/**
|
|
* Clear a big piece of landscape
|
|
* @param flags of operation to conduct
|
|
* @param tile end tile of area dragging
|
|
* @param start_tile start tile of area dragging
|
|
* @param diagonal Whether to use the Orthogonal (false) or Diagonal (true) iterator.
|
|
* @return the cost of this operation or an error
|
|
*/
|
|
std::tuple<CommandCost, Money> CmdClearArea(DoCommandFlag flags, TileIndex tile, TileIndex start_tile, bool diagonal)
|
|
{
|
|
if (start_tile >= Map::Size()) return { CMD_ERROR, 0 };
|
|
|
|
Money money = GetAvailableMoneyForCommand();
|
|
CommandCost cost(EXPENSES_CONSTRUCTION);
|
|
CommandCost last_error = CMD_ERROR;
|
|
bool had_success = false;
|
|
|
|
const Company *c = (flags & (DC_AUTO | DC_BANKRUPT)) ? nullptr : Company::GetIfValid(_current_company);
|
|
int limit = (c == nullptr ? INT32_MAX : GB(c->clear_limit, 16, 16));
|
|
|
|
if (tile != start_tile) flags |= DC_FORCE_CLEAR_TILE;
|
|
|
|
std::unique_ptr<TileIterator> iter = TileIterator::Create(tile, start_tile, diagonal);
|
|
for (; *iter != INVALID_TILE; ++(*iter)) {
|
|
TileIndex t = *iter;
|
|
CommandCost ret = Command<CMD_LANDSCAPE_CLEAR>::Do(flags & ~DC_EXEC, t);
|
|
if (ret.Failed()) {
|
|
last_error = ret;
|
|
|
|
/* We may not clear more tiles. */
|
|
if (c != nullptr && GB(c->clear_limit, 16, 16) < 1) break;
|
|
continue;
|
|
}
|
|
|
|
had_success = true;
|
|
if (flags & DC_EXEC) {
|
|
money -= ret.GetCost();
|
|
if (ret.GetCost() > 0 && money < 0) {
|
|
return { cost, ret.GetCost() };
|
|
}
|
|
Command<CMD_LANDSCAPE_CLEAR>::Do(flags, t);
|
|
|
|
/* draw explosion animation...
|
|
* Disable explosions when game is paused. Looks silly and blocks the view. */
|
|
if ((t == tile || t == start_tile) && _pause_mode == PM_UNPAUSED) {
|
|
/* big explosion in two corners, or small explosion for single tiles */
|
|
CreateEffectVehicleAbove(TileX(t) * TILE_SIZE + TILE_SIZE / 2, TileY(t) * TILE_SIZE + TILE_SIZE / 2, 2,
|
|
TileX(tile) == TileX(start_tile) && TileY(tile) == TileY(start_tile) ? EV_EXPLOSION_SMALL : EV_EXPLOSION_LARGE
|
|
);
|
|
}
|
|
} else {
|
|
/* When we're at the clearing limit we better bail (unneed) testing as well. */
|
|
if (ret.GetCost() != 0 && --limit <= 0) break;
|
|
}
|
|
cost.AddCost(ret);
|
|
}
|
|
|
|
return { had_success ? cost : last_error, 0 };
|
|
}
|
|
|
|
|
|
TileIndex _cur_tileloop_tile;
|
|
|
|
/**
|
|
* Gradually iterate over all tiles on the map, calling their TileLoopProcs once every 256 ticks.
|
|
*/
|
|
void RunTileLoop()
|
|
{
|
|
PerformanceAccumulator framerate(PFE_GL_LANDSCAPE);
|
|
|
|
/* The pseudorandom sequence of tiles is generated using a Galois linear feedback
|
|
* shift register (LFSR). This allows a deterministic pseudorandom ordering, but
|
|
* still with minimal state and fast iteration. */
|
|
|
|
/* Maximal length LFSR feedback terms, from 12-bit (for 64x64 maps) to 24-bit (for 4096x4096 maps).
|
|
* Extracted from http://www.ece.cmu.edu/~koopman/lfsr/ */
|
|
static const uint32_t feedbacks[] = {
|
|
0xD8F, 0x1296, 0x2496, 0x4357, 0x8679, 0x1030E, 0x206CD, 0x403FE, 0x807B8, 0x1004B2, 0x2006A8, 0x4004B2, 0x800B87
|
|
};
|
|
static_assert(lengthof(feedbacks) == 2 * MAX_MAP_SIZE_BITS - 2 * MIN_MAP_SIZE_BITS + 1);
|
|
const uint32_t feedback = feedbacks[Map::LogX() + Map::LogY() - 2 * MIN_MAP_SIZE_BITS];
|
|
|
|
/* We update every tile every 256 ticks, so divide the map size by 2^8 = 256 */
|
|
uint count = 1 << (Map::LogX() + Map::LogY() - 8);
|
|
|
|
TileIndex tile = _cur_tileloop_tile;
|
|
/* The LFSR cannot have a zeroed state. */
|
|
assert(tile != 0);
|
|
|
|
/* Manually update tile 0 every 256 ticks - the LFSR never iterates over it itself. */
|
|
if (TimerGameTick::counter % 256 == 0) {
|
|
_tile_type_procs[GetTileType(0)]->tile_loop_proc(0);
|
|
count--;
|
|
}
|
|
|
|
while (count--) {
|
|
_tile_type_procs[GetTileType(tile)]->tile_loop_proc(tile);
|
|
|
|
/* Get the next tile in sequence using a Galois LFSR. */
|
|
tile = (tile.base() >> 1) ^ (-(int32_t)(tile.base() & 1) & feedback);
|
|
}
|
|
|
|
_cur_tileloop_tile = tile;
|
|
}
|
|
|
|
void InitializeLandscape()
|
|
{
|
|
for (uint y = _settings_game.construction.freeform_edges ? 1 : 0; y < Map::MaxY(); y++) {
|
|
for (uint x = _settings_game.construction.freeform_edges ? 1 : 0; x < Map::MaxX(); x++) {
|
|
MakeClear(TileXY(x, y), CLEAR_GRASS, 3);
|
|
SetTileHeight(TileXY(x, y), 0);
|
|
SetTropicZone(TileXY(x, y), TROPICZONE_NORMAL);
|
|
ClearBridgeMiddle(TileXY(x, y));
|
|
}
|
|
}
|
|
|
|
for (uint x = 0; x < Map::SizeX(); x++) MakeVoid(TileXY(x, Map::MaxY()));
|
|
for (uint y = 0; y < Map::SizeY(); y++) MakeVoid(TileXY(Map::MaxX(), y));
|
|
}
|
|
|
|
static const uint8_t _genterrain_tbl_1[5] = { 10, 22, 33, 37, 4 };
|
|
static const uint8_t _genterrain_tbl_2[5] = { 0, 0, 0, 0, 33 };
|
|
|
|
static void GenerateTerrain(int type, uint flag)
|
|
{
|
|
uint32_t r = Random();
|
|
|
|
/* Choose one of the templates from the graphics file. */
|
|
const Sprite *templ = GetSprite((((r >> 24) * _genterrain_tbl_1[type]) >> 8) + _genterrain_tbl_2[type] + SPR_MAPGEN_BEGIN, SpriteType::MapGen);
|
|
if (templ == nullptr) UserError("Map generator sprites could not be loaded");
|
|
|
|
/* Chose a random location to apply the template to. */
|
|
uint x = r & Map::MaxX();
|
|
uint y = (r >> Map::LogX()) & Map::MaxY();
|
|
|
|
/* Make sure the template is not too close to the upper edges; bottom edges are checked later. */
|
|
uint edge_distance = 1 + (_settings_game.construction.freeform_edges ? 1 : 0);
|
|
if (x <= edge_distance || y <= edge_distance) return;
|
|
|
|
DiagDirection direction = (DiagDirection)GB(r, 22, 2);
|
|
uint w = templ->width;
|
|
uint h = templ->height;
|
|
|
|
if (DiagDirToAxis(direction) == AXIS_Y) Swap(w, h);
|
|
|
|
const uint8_t *p = templ->data;
|
|
|
|
if ((flag & 4) != 0) {
|
|
/* This is only executed in secondary/tertiary loops to generate the terrain for arctic and tropic.
|
|
* It prevents the templates to be applied to certain parts of the map based on the flags, thus
|
|
* creating regions with different elevations/topography. */
|
|
uint xw = x * Map::SizeY();
|
|
uint yw = y * Map::SizeX();
|
|
uint bias = (Map::SizeX() + Map::SizeY()) * 16;
|
|
|
|
switch (flag & 3) {
|
|
default: NOT_REACHED();
|
|
case 0:
|
|
if (xw + yw > Map::Size() - bias) return;
|
|
break;
|
|
|
|
case 1:
|
|
if (yw < xw + bias) return;
|
|
break;
|
|
|
|
case 2:
|
|
if (xw + yw < Map::Size() + bias) return;
|
|
break;
|
|
|
|
case 3:
|
|
if (xw < yw + bias) return;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Ensure the template does not overflow at the bottom edges of the map; upper edges were checked before. */
|
|
if (x + w >= Map::MaxX()) return;
|
|
if (y + h >= Map::MaxY()) return;
|
|
|
|
TileIndex tile = TileXY(x, y);
|
|
|
|
/* Get the template and overlay in a particular direction over the map's height from the given
|
|
* origin point (tile), and update the map's height everywhere where the height from the template
|
|
* is higher than the height of the map. In other words, this only raises the tile heights. */
|
|
switch (direction) {
|
|
default: NOT_REACHED();
|
|
case DIAGDIR_NE:
|
|
do {
|
|
TileIndex tile_cur = tile;
|
|
|
|
for (uint w_cur = w; w_cur != 0; --w_cur) {
|
|
if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
|
|
p++;
|
|
tile_cur++;
|
|
}
|
|
tile += TileDiffXY(0, 1);
|
|
} while (--h != 0);
|
|
break;
|
|
|
|
case DIAGDIR_SE:
|
|
do {
|
|
TileIndex tile_cur = tile;
|
|
|
|
for (uint h_cur = h; h_cur != 0; --h_cur) {
|
|
if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
|
|
p++;
|
|
tile_cur += TileDiffXY(0, 1);
|
|
}
|
|
tile += TileDiffXY(1, 0);
|
|
} while (--w != 0);
|
|
break;
|
|
|
|
case DIAGDIR_SW:
|
|
tile += TileDiffXY(w - 1, 0);
|
|
do {
|
|
TileIndex tile_cur = tile;
|
|
|
|
for (uint w_cur = w; w_cur != 0; --w_cur) {
|
|
if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
|
|
p++;
|
|
tile_cur--;
|
|
}
|
|
tile += TileDiffXY(0, 1);
|
|
} while (--h != 0);
|
|
break;
|
|
|
|
case DIAGDIR_NW:
|
|
tile += TileDiffXY(0, h - 1);
|
|
do {
|
|
TileIndex tile_cur = tile;
|
|
|
|
for (uint h_cur = h; h_cur != 0; --h_cur) {
|
|
if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
|
|
p++;
|
|
tile_cur -= TileDiffXY(0, 1);
|
|
}
|
|
tile += TileDiffXY(1, 0);
|
|
} while (--w != 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
#include "table/genland.h"
|
|
|
|
static void CreateDesertOrRainForest(uint desert_tropic_line)
|
|
{
|
|
uint update_freq = Map::Size() / 4;
|
|
const TileIndexDiffC *data;
|
|
|
|
for (TileIndex tile = 0; tile != Map::Size(); ++tile) {
|
|
if ((tile.base() % update_freq) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
|
|
|
|
if (!IsValidTile(tile)) continue;
|
|
|
|
for (data = _make_desert_or_rainforest_data;
|
|
data != endof(_make_desert_or_rainforest_data); ++data) {
|
|
TileIndex t = AddTileIndexDiffCWrap(tile, *data);
|
|
if (t != INVALID_TILE && (TileHeight(t) >= desert_tropic_line || IsTileType(t, MP_WATER))) break;
|
|
}
|
|
if (data == endof(_make_desert_or_rainforest_data)) {
|
|
SetTropicZone(tile, TROPICZONE_DESERT);
|
|
}
|
|
}
|
|
|
|
for (uint i = 0; i != 256; i++) {
|
|
if ((i % 64) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
|
|
|
|
RunTileLoop();
|
|
}
|
|
|
|
for (TileIndex tile = 0; tile != Map::Size(); ++tile) {
|
|
if ((tile.base() % update_freq) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
|
|
|
|
if (!IsValidTile(tile)) continue;
|
|
|
|
for (data = _make_desert_or_rainforest_data;
|
|
data != endof(_make_desert_or_rainforest_data); ++data) {
|
|
TileIndex t = AddTileIndexDiffCWrap(tile, *data);
|
|
if (t != INVALID_TILE && IsTileType(t, MP_CLEAR) && IsClearGround(t, CLEAR_DESERT)) break;
|
|
}
|
|
if (data == endof(_make_desert_or_rainforest_data)) {
|
|
SetTropicZone(tile, TROPICZONE_RAINFOREST);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Find the spring of a river.
|
|
* @param tile The tile to consider for being the spring.
|
|
* @return True iff it is suitable as a spring.
|
|
*/
|
|
static bool FindSpring(TileIndex tile, void *)
|
|
{
|
|
int referenceHeight;
|
|
if (!IsTileFlat(tile, &referenceHeight) || IsWaterTile(tile)) return false;
|
|
|
|
/* In the tropics rivers start in the rainforest. */
|
|
if (_settings_game.game_creation.landscape == LT_TROPIC && GetTropicZone(tile) != TROPICZONE_RAINFOREST) return false;
|
|
|
|
/* Are there enough higher tiles to warrant a 'spring'? */
|
|
uint num = 0;
|
|
for (int dx = -1; dx <= 1; dx++) {
|
|
for (int dy = -1; dy <= 1; dy++) {
|
|
TileIndex t = TileAddWrap(tile, dx, dy);
|
|
if (t != INVALID_TILE && GetTileMaxZ(t) > referenceHeight) num++;
|
|
}
|
|
}
|
|
|
|
if (num < 4) return false;
|
|
|
|
/* Are we near the top of a hill? */
|
|
for (int dx = -16; dx <= 16; dx++) {
|
|
for (int dy = -16; dy <= 16; dy++) {
|
|
TileIndex t = TileAddWrap(tile, dx, dy);
|
|
if (t != INVALID_TILE && GetTileMaxZ(t) > referenceHeight + 2) return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Make a connected lake; fill all tiles in the circular tile search that are connected.
|
|
* @param tile The tile to consider for lake making.
|
|
* @param user_data The height of the lake.
|
|
* @return Always false, so it continues searching.
|
|
*/
|
|
static bool MakeLake(TileIndex tile, void *user_data)
|
|
{
|
|
uint height = *(uint*)user_data;
|
|
if (!IsValidTile(tile) || TileHeight(tile) != height || !IsTileFlat(tile)) return false;
|
|
if (_settings_game.game_creation.landscape == LT_TROPIC && GetTropicZone(tile) == TROPICZONE_DESERT) return false;
|
|
|
|
for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
|
|
TileIndex t2 = tile + TileOffsByDiagDir(d);
|
|
if (IsWaterTile(t2)) {
|
|
MakeRiverAndModifyDesertZoneAround(tile);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Widen a river by expanding into adjacent tiles via circular tile search.
|
|
* @param tile The tile to try expanding the river into.
|
|
* @param data The tile to try surrounding the river around.
|
|
* @return Always false, so it continues searching.
|
|
*/
|
|
static bool RiverMakeWider(TileIndex tile, void *data)
|
|
{
|
|
/* Don't expand into void tiles. */
|
|
if (!IsValidTile(tile)) return false;
|
|
|
|
/* If the tile is already sea or river, don't expand. */
|
|
if (IsWaterTile(tile)) return false;
|
|
|
|
/* If the tile is at height 0 after terraforming but the ocean hasn't flooded yet, don't build river. */
|
|
if (GetTileMaxZ(tile) == 0) return false;
|
|
|
|
TileIndex origin_tile = *(TileIndex *)data;
|
|
Slope cur_slope = GetTileSlope(tile);
|
|
Slope desired_slope = GetTileSlope(origin_tile); // Initialize matching the origin tile as a shortcut if no terraforming is needed.
|
|
|
|
/* Never flow uphill. */
|
|
if (GetTileMaxZ(tile) > GetTileMaxZ(origin_tile)) return false;
|
|
|
|
/* If the new tile can't hold a river tile, try terraforming. */
|
|
if (!IsTileFlat(tile) && !IsInclinedSlope(cur_slope)) {
|
|
/* Don't try to terraform steep slopes. */
|
|
if (IsSteepSlope(cur_slope)) return false;
|
|
|
|
bool flat_river_found = false;
|
|
bool sloped_river_found = false;
|
|
|
|
/* There are two common possibilities:
|
|
* 1. River flat, adjacent tile has one corner lowered.
|
|
* 2. River descending, adjacent tile has either one or three corners raised.
|
|
*/
|
|
|
|
/* First, determine the desired slope based on adjacent river tiles. This doesn't necessarily match the origin tile for the CircularTileSearch. */
|
|
for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
|
|
TileIndex other_tile = TileAddByDiagDir(tile, d);
|
|
Slope other_slope = GetTileSlope(other_tile);
|
|
|
|
/* Only consider river tiles. */
|
|
if (IsWaterTile(other_tile) && IsRiver(other_tile)) {
|
|
/* If the adjacent river tile flows downhill, we need to check where we are relative to the slope. */
|
|
if (IsInclinedSlope(other_slope) && GetTileMaxZ(tile) == GetTileMaxZ(other_tile)) {
|
|
/* Check for a parallel slope. If we don't find one, we're above or below the slope instead. */
|
|
if (GetInclinedSlopeDirection(other_slope) == ChangeDiagDir(d, DIAGDIRDIFF_90RIGHT) ||
|
|
GetInclinedSlopeDirection(other_slope) == ChangeDiagDir(d, DIAGDIRDIFF_90LEFT)) {
|
|
desired_slope = other_slope;
|
|
sloped_river_found = true;
|
|
break;
|
|
}
|
|
}
|
|
/* If we find an adjacent river tile, remember it. We'll terraform to match it later if we don't find a slope. */
|
|
if (IsTileFlat(other_tile)) flat_river_found = true;
|
|
}
|
|
}
|
|
/* We didn't find either an inclined or flat river, so we're climbing the wrong slope. Bail out. */
|
|
if (!sloped_river_found && !flat_river_found) return false;
|
|
|
|
/* We didn't find an inclined river, but there is a flat river. */
|
|
if (!sloped_river_found && flat_river_found) desired_slope = SLOPE_FLAT;
|
|
|
|
/* Now that we know the desired slope, it's time to terraform! */
|
|
|
|
/* If the river is flat and the adjacent tile has one corner lowered, we want to raise it. */
|
|
if (desired_slope == SLOPE_FLAT && IsSlopeWithThreeCornersRaised(cur_slope)) {
|
|
/* Make sure we're not affecting an existing river slope tile. */
|
|
for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
|
|
TileIndex other_tile = TileAddByDiagDir(tile, d);
|
|
if (IsInclinedSlope(GetTileSlope(other_tile)) && IsWaterTile(other_tile)) return false;
|
|
}
|
|
Command<CMD_TERRAFORM_LAND>::Do(DC_EXEC | DC_AUTO, tile, ComplementSlope(cur_slope), true);
|
|
|
|
/* If the river is descending and the adjacent tile has either one or three corners raised, we want to make it match the slope. */
|
|
} else if (IsInclinedSlope(desired_slope)) {
|
|
/* Don't break existing flat river tiles by terraforming under them. */
|
|
DiagDirection river_direction = ReverseDiagDir(GetInclinedSlopeDirection(desired_slope));
|
|
|
|
for (DiagDirDiff d = DIAGDIRDIFF_BEGIN; d < DIAGDIRDIFF_END; d++) {
|
|
/* We don't care about downstream or upstream tiles, just the riverbanks. */
|
|
if (d == DIAGDIRDIFF_SAME || d == DIAGDIRDIFF_REVERSE) continue;
|
|
|
|
TileIndex other_tile = (TileAddByDiagDir(tile, ChangeDiagDir(river_direction, d)));
|
|
if (IsWaterTile(other_tile) && IsRiver(other_tile) && IsTileFlat(other_tile)) return false;
|
|
}
|
|
|
|
/* Get the corners which are different between the current and desired slope. */
|
|
Slope to_change = cur_slope ^ desired_slope;
|
|
|
|
/* Lower unwanted corners first. If only one corner is raised, no corners need lowering. */
|
|
if (!IsSlopeWithOneCornerRaised(cur_slope)) {
|
|
to_change = to_change & ComplementSlope(desired_slope);
|
|
Command<CMD_TERRAFORM_LAND>::Do(DC_EXEC | DC_AUTO, tile, to_change, false);
|
|
}
|
|
|
|
/* Now check the match and raise any corners needed. */
|
|
cur_slope = GetTileSlope(tile);
|
|
if (cur_slope != desired_slope && IsSlopeWithOneCornerRaised(cur_slope)) {
|
|
to_change = cur_slope ^ desired_slope;
|
|
Command<CMD_TERRAFORM_LAND>::Do(DC_EXEC | DC_AUTO, tile, to_change, true);
|
|
}
|
|
}
|
|
/* Update cur_slope after possibly terraforming. */
|
|
cur_slope = GetTileSlope(tile);
|
|
}
|
|
|
|
/* Sloped rivers need water both upstream and downstream. */
|
|
if (IsInclinedSlope(cur_slope)) {
|
|
DiagDirection slope_direction = GetInclinedSlopeDirection(cur_slope);
|
|
|
|
TileIndex upstream_tile = TileAddByDiagDir(tile, slope_direction);
|
|
TileIndex downstream_tile = TileAddByDiagDir(tile, ReverseDiagDir(slope_direction));
|
|
|
|
/* Don't look outside the map. */
|
|
if (!IsValidTile(upstream_tile) || !IsValidTile(downstream_tile)) return false;
|
|
|
|
/* Downstream might be new ocean created by our terraforming, and it hasn't flooded yet. */
|
|
bool downstream_is_ocean = GetTileZ(downstream_tile) == 0 && (GetTileSlope(downstream_tile) == SLOPE_FLAT || IsSlopeWithOneCornerRaised(GetTileSlope(downstream_tile)));
|
|
|
|
/* If downstream is dry, flat, and not ocean, try making it a river tile. */
|
|
if (!IsWaterTile(downstream_tile) && !downstream_is_ocean) {
|
|
/* If the tile upstream isn't flat, don't bother. */
|
|
if (GetTileSlope(downstream_tile) != SLOPE_FLAT) return false;
|
|
|
|
MakeRiverAndModifyDesertZoneAround(downstream_tile);
|
|
}
|
|
|
|
/* If upstream is dry and flat, try making it a river tile. */
|
|
if (!IsWaterTile(upstream_tile)) {
|
|
/* If the tile upstream isn't flat, don't bother. */
|
|
if (GetTileSlope(upstream_tile) != SLOPE_FLAT) return false;
|
|
|
|
MakeRiverAndModifyDesertZoneAround(upstream_tile);
|
|
}
|
|
}
|
|
|
|
/* If the tile slope matches the desired slope, add a river tile. */
|
|
if (cur_slope == desired_slope) {
|
|
MakeRiverAndModifyDesertZoneAround(tile);
|
|
}
|
|
|
|
/* Always return false to keep searching. */
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Check whether a river at begin could (logically) flow down to end.
|
|
* @param begin The origin of the flow.
|
|
* @param end The destination of the flow.
|
|
* @return True iff the water can be flowing down.
|
|
*/
|
|
static bool FlowsDown(TileIndex begin, TileIndex end)
|
|
{
|
|
assert(DistanceManhattan(begin, end) == 1);
|
|
|
|
auto [slopeBegin, heightBegin] = GetTileSlopeZ(begin);
|
|
auto [slopeEnd, heightEnd] = GetTileSlopeZ(end);
|
|
|
|
return heightEnd <= heightBegin &&
|
|
/* Slope either is inclined or flat; rivers don't support other slopes. */
|
|
(slopeEnd == SLOPE_FLAT || IsInclinedSlope(slopeEnd)) &&
|
|
/* Slope continues, then it must be lower... or either end must be flat. */
|
|
((slopeEnd == slopeBegin && heightEnd < heightBegin) || slopeEnd == SLOPE_FLAT || slopeBegin == SLOPE_FLAT);
|
|
}
|
|
|
|
/** Parameters for river generation to pass as AyStar user data. */
|
|
struct River_UserData {
|
|
TileIndex spring; ///< The current spring during river generation.
|
|
bool main_river; ///< Whether the current river is a big river that others flow into.
|
|
};
|
|
|
|
/* AyStar callback for checking whether we reached our destination. */
|
|
static int32_t River_EndNodeCheck(const AyStar *aystar, const OpenListNode *current)
|
|
{
|
|
return current->path.node.tile == *(TileIndex*)aystar->user_target ? AYSTAR_FOUND_END_NODE : AYSTAR_DONE;
|
|
}
|
|
|
|
/* AyStar callback for getting the cost of the current node. */
|
|
static int32_t River_CalculateG(AyStar *, AyStarNode *, OpenListNode *)
|
|
{
|
|
return 1 + RandomRange(_settings_game.game_creation.river_route_random);
|
|
}
|
|
|
|
/* AyStar callback for getting the estimated cost to the destination. */
|
|
static int32_t River_CalculateH(AyStar *aystar, AyStarNode *current, OpenListNode *)
|
|
{
|
|
return DistanceManhattan(*(TileIndex*)aystar->user_target, current->tile);
|
|
}
|
|
|
|
/* AyStar callback for getting the neighbouring nodes of the given node. */
|
|
static void River_GetNeighbours(AyStar *aystar, OpenListNode *current)
|
|
{
|
|
TileIndex tile = current->path.node.tile;
|
|
|
|
aystar->num_neighbours = 0;
|
|
for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
|
|
TileIndex t2 = tile + TileOffsByDiagDir(d);
|
|
if (IsValidTile(t2) && FlowsDown(tile, t2)) {
|
|
aystar->neighbours[aystar->num_neighbours].tile = t2;
|
|
aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR;
|
|
aystar->num_neighbours++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* AyStar callback when an route has been found. */
|
|
static void River_FoundEndNode(AyStar *aystar, OpenListNode *current)
|
|
{
|
|
River_UserData *data = (River_UserData *)aystar->user_data;
|
|
|
|
/* First, build the river without worrying about its width. */
|
|
uint cur_pos = 0;
|
|
for (PathNode *path = ¤t->path; path != nullptr; path = path->parent, cur_pos++) {
|
|
TileIndex tile = path->node.tile;
|
|
if (!IsWaterTile(tile)) {
|
|
MakeRiverAndModifyDesertZoneAround(tile);
|
|
}
|
|
}
|
|
|
|
/* If the river is a main river, go back along the path to widen it.
|
|
* Don't make wide rivers if we're using the original landscape generator.
|
|
*/
|
|
if (_settings_game.game_creation.land_generator != LG_ORIGINAL && data->main_river) {
|
|
const uint long_river_length = _settings_game.game_creation.min_river_length * 4;
|
|
uint current_river_length;
|
|
uint radius;
|
|
|
|
cur_pos = 0;
|
|
for (PathNode *path = ¤t->path; path != nullptr; path = path->parent, cur_pos++) {
|
|
TileIndex tile = path->node.tile;
|
|
|
|
/* Check if we should widen river depending on how far we are away from the source. */
|
|
current_river_length = DistanceManhattan(data->spring, tile);
|
|
radius = std::min(3u, (current_river_length / (long_river_length / 3u)) + 1u);
|
|
|
|
if (radius > 1) CircularTileSearch(&tile, radius, RiverMakeWider, (void *)&path->node.tile);
|
|
}
|
|
}
|
|
}
|
|
|
|
static const uint RIVER_HASH_SIZE = 8; ///< The number of bits the hash for river finding should have.
|
|
|
|
/**
|
|
* Simple hash function for river tiles to be used by AyStar.
|
|
* @param tile The tile to hash.
|
|
* @return The hash for the tile.
|
|
*/
|
|
static uint River_Hash(TileIndex tile, Trackdir)
|
|
{
|
|
return GB(TileHash(TileX(tile), TileY(tile)), 0, RIVER_HASH_SIZE);
|
|
}
|
|
|
|
/**
|
|
* Actually build the river between the begin and end tiles using AyStar.
|
|
* @param begin The begin of the river.
|
|
* @param end The end of the river.
|
|
* @param spring The springing point of the river.
|
|
* @param main_river Whether the current river is a big river that others flow into.
|
|
*/
|
|
static void BuildRiver(TileIndex begin, TileIndex end, TileIndex spring, bool main_river)
|
|
{
|
|
River_UserData user_data = { spring, main_river };
|
|
|
|
AyStar finder = {};
|
|
finder.CalculateG = River_CalculateG;
|
|
finder.CalculateH = River_CalculateH;
|
|
finder.GetNeighbours = River_GetNeighbours;
|
|
finder.EndNodeCheck = River_EndNodeCheck;
|
|
finder.FoundEndNode = River_FoundEndNode;
|
|
finder.user_target = &end;
|
|
finder.user_data = &user_data;
|
|
|
|
finder.Init(River_Hash, 1 << RIVER_HASH_SIZE);
|
|
|
|
AyStarNode start;
|
|
start.tile = begin;
|
|
start.direction = INVALID_TRACKDIR;
|
|
finder.AddStartNode(&start, 0);
|
|
finder.Main();
|
|
finder.Free();
|
|
}
|
|
|
|
/**
|
|
* Try to flow the river down from a given begin.
|
|
* @param spring The springing point of the river.
|
|
* @param begin The begin point we are looking from; somewhere down hill from the spring.
|
|
* @param min_river_length The minimum length for the river.
|
|
* @return First element: True iff a river could/has been built, otherwise false; second element: River ends at sea.
|
|
*/
|
|
static std::tuple<bool, bool> FlowRiver(TileIndex spring, TileIndex begin, uint min_river_length)
|
|
{
|
|
# define SET_MARK(x) marks.insert(x)
|
|
# define IS_MARKED(x) (marks.find(x) != marks.end())
|
|
|
|
uint height = TileHeight(begin);
|
|
|
|
if (IsWaterTile(begin)) {
|
|
return { DistanceManhattan(spring, begin) > min_river_length, GetTileZ(begin) == 0 };
|
|
}
|
|
|
|
std::set<TileIndex> marks;
|
|
SET_MARK(begin);
|
|
|
|
/* Breadth first search for the closest tile we can flow down to. */
|
|
std::list<TileIndex> queue;
|
|
queue.push_back(begin);
|
|
|
|
bool found = false;
|
|
uint count = 0; // Number of tiles considered; to be used for lake location guessing.
|
|
TileIndex end;
|
|
do {
|
|
end = queue.front();
|
|
queue.pop_front();
|
|
|
|
uint height2 = TileHeight(end);
|
|
if (IsTileFlat(end) && (height2 < height || (height2 == height && IsWaterTile(end)))) {
|
|
found = true;
|
|
break;
|
|
}
|
|
|
|
for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
|
|
TileIndex t2 = end + TileOffsByDiagDir(d);
|
|
if (IsValidTile(t2) && !IS_MARKED(t2) && FlowsDown(end, t2)) {
|
|
SET_MARK(t2);
|
|
count++;
|
|
queue.push_back(t2);
|
|
}
|
|
}
|
|
} while (!queue.empty());
|
|
|
|
bool main_river = false;
|
|
if (found) {
|
|
/* Flow further down hill. */
|
|
std::tie(found, main_river) = FlowRiver(spring, end, min_river_length);
|
|
} else if (count > 32) {
|
|
/* Maybe we can make a lake. Find the Nth of the considered tiles. */
|
|
std::set<TileIndex>::const_iterator cit = marks.cbegin();
|
|
std::advance(cit, RandomRange(count - 1));
|
|
TileIndex lakeCenter = *cit;
|
|
|
|
if (IsValidTile(lakeCenter) &&
|
|
/* A river, or lake, can only be built on flat slopes. */
|
|
IsTileFlat(lakeCenter) &&
|
|
/* We want the lake to be built at the height of the river. */
|
|
TileHeight(begin) == TileHeight(lakeCenter) &&
|
|
/* We don't want the lake at the entry of the valley. */
|
|
lakeCenter != begin &&
|
|
/* We don't want lakes in the desert. */
|
|
(_settings_game.game_creation.landscape != LT_TROPIC || GetTropicZone(lakeCenter) != TROPICZONE_DESERT) &&
|
|
/* We only want a lake if the river is long enough. */
|
|
DistanceManhattan(spring, lakeCenter) > min_river_length) {
|
|
end = lakeCenter;
|
|
MakeRiverAndModifyDesertZoneAround(lakeCenter);
|
|
uint range = RandomRange(8) + 3;
|
|
CircularTileSearch(&lakeCenter, range, MakeLake, &height);
|
|
/* Call the search a second time so artefacts from going circular in one direction get (mostly) hidden. */
|
|
lakeCenter = end;
|
|
CircularTileSearch(&lakeCenter, range, MakeLake, &height);
|
|
found = true;
|
|
}
|
|
}
|
|
|
|
marks.clear();
|
|
if (found) BuildRiver(begin, end, spring, main_river);
|
|
return { found, main_river };
|
|
}
|
|
|
|
/**
|
|
* Actually (try to) create some rivers.
|
|
*/
|
|
static void CreateRivers()
|
|
{
|
|
int amount = _settings_game.game_creation.amount_of_rivers;
|
|
if (amount == 0) return;
|
|
|
|
uint wells = Map::ScaleBySize(4 << _settings_game.game_creation.amount_of_rivers);
|
|
const uint num_short_rivers = wells - std::max(1u, wells / 10);
|
|
SetGeneratingWorldProgress(GWP_RIVER, wells + 256 / 64); // Include the tile loop calls below.
|
|
|
|
/* Try to create long rivers. */
|
|
for (; wells > num_short_rivers; wells--) {
|
|
IncreaseGeneratingWorldProgress(GWP_RIVER);
|
|
for (int tries = 0; tries < 512; tries++) {
|
|
TileIndex t = RandomTile();
|
|
if (!CircularTileSearch(&t, 8, FindSpring, nullptr)) continue;
|
|
if (std::get<0>(FlowRiver(t, t, _settings_game.game_creation.min_river_length * 4))) break;
|
|
}
|
|
}
|
|
|
|
/* Try to create short rivers. */
|
|
for (; wells != 0; wells--) {
|
|
IncreaseGeneratingWorldProgress(GWP_RIVER);
|
|
for (int tries = 0; tries < 128; tries++) {
|
|
TileIndex t = RandomTile();
|
|
if (!CircularTileSearch(&t, 8, FindSpring, nullptr)) continue;
|
|
if (std::get<0>(FlowRiver(t, t, _settings_game.game_creation.min_river_length))) break;
|
|
}
|
|
}
|
|
|
|
/* Widening rivers may have left some tiles requiring to be watered. */
|
|
ConvertGroundTilesIntoWaterTiles();
|
|
|
|
/* Run tile loop to update the ground density. */
|
|
for (uint i = 0; i != 256; i++) {
|
|
if (i % 64 == 0) IncreaseGeneratingWorldProgress(GWP_RIVER);
|
|
RunTileLoop();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate what height would be needed to cover N% of the landmass.
|
|
*
|
|
* The function allows both snow and desert/tropic line to be calculated. It
|
|
* tries to find the closests height which covers N% of the landmass; it can
|
|
* be below or above it.
|
|
*
|
|
* Tropic has a mechanism where water and tropic tiles in mountains grow
|
|
* inside the desert. To better approximate the requested coverage, this is
|
|
* taken into account via an edge histogram, which tells how many neighbouring
|
|
* tiles are lower than the tiles of that height. The multiplier indicates how
|
|
* severe this has to be taken into account.
|
|
*
|
|
* @param coverage A value between 0 and 100 indicating a percentage of landmass that should be covered.
|
|
* @param edge_multiplier How much effect neighbouring tiles that are of a lower height level have on the score.
|
|
* @return The estimated best height to use to cover N% of the landmass.
|
|
*/
|
|
static uint CalculateCoverageLine(uint coverage, uint edge_multiplier)
|
|
{
|
|
const DiagDirection neighbour_dir[] = {
|
|
DIAGDIR_NE,
|
|
DIAGDIR_SE,
|
|
DIAGDIR_SW,
|
|
DIAGDIR_NW,
|
|
};
|
|
|
|
/* Histogram of how many tiles per height level exist. */
|
|
std::array<int, MAX_TILE_HEIGHT + 1> histogram = {};
|
|
/* Histogram of how many neighbour tiles are lower than the tiles of the height level. */
|
|
std::array<int, MAX_TILE_HEIGHT + 1> edge_histogram = {};
|
|
|
|
/* Build a histogram of the map height. */
|
|
for (TileIndex tile = 0; tile < Map::Size(); tile++) {
|
|
uint h = TileHeight(tile);
|
|
histogram[h]++;
|
|
|
|
if (edge_multiplier != 0) {
|
|
/* Check if any of our neighbours is below us. */
|
|
for (auto dir : neighbour_dir) {
|
|
TileIndex neighbour_tile = AddTileIndexDiffCWrap(tile, TileIndexDiffCByDiagDir(dir));
|
|
if (IsValidTile(neighbour_tile) && TileHeight(neighbour_tile) < h) {
|
|
edge_histogram[h]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The amount of land we have is the map size minus the first (sea) layer. */
|
|
uint land_tiles = Map::Size() - histogram[0];
|
|
int best_score = land_tiles;
|
|
|
|
/* Our goal is the coverage amount of the land-mass. */
|
|
int goal_tiles = land_tiles * coverage / 100;
|
|
|
|
/* We scan from top to bottom. */
|
|
uint h = MAX_TILE_HEIGHT;
|
|
uint best_h = h;
|
|
|
|
int current_tiles = 0;
|
|
for (; h > 0; h--) {
|
|
current_tiles += histogram[h];
|
|
int current_score = goal_tiles - current_tiles;
|
|
|
|
/* Tropic grows from water and mountains into the desert. This is a
|
|
* great visual, but it also means we* need to take into account how
|
|
* much less desert tiles are being created if we are on this
|
|
* height-level. We estimate this based on how many neighbouring
|
|
* tiles are below us for a given length, assuming that is where
|
|
* tropic is growing from.
|
|
*/
|
|
if (edge_multiplier != 0 && h > 1) {
|
|
/* From water tropic tiles grow for a few tiles land inward. */
|
|
current_score -= edge_histogram[1] * edge_multiplier;
|
|
/* Tropic tiles grow into the desert for a few tiles. */
|
|
current_score -= edge_histogram[h] * edge_multiplier;
|
|
}
|
|
|
|
if (std::abs(current_score) < std::abs(best_score)) {
|
|
best_score = current_score;
|
|
best_h = h;
|
|
}
|
|
|
|
/* Always scan all height-levels, as h == 1 might give a better
|
|
* score than any before. This is true for example with 0% desert
|
|
* coverage. */
|
|
}
|
|
|
|
return best_h;
|
|
}
|
|
|
|
/**
|
|
* Calculate the line from which snow begins.
|
|
*/
|
|
static void CalculateSnowLine()
|
|
{
|
|
/* We do not have snow sprites on coastal tiles, so never allow "1" as height. */
|
|
_settings_game.game_creation.snow_line_height = std::max(CalculateCoverageLine(_settings_game.game_creation.snow_coverage, 0), 2u);
|
|
}
|
|
|
|
/**
|
|
* Calculate the line (in height) between desert and tropic.
|
|
* @return The height of the line between desert and tropic.
|
|
*/
|
|
static uint8_t CalculateDesertLine()
|
|
{
|
|
/* CalculateCoverageLine() runs from top to bottom, so we need to invert the coverage. */
|
|
return CalculateCoverageLine(100 - _settings_game.game_creation.desert_coverage, 4);
|
|
}
|
|
|
|
bool GenerateLandscape(uint8_t mode)
|
|
{
|
|
/** Number of steps of landscape generation */
|
|
enum GenLandscapeSteps {
|
|
GLS_HEIGHTMAP = 3, ///< Loading a heightmap
|
|
GLS_TERRAGENESIS = 5, ///< Terragenesis generator
|
|
GLS_ORIGINAL = 2, ///< Original generator
|
|
GLS_TROPIC = 12, ///< Extra steps needed for tropic landscape
|
|
GLS_OTHER = 0, ///< Extra steps for other landscapes
|
|
};
|
|
uint steps = (_settings_game.game_creation.landscape == LT_TROPIC) ? GLS_TROPIC : GLS_OTHER;
|
|
|
|
if (mode == GWM_HEIGHTMAP) {
|
|
SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_HEIGHTMAP);
|
|
if (!LoadHeightmap(_file_to_saveload.detail_ftype, _file_to_saveload.name.c_str())) {
|
|
return false;
|
|
}
|
|
IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
|
|
} else if (_settings_game.game_creation.land_generator == LG_TERRAGENESIS) {
|
|
SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_TERRAGENESIS);
|
|
GenerateTerrainPerlin();
|
|
} else {
|
|
SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_ORIGINAL);
|
|
if (_settings_game.construction.freeform_edges) {
|
|
for (uint x = 0; x < Map::SizeX(); x++) MakeVoid(TileXY(x, 0));
|
|
for (uint y = 0; y < Map::SizeY(); y++) MakeVoid(TileXY(0, y));
|
|
}
|
|
switch (_settings_game.game_creation.landscape) {
|
|
case LT_ARCTIC: {
|
|
uint32_t r = Random();
|
|
|
|
for (uint i = Map::ScaleBySize(GB(r, 0, 7) + 950); i != 0; --i) {
|
|
GenerateTerrain(2, 0);
|
|
}
|
|
|
|
uint flag = GB(r, 7, 2) | 4;
|
|
for (uint i = Map::ScaleBySize(GB(r, 9, 7) + 450); i != 0; --i) {
|
|
GenerateTerrain(4, flag);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case LT_TROPIC: {
|
|
uint32_t r = Random();
|
|
|
|
for (uint i = Map::ScaleBySize(GB(r, 0, 7) + 170); i != 0; --i) {
|
|
GenerateTerrain(0, 0);
|
|
}
|
|
|
|
uint flag = GB(r, 7, 2) | 4;
|
|
for (uint i = Map::ScaleBySize(GB(r, 9, 8) + 1700); i != 0; --i) {
|
|
GenerateTerrain(0, flag);
|
|
}
|
|
|
|
flag ^= 2;
|
|
|
|
for (uint i = Map::ScaleBySize(GB(r, 17, 7) + 410); i != 0; --i) {
|
|
GenerateTerrain(3, flag);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
uint32_t r = Random();
|
|
|
|
assert(_settings_game.difficulty.quantity_sea_lakes != CUSTOM_SEA_LEVEL_NUMBER_DIFFICULTY);
|
|
uint i = Map::ScaleBySize(GB(r, 0, 7) + (3 - _settings_game.difficulty.quantity_sea_lakes) * 256 + 100);
|
|
for (; i != 0; --i) {
|
|
/* Make sure we do not overflow. */
|
|
GenerateTerrain(Clamp(_settings_game.difficulty.terrain_type, 0, 3), 0);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Do not call IncreaseGeneratingWorldProgress() before FixSlopes(),
|
|
* it allows screen redraw. Drawing of broken slopes crashes the game */
|
|
FixSlopes();
|
|
MarkWholeScreenDirty();
|
|
IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
|
|
|
|
ConvertGroundTilesIntoWaterTiles();
|
|
MarkWholeScreenDirty();
|
|
IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
|
|
|
|
switch (_settings_game.game_creation.landscape) {
|
|
case LT_ARCTIC:
|
|
CalculateSnowLine();
|
|
break;
|
|
|
|
case LT_TROPIC: {
|
|
uint desert_tropic_line = CalculateDesertLine();
|
|
CreateDesertOrRainForest(desert_tropic_line);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
CreateRivers();
|
|
return true;
|
|
}
|
|
|
|
void OnTick_Town();
|
|
void OnTick_Trees();
|
|
void OnTick_Station();
|
|
void OnTick_Industry();
|
|
|
|
void OnTick_Companies();
|
|
void OnTick_LinkGraph();
|
|
|
|
void CallLandscapeTick()
|
|
{
|
|
{
|
|
PerformanceAccumulator framerate(PFE_GL_LANDSCAPE);
|
|
|
|
OnTick_Town();
|
|
OnTick_Trees();
|
|
OnTick_Station();
|
|
OnTick_Industry();
|
|
}
|
|
|
|
OnTick_Companies();
|
|
OnTick_LinkGraph();
|
|
}
|