OpenTTD-patches/src/npf.h

134 lines
5.6 KiB
C

/* $Id$ */
/** @file npf.h */
#ifndef NPF_H
#define NPF_H
#include "aystar.h"
#include "station_type.h"
#include "rail_type.h"
#include "player_type.h"
#include "vehicle_type.h"
#include "tile_type.h"
#include "track_type.h"
#include "core/bitmath_func.hpp"
/* mowing grass */
enum {
NPF_HASH_BITS = 12, ///< The size of the hash used in pathfinding. Just changing this value should be sufficient to change the hash size. Should be an even value.
/* Do no change below values */
NPF_HASH_SIZE = 1 << NPF_HASH_BITS,
NPF_HASH_HALFBITS = NPF_HASH_BITS / 2,
NPF_HASH_HALFMASK = (1 << NPF_HASH_HALFBITS) - 1
};
/* For new pathfinding. Define here so it is globally available without having
* to include npf.h */
enum {
NPF_TILE_LENGTH = 100
};
enum {
/** This penalty is the equivalent of "inifite", which means that paths that
* get this penalty will be chosen, but only if there is no other route
* without it. Be careful with not applying this penalty to often, or the
* total path cost might overflow..
* For now, this is just a Very Big Penalty, we might actually implement
* this in a nicer way :-)
*/
NPF_INFINITE_PENALTY = 1000 * NPF_TILE_LENGTH
};
/* Meant to be stored in AyStar.targetdata */
struct NPFFindStationOrTileData {
TileIndex dest_coords; ///< An indication of where the station is, for heuristic purposes, or the target tile
StationID station_index; ///< station index we're heading for, or INVALID_STATION when we're heading for a tile
};
/* Indices into AyStar.userdata[] */
enum {
NPF_TYPE = 0, ///< Contains a TransportTypes value
NPF_SUB_TYPE, ///< Contains the sub transport type
NPF_OWNER, ///< Contains an Owner value
NPF_RAILTYPES, ///< Contains a bitmask the compatible RailTypes of the engine when NPF_TYPE == TRANSPORT_RAIL. Unused otherwise.
};
/* Indices into AyStarNode.userdata[] */
enum {
NPF_TRACKDIR_CHOICE = 0, ///< The trackdir chosen to get here
NPF_NODE_FLAGS,
};
/* Flags for AyStarNode.userdata[NPF_NODE_FLAGS]. Use NPFGetBit() and NPFGetBit() to use them. */
enum NPFNodeFlag {
NPF_FLAG_SEEN_SIGNAL, ///< Used to mark that a signal was seen on the way, for rail only
NPF_FLAG_REVERSE, ///< Used to mark that this node was reached from the second start node, if applicable
NPF_FLAG_LAST_SIGNAL_RED, ///< Used to mark that the last signal on this path was red
NPF_FLAG_IGNORE_START_TILE, ///< Used to mark that the start tile is invalid, and searching should start from the second tile on
};
/* Meant to be stored in AyStar.userpath */
struct NPFFoundTargetData {
uint best_bird_dist; ///< The best heuristic found. Is 0 if the target was found
uint best_path_dist; ///< The shortest path. Is (uint)-1 if no path is found
Trackdir best_trackdir; ///< The trackdir that leads to the shortest path/closest birds dist
AyStarNode node; ///< The node within the target the search led us to
};
/* These functions below are _not_ re-entrant, in favor of speed! */
/* Will search from the given tile and direction, for a route to the given
* station for the given transport type. See the declaration of
* NPFFoundTargetData above for the meaning of the result. */
NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, Trackdir trackdir, bool ignore_start_tile, NPFFindStationOrTileData* target, TransportType type, uint sub_type, Owner owner, RailTypes railtypes);
/* Will search as above, but with two start nodes, the second being the
* reverse. Look at the NPF_FLAG_REVERSE flag in the result node to see which
* direction was taken (NPFGetBit(result.node, NPF_FLAG_REVERSE)) */
NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, Trackdir trackdir1, bool ignore_start_tile1, TileIndex tile2, Trackdir trackdir2, bool ignore_start_tile2, NPFFindStationOrTileData* target, TransportType type, uint sub_type, Owner owner, RailTypes railtypes);
/* Will search a route to the closest depot. */
/* Search using breadth first. Good for little track choice and inaccurate
* heuristic, such as railway/road.*/
NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, Trackdir trackdir, bool ignore_start_tile, TransportType type, uint sub_type, Owner owner, RailTypes railtypes);
/* Same as above but with two start nodes, the second being the reverse. Call
* NPFGetBit(result.node, NPF_FLAG_REVERSE) to see from which node the path
* orginated. All pathfs from the second node will have the given
* reverse_penalty applied (NPF_TILE_LENGTH is the equivalent of one full
* tile).
*/
NPFFoundTargetData NPFRouteToDepotBreadthFirstTwoWay(TileIndex tile1, Trackdir trackdir1, bool ignore_start_tile1, TileIndex tile2, Trackdir trackdir2, bool ignore_start_tile2, TransportType type, uint sub_type, Owner owner, RailTypes railtypes, uint reverse_penalty);
/* Search by trying each depot in order of Manhattan Distance. Good for lots
* of choices and accurate heuristics, such as water. */
NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, Trackdir trackdir, bool ignore_start_tile, TransportType type, uint sub_type, Owner owner, RailTypes railtypes);
void NPFFillWithOrderData(NPFFindStationOrTileData* fstd, Vehicle* v);
/*
* Functions to manipulate the various NPF related flags on an AyStarNode.
*/
/**
* Returns the current value of the given flag on the given AyStarNode.
*/
static inline bool NPFGetFlag(const AyStarNode* node, NPFNodeFlag flag)
{
return HasBit(node->user_data[NPF_NODE_FLAGS], flag);
}
/**
* Sets the given flag on the given AyStarNode to the given value.
*/
static inline void NPFSetFlag(AyStarNode* node, NPFNodeFlag flag, bool value)
{
if (value)
SetBit(node->user_data[NPF_NODE_FLAGS], flag);
else
ClrBit(node->user_data[NPF_NODE_FLAGS], flag);
}
#endif /* NPF_H */