OpenTTD-patches/src/misc/blob.hpp

408 lines
11 KiB
C++

/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file blob.hpp Support for storing random binary data. */
#ifndef BLOB_HPP
#define BLOB_HPP
#include "../core/alloc_func.hpp"
/**
* Base class for simple binary blobs.
* Item is byte.
* The word 'simple' means:
* - no configurable allocator type (always made from heap)
* - no smart deallocation - deallocation must be called from the same
* module (DLL) where the blob was allocated
* - no configurable allocation policy (how big blocks should be allocated)
* - no extra ownership policy (i.e. 'copy on write') when blob is copied
* - no thread synchronization at all
*
* Internal member layout:
* 1. The only class member is pointer to the first item (see union).
* 2. Allocated block contains the blob header (see BlobHeader) followed by the raw byte data.
* Always, when it allocates memory the allocated size is:
* sizeof(BlobHeader) + <data capacity>
* 3. Two 'virtual' members (items and capacity) are stored in the BlobHeader at beginning
* of the allocated block.
* 4. The pointer of the union pobsize_ts behind the header (to the first data byte).
* When memory block is allocated, the sizeof(BlobHeader) it added to it.
* 5. Benefits of this layout:
* - items are accessed in the simplest possible way - just dereferencing the pointer,
* which is good for performance (assuming that data are accessed most often).
* - sizeof(blob) is the same as the size of any other pointer
* 6. Drawbacks of this layout:
* - the fact that a pointer to the allocated block is adjusted by sizeof(BlobHeader) before
* it is stored can lead to several confusions:
* - it is not a common pattern so the implementation code is bit harder to read.
* - valgrind may generate a warning that the allocated block is lost (not accessible).
*/
class ByteBlob {
protected:
/** header of the allocated memory block */
struct BlobHeader {
size_t items; ///< actual blob size in bytes
size_t capacity; ///< maximum (allocated) size in bytes
};
/** type used as class member */
union {
byte *data; ///< ptr to the first byte of data
BlobHeader *header; ///< ptr just after the BlobHeader holding items and capacity
};
private:
/**
* Just to silence an unsilencable GCC 4.4+ warning
* Note: This cannot be 'const' as we do a lot of 'hdrEmpty[0]->items += 0;' and 'hdrEmpty[0]->capacity += 0;'
* after const_casting.
*/
static BlobHeader hdrEmpty[];
public:
static const size_t tail_reserve = 4; ///< four extra bytes will be always allocated and zeroed at the end
static const size_t header_size = sizeof(BlobHeader);
/** default constructor - initializes empty blob */
inline ByteBlob() { InitEmpty(); }
/** copy constructor */
inline ByteBlob(const ByteBlob &src)
{
InitEmpty();
AppendRaw(src);
}
/** move constructor - take ownership of blob data */
inline ByteBlob(BlobHeader * const & src)
{
assert(src != NULL);
header = src;
*const_cast<BlobHeader**>(&src) = NULL;
}
/** destructor */
inline ~ByteBlob()
{
Free();
}
protected:
/** all allocation should happen here */
static inline BlobHeader *RawAlloc(size_t num_bytes)
{
return (BlobHeader*)MallocT<byte>(num_bytes);
}
/**
* Return header pointer to the static BlobHeader with
* both items and capacity containing zero
*/
static inline BlobHeader *Zero()
{
return const_cast<BlobHeader *>(&ByteBlob::hdrEmpty[1]);
}
/** simple allocation policy - can be optimized later */
static inline size_t AllocPolicy(size_t min_alloc)
{
if (min_alloc < (1 << 9)) {
if (min_alloc < (1 << 5)) return (1 << 5);
return (min_alloc < (1 << 7)) ? (1 << 7) : (1 << 9);
}
if (min_alloc < (1 << 15)) {
if (min_alloc < (1 << 11)) return (1 << 11);
return (min_alloc < (1 << 13)) ? (1 << 13) : (1 << 15);
}
if (min_alloc < (1 << 20)) {
if (min_alloc < (1 << 17)) return (1 << 17);
return (min_alloc < (1 << 19)) ? (1 << 19) : (1 << 20);
}
min_alloc = (min_alloc | ((1 << 20) - 1)) + 1;
return min_alloc;
}
/** all deallocations should happen here */
static inline void RawFree(BlobHeader *p)
{
/* Just to silence an unsilencable GCC 4.4+ warning. */
assert(p != ByteBlob::hdrEmpty);
/* In case GCC warns about the following, see GCC's PR38509 why it is bogus. */
free(p);
}
/** initialize the empty blob */
inline void InitEmpty()
{
header = Zero();
}
/** initialize blob by attaching it to the given header followed by data */
inline void Init(BlobHeader *src)
{
header = &src[1];
}
/** blob header accessor - use it rather than using the pointer arithmetics directly - non-const version */
inline BlobHeader& Hdr()
{
return *(header - 1);
}
/** blob header accessor - use it rather than using the pointer arithmetics directly - const version */
inline const BlobHeader& Hdr() const
{
return *(header - 1);
}
/** return reference to the actual blob size - used when the size needs to be modified */
inline size_t& LengthRef()
{
return Hdr().items;
}
public:
/** return true if blob doesn't contain valid data */
inline bool IsEmpty() const
{
return Length() == 0;
}
/** return the number of valid data bytes in the blob */
inline size_t Length() const
{
return Hdr().items;
}
/** return the current blob capacity in bytes */
inline size_t Capacity() const
{
return Hdr().capacity;
}
/** return pointer to the first byte of data - non-const version */
inline byte *Begin()
{
return data;
}
/** return pointer to the first byte of data - const version */
inline const byte *Begin() const
{
return data;
}
/** invalidate blob's data - doesn't free buffer */
inline void Clear()
{
LengthRef() = 0;
}
/** free the blob's memory */
inline void Free()
{
if (Capacity() > 0) {
RawFree(&Hdr());
InitEmpty();
}
}
/** append new bytes at the end of existing data bytes - reallocates if necessary */
inline void AppendRaw(const void *p, size_t num_bytes)
{
assert(p != NULL);
if (num_bytes > 0) {
memcpy(Append(num_bytes), p, num_bytes);
}
}
/** append bytes from given source blob to the end of existing data bytes - reallocates if necessary */
inline void AppendRaw(const ByteBlob& src)
{
if (!src.IsEmpty()) {
memcpy(Append(src.Length()), src.Begin(), src.Length());
}
}
/**
* Reallocate if there is no free space for num_bytes bytes.
* @return pointer to the new data to be added
*/
inline byte *Prepare(size_t num_bytes)
{
size_t new_size = Length() + num_bytes;
if (new_size > Capacity()) SmartAlloc(new_size);
return data + Length();
}
/**
* Increase Length() by num_bytes.
* @return pointer to the new data added
*/
inline byte *Append(size_t num_bytes)
{
byte *pNewData = Prepare(num_bytes);
LengthRef() += num_bytes;
return pNewData;
}
/** reallocate blob data if needed */
void SmartAlloc(size_t new_size)
{
if (Capacity() >= new_size) return;
/* calculate minimum block size we need to allocate
* and ask allocation policy for some reasonable block size */
assert(new_size < SIZE_MAX - header_size - tail_reserve);
new_size = AllocPolicy(header_size + new_size + tail_reserve);
/* allocate new block and setup header */
BlobHeader *tmp = RawAlloc(new_size);
tmp->items = Length();
tmp->capacity = new_size - (header_size + tail_reserve);
/* copy existing data */
if (tmp->items != 0) {
memcpy(tmp + 1, data, tmp->items);
}
/* replace our block with new one */
if (Capacity() > 0) {
RawFree(&Hdr());
}
Init(tmp);
}
/** fixing the four bytes at the end of blob data - useful when blob is used to hold string */
inline void FixTail() const
{
if (Capacity() > 0) {
byte *p = &data[Length()];
for (uint i = 0; i < tail_reserve; i++) {
p[i] = 0;
}
}
}
};
/**
* Blob - simple dynamic T array. T (template argument) is a placeholder for any type.
* T can be any integral type, pointer, or structure. Using Blob instead of just plain C array
* simplifies the resource management in several ways:
* 1. When adding new item(s) it automatically grows capacity if needed.
* 2. When variable of type Blob comes out of scope it automatically frees the data buffer.
* 3. Takes care about the actual data size (number of used items).
* 4. Dynamically constructs only used items (as opposite of static array which constructs all items)
*/
template <typename T>
class CBlobT : public ByteBlob {
/* make template arguments public: */
public:
typedef ByteBlob base;
static const size_t type_size = sizeof(T);
struct OnTransfer {
typename base::BlobHeader *header;
OnTransfer(const OnTransfer& src) : header(src.header) {assert(src.header != NULL); *const_cast<typename base::BlobHeader**>(&src.header) = NULL;}
OnTransfer(CBlobT& src) : header(src.header) {src.InitEmpty();}
~OnTransfer() {assert(header == NULL);}
};
/** Default constructor - makes new Blob ready to accept any data */
inline CBlobT()
: base()
{}
/** Take ownership constructor */
inline CBlobT(const OnTransfer& ot)
: base(ot.header)
{}
/** Destructor - ensures that allocated memory (if any) is freed */
inline ~CBlobT()
{
Free();
}
/** Check the validity of item index (only in debug mode) */
inline void CheckIdx(size_t index) const
{
assert(index < Size());
}
/** Return pointer to the first data item - non-const version */
inline T *Data()
{
return (T*)base::Begin();
}
/** Return pointer to the first data item - const version */
inline const T *Data() const
{
return (const T*)base::Begin();
}
/** Return pointer to the index-th data item - non-const version */
inline T *Data(size_t index)
{
CheckIdx(index);
return (Data() + index);
}
/** Return pointer to the index-th data item - const version */
inline const T *Data(size_t index) const
{
CheckIdx(index);
return (Data() + index);
}
/** Return number of items in the Blob */
inline size_t Size() const
{
return (base::Length() / type_size);
}
/** Return total number of items that can fit in the Blob without buffer reallocation */
inline size_t MaxSize() const
{
return (base::Capacity() / type_size);
}
/** Return number of additional items that can fit in the Blob without buffer reallocation */
inline size_t GetReserve() const
{
return ((base::Capacity() - base::Length()) / type_size);
}
/** Grow number of data items in Blob by given number - doesn't construct items */
inline T *GrowSizeNC(size_t num_items)
{
return (T*)base::Append(num_items * type_size);
}
/**
* Ensures that given number of items can be added to the end of Blob. Returns pointer to the
* first free (unused) item
*/
inline T *MakeFreeSpace(size_t num_items)
{
return (T*)base::Prepare(num_items * type_size);
}
inline OnTransfer Transfer()
{
return OnTransfer(*this);
}
};
#endif /* BLOB_HPP */