You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenTTD-patches/src/station_base.h

1049 lines
32 KiB
C++

/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file station_base.h Base classes/functions for stations. */
#ifndef STATION_BASE_H
#define STATION_BASE_H
#include "core/random_func.hpp"
#include "base_station_base.h"
#include "newgrf_airport.h"
#include "cargopacket.h"
#include "industry_type.h"
#include "linkgraph/linkgraph_type.h"
#include "newgrf_storage.h"
#include "3rdparty/cpp-btree/btree_map.h"
#include "3rdparty/cpp-btree/btree_set.h"
#include "bitmap_type.h"
#include "core/alloc_type.hpp"
#include "core/endian_type.hpp"
#include "strings_type.h"
#include <map>
#include <vector>
#include <array>
#include <iterator>
#include <functional>
#include <algorithm>
static const uint8_t INITIAL_STATION_RATING = 175;
static const uint8_t MAX_STATION_RATING = 255;
static const uint MAX_EXTRA_STATION_NAMES = 1024;
/** Extra station name string flags. */
enum ExtraStationNameInfoFlags {
/* Bits 0 - 5 used for StationNaming enum */
ESNIF_CENTRAL = 8,
ESNIF_NOT_CENTRAL = 9,
ESNIF_NEAR_WATER = 10,
ESNIF_NOT_NEAR_WATER = 11,
};
/** Extra station name string */
struct ExtraStationNameInfo {
StringID str;
uint16_t flags;
};
extern std::array<ExtraStationNameInfo, MAX_EXTRA_STATION_NAMES> _extra_station_names;
extern uint _extra_station_names_used;
extern uint8_t _extra_station_names_probability;
class FlowStatMap;
extern const StationCargoList _empty_cargo_list;
extern const FlowStatMap _empty_flows;
/**
* Flow statistics telling how much flow should be sent along a link. This is
* done by creating "flow shares" and using std::map's upper_bound() method to
* look them up with a random number. A flow share is the difference between a
* key in a map and the previous key. So one key in the map doesn't actually
* mean anything by itself.
*/
class FlowStat {
friend FlowStatMap;
public:
struct ShareEntry {
#if OTTD_ALIGNMENT == 0
unaligned_uint32 first;
#else
uint32_t first;
#endif
StationID second;
};
#if OTTD_ALIGNMENT == 0 && (defined(__GNUC__) || defined(__clang__))
static_assert(sizeof(ShareEntry) == 6, "");
#endif
friend bool operator<(const ShareEntry &a, const ShareEntry &b) noexcept
{
return a.first < b.first;
}
friend bool operator<(uint a, const ShareEntry &b) noexcept
{
return a < b.first;
}
typedef ShareEntry* iterator;
typedef const ShareEntry* const_iterator;
/**
* Invalid constructor. This can't be called as a FlowStat must not be
* empty. However, the constructor must be defined and reachable for
* FlowStat to be used in a std::map.
*/
inline FlowStat() {NOT_REACHED();}
/**
* Create a FlowStat with an initial entry.
* @param origin Origin station for this flow.
* @param via Station the initial entry refers to.
* @param flow Amount of flow for the initial entry.
* @param restricted If the flow to be added is restricted.
*/
inline FlowStat(StationID origin, StationID via, uint flow, bool restricted = false)
{
assert(flow > 0);
this->storage.inline_shares[0].first = flow;
this->storage.inline_shares[0].second = via;
this->unrestricted = restricted ? 0 : flow;
this->count = 1;
this->origin = origin;
this->flags = 0;
}
private:
inline bool inline_mode() const
{
return this->count <= 2;
}
inline const ShareEntry *data() const
{
return this->inline_mode() ? this->storage.inline_shares : this->storage.ptr_shares.buffer;
}
inline ShareEntry *data()
{
return const_cast<ShareEntry *>(const_cast<const FlowStat*>(this)->data());
}
inline void clear()
{
if (!inline_mode()) {
free(this->storage.ptr_shares.buffer);
}
this->count = 0;
this->flags = 0;
}
iterator erase_item(iterator iter, uint flow_reduction);
inline void CopyCommon(const FlowStat &other)
{
this->count = other.count;
if (!other.inline_mode()) {
this->storage.ptr_shares.elem_capacity = other.storage.ptr_shares.elem_capacity;
this->storage.ptr_shares.buffer = MallocT<ShareEntry>(other.storage.ptr_shares.elem_capacity);
}
MemCpyT(this->data(), other.data(), this->count);
this->unrestricted = other.unrestricted;
this->origin = other.origin;
this->flags = other.flags;
}
public:
inline FlowStat(const FlowStat &other)
{
this->CopyCommon(other);
}
inline FlowStat(FlowStat &&other) noexcept
{
this->count = 0;
this->SwapShares(other);
this->origin = other.origin;
}
inline ~FlowStat()
{
this->clear();
}
inline FlowStat &operator=(const FlowStat &other)
{
this->clear();
this->CopyCommon(other);
return *this;
}
inline FlowStat &operator=(FlowStat &&other) noexcept
{
this->SwapShares(other);
this->origin = other.origin;
return *this;
}
inline size_t size() const { return this->count; }
inline bool empty() const { return this->count == 0; }
inline iterator begin() { return this->data(); }
inline const_iterator begin() const { return this->data(); }
inline iterator end() { return this->data() + this->count; }
inline const_iterator end() const { return this->data() + this->count; }
inline iterator upper_bound(uint32_t key) { return std::upper_bound(this->begin(), this->end(), key); }
inline const_iterator upper_bound(uint32_t key) const { return std::upper_bound(this->begin(), this->end(), key); }
/**
* Add some flow to the end of the shares map. Only do that if you know
* that the station isn't in the map yet. Anything else may lead to
* inconsistencies.
* @param st Remote station.
* @param flow Amount of flow to be added.
* @param restricted If the flow to be added is restricted.
*/
inline void AppendShare(StationID st, uint flow, bool restricted = false)
{
assert(flow > 0);
uint32_t key = this->GetLastKey() + flow;
if (unlikely(this->count >= 2)) {
if (this->count == 2) {
// convert inline buffer to ptr
ShareEntry *ptr = MallocT<ShareEntry>(4);
ptr[0] = this->storage.inline_shares[0];
ptr[1] = this->storage.inline_shares[1];
this->storage.ptr_shares.buffer = ptr;
this->storage.ptr_shares.elem_capacity = 4;
} else if (this->count == this->storage.ptr_shares.elem_capacity) {
// grow buffer
uint16_t new_size = this->storage.ptr_shares.elem_capacity * 2;
this->storage.ptr_shares.buffer = ReallocT<ShareEntry>(this->storage.ptr_shares.buffer, new_size);
this->storage.ptr_shares.elem_capacity = new_size;
}
this->storage.ptr_shares.buffer[this->count] = { key, st };
} else {
this->storage.inline_shares[this->count] = { key, st };
}
this->count++;
if (!restricted) this->unrestricted += flow;
}
uint GetShare(StationID st) const;
void ChangeShare(StationID st, int flow);
void RestrictShare(StationID st);
void ReleaseShare(StationID st);
void ScaleToMonthly(uint runtime);
/**
* Return total amount of unrestricted shares.
* @return Amount of unrestricted shares.
*/
inline uint GetUnrestricted() const { return this->unrestricted; }
/**
* Swap the shares maps, and thus the content of this FlowStat with the
* other one.
* @param other FlowStat to swap with.
*/
inline void SwapShares(FlowStat &other)
{
std::swap(this->storage, other.storage);
std::swap(this->unrestricted, other.unrestricted);
std::swap(this->count, other.count);
std::swap(this->flags, other.flags);
}
/**
* Get a station a package can be routed to. This done by drawing a
* random number between 0 and sum_shares and then looking that up in
* the map with lower_bound. So each share gets selected with a
* probability dependent on its flow. Do include restricted flows here.
* @param is_restricted Output if a restricted flow was chosen.
* @return A station ID from the shares map.
*/
inline StationID GetViaWithRestricted(bool &is_restricted) const
{
assert(!this->empty());
uint rand = RandomRange(this->GetLastKey());
is_restricted = rand >= this->unrestricted;
return this->upper_bound(rand)->second;
}
/**
* Get a station a package can be routed to. This done by drawing a
* random number between 0 and sum_shares and then looking that up in
* the map with lower_bound. So each share gets selected with a
* probability dependent on its flow. Don't include restricted flows.
* @return A station ID from the shares map.
*/
inline StationID GetVia() const
{
assert(!this->empty());
return this->unrestricted > 0 ?
this->upper_bound(RandomRange(this->unrestricted))->second :
INVALID_STATION;
}
StationID GetVia(StationID excluded, StationID excluded2 = INVALID_STATION) const;
/**
* Mark this flow stat as invalid, such that it is not included in link statistics.
* @return True if the flow stat should be deleted.
*/
inline bool Invalidate()
{
if ((this->flags & 0x1F) == 0x1F) return true;
this->flags++;
return false;
}
inline StationID GetOrigin() const
{
return this->origin;
}
inline bool IsInvalid() const
{
return (this->flags & 0x1F) != 0;
}
/* for save/load use only */
inline uint16_t GetRawFlags() const
{
return this->flags;
}
/* for save/load use only */
inline void SetRawFlags(uint16_t flags)
{
this->flags = flags;;
}
private:
uint32_t GetLastKey() const
{
return this->data()[this->count - 1].first;
}
struct ptr_buffer {
ShareEntry *buffer;
uint16_t elem_capacity;
}
#if OTTD_ALIGNMENT == 0 && (defined(__GNUC__) || defined(__clang__))
__attribute__((packed, aligned(4)))
#endif
;
union storage_union {
ShareEntry inline_shares[2]; ///< Small buffer optimisation: size = 1 is ~90%, size = 2 is ~9%, size >= 3 is ~1%
ptr_buffer ptr_shares;
// Actual construction/destruction done by class FlowStat
storage_union() {}
~storage_union() {}
};
storage_union storage; ///< Shares of flow to be sent via specified station (or consumed locally).
uint unrestricted; ///< Limit for unrestricted shares.
uint16_t count;
StationID origin;
uint16_t flags;
};
static_assert(std::is_nothrow_move_constructible<FlowStat>::value, "FlowStat must be nothrow move constructible");
#if OTTD_ALIGNMENT == 0 && (defined(__GNUC__) || defined(__clang__))
static_assert(sizeof(FlowStat) == 24, "");
#endif
template<typename cv_value, typename cv_container, typename cv_index_iter>
class FlowStatMapIterator
{
friend FlowStatMap;
friend FlowStatMapIterator<FlowStat, FlowStatMap, btree::btree_map<StationID, uint16_t>::iterator>;
friend FlowStatMapIterator<const FlowStat, const FlowStatMap, btree::btree_map<StationID, uint16_t>::const_iterator>;
public:
typedef FlowStat value_type;
typedef cv_value& reference;
typedef cv_value* pointer;
typedef ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
FlowStatMapIterator(cv_container *fsm, cv_index_iter current) :
fsm(fsm), current(current) {}
FlowStatMapIterator(const FlowStatMapIterator<FlowStat, FlowStatMap, btree::btree_map<StationID, uint16_t>::iterator> &other) :
fsm(other.fsm), current(other.current) {}
FlowStatMapIterator &operator=(const FlowStatMapIterator &) = default;
reference operator*() const { return this->fsm->flows_storage[this->current->second]; }
pointer operator->() const { return &(this->fsm->flows_storage[this->current->second]); }
FlowStatMapIterator& operator++()
{
++this->current;
return *this;
}
bool operator==(const FlowStatMapIterator& rhs) const { return this->current == rhs.current; }
bool operator!=(const FlowStatMapIterator& rhs) const { return !(operator==(rhs)); }
private:
cv_container *fsm;
cv_index_iter current;
};
/** Flow descriptions by origin stations. */
class FlowStatMap {
std::vector<FlowStat> flows_storage;
btree::btree_map<StationID, uint16_t> flows_index;
public:
using iterator = FlowStatMapIterator<FlowStat, FlowStatMap, btree::btree_map<StationID, uint16_t>::iterator>;
using const_iterator = FlowStatMapIterator<const FlowStat, const FlowStatMap, btree::btree_map<StationID, uint16_t>::const_iterator>;
friend iterator;
friend const_iterator;
uint GetFlow() const;
uint GetFlowVia(StationID via) const;
uint GetFlowFrom(StationID from) const;
uint GetFlowFromVia(StationID from, StationID via) const;
void AddFlow(StationID origin, StationID via, uint amount);
void PassOnFlow(StationID origin, StationID via, uint amount);
StationIDStack DeleteFlows(StationID via);
void RestrictFlows(StationID via);
void FinalizeLocalConsumption(StationID self);
private:
btree::btree_map<StationID, uint16_t>::iterator erase_priv(btree::btree_map<StationID, uint16_t>::iterator iter)
{
uint16_t index = iter->second;
iter = this->flows_index.erase(iter);
if (index != this->flows_storage.size() - 1) {
this->flows_storage[index] = std::move(this->flows_storage.back());
this->flows_index[this->flows_storage[index].GetOrigin()] = index;
}
this->flows_storage.pop_back();
return iter;
}
public:
iterator begin() { return iterator(this, this->flows_index.begin()); }
const_iterator begin() const { return const_iterator(this, this->flows_index.begin()); }
iterator end() { return iterator(this, this->flows_index.end()); }
const_iterator end() const { return const_iterator(this, this->flows_index.end()); }
iterator find(StationID from)
{
return iterator(this, this->flows_index.find(from));
}
const_iterator find(StationID from) const
{
return const_iterator(this, this->flows_index.find(from));
}
bool empty() const
{
return this->flows_storage.empty();
}
size_t size() const
{
return this->flows_storage.size();
}
void erase(StationID st)
{
auto iter = this->flows_index.find(st);
if (iter != this->flows_index.end()) {
this->erase_priv(iter);
}
}
iterator erase(iterator iter)
{
return iterator(this, this->erase_priv(iter.current));
}
std::pair<iterator, bool> insert(FlowStat flow_stat)
{
StationID st = flow_stat.GetOrigin();
auto res = this->flows_index.insert(std::pair<StationID, uint16_t>(st, (uint16_t)this->flows_storage.size()));
if (res.second) {
this->flows_storage.push_back(std::move(flow_stat));
}
return std::make_pair(iterator(this, res.first), res.second);
}
iterator insert(iterator hint, FlowStat flow_stat)
{
auto res = this->flows_index.insert(hint.current, std::pair<StationID, uint16_t>(flow_stat.GetOrigin(), (uint16_t)this->flows_storage.size()));
if (res->second == this->flows_storage.size()) {
this->flows_storage.push_back(std::move(flow_stat));
}
return iterator(this, res);
}
StationID FirstStationID() const
{
return this->flows_index.begin()->first;
}
void reserve(size_t size)
{
this->flows_storage.reserve(size);
}
void SortStorage();
std::span<const FlowStat> IterateUnordered() const
{
return std::span<const FlowStat>(this->flows_storage.data(), this->flows_storage.size());
}
};
struct GoodsEntryData : ZeroedMemoryAllocator {
StationCargoList cargo; ///< The cargo packets of cargo waiting in this station
FlowStatMap flows; ///< Planned flows through this station.
bool MayBeRemoved() const
{
return this->cargo.Packets()->MapSize() == 0 && this->cargo.ReservedCount() == 0 && this->flows.empty();
}
};
/**
* Stores station stats for a single cargo.
*/
struct GoodsEntry {
/** Status of this cargo for the station. */
enum GoodsEntryStatus {
/**
* Set when the station accepts the cargo currently for final deliveries.
* It is updated every STATION_ACCEPTANCE_TICKS ticks by checking surrounding tiles for acceptance >= 8/8.
*/
GES_ACCEPTANCE,
/**
* This indicates whether a cargo has a rating at the station.
* Set when cargo was ever waiting at the station.
* It is set when cargo supplied by surrounding tiles is moved to the station, or when
* arriving vehicles unload/transfer cargo without it being a final delivery.
*
* This flag is cleared after 255 * STATION_RATING_TICKS of not having seen a pickup.
*/
GES_RATING,
/**
* Set when a vehicle ever delivered cargo to the station for final delivery.
* This flag is never cleared.
*/
GES_EVER_ACCEPTED,
/**
* Set when cargo was delivered for final delivery last month.
* This flag is set to the value of GES_CURRENT_MONTH at the start of each month.
*/
GES_LAST_MONTH,
/**
* Set when cargo was delivered for final delivery this month.
* This flag is reset on the beginning of every month.
*/
GES_CURRENT_MONTH,
/**
* Set when cargo was delivered for final delivery during the current STATION_ACCEPTANCE_TICKS interval.
* This flag is reset every STATION_ACCEPTANCE_TICKS ticks.
*/
GES_ACCEPTED_BIGTICK,
/**
* Set when cargo is not permitted to be supplied by nearby industries/houses.
*/
GES_NO_CARGO_SUPPLY = 7,
};
GoodsEntry() :
status(0),
time_since_pickup(255),
last_vehicle_type(VEH_INVALID),
rating(INITIAL_STATION_RATING),
last_speed(0),
last_age(255),
amount_fract(0),
link_graph(INVALID_LINK_GRAPH),
node(INVALID_NODE),
max_waiting_cargo(0)
{}
byte status; ///< Status of this cargo, see #GoodsEntryStatus.
/**
* Number of rating-intervals (up to 255) since the last vehicle tried to load this cargo.
* The unit used is STATION_RATING_TICKS.
* This does not imply there was any cargo to load.
*/
byte time_since_pickup;
byte last_vehicle_type;
byte rating; ///< %Station rating for this cargo.
/**
* Maximum speed (up to 255) of the last vehicle that tried to load this cargo.
* This does not imply there was any cargo to load.
* The unit used is a special vehicle-specific speed unit for station ratings.
* - Trains: km-ish/h
* - RV: km-ish/h
* - Ships: 0.5 * km-ish/h
* - Aircraft: 8 * mph
*/
byte last_speed;
/**
* Age in years (up to 255) of the last vehicle that tried to load this cargo.
* This does not imply there was any cargo to load.
*/
byte last_age;
byte amount_fract; ///< Fractional part of the amount in the cargo list
std::unique_ptr<GoodsEntryData> data;
LinkGraphID link_graph; ///< Link graph this station belongs to.
NodeID node; ///< ID of node in link graph referring to this goods entry.
uint max_waiting_cargo; ///< Max cargo from this station waiting at any station.
bool IsSupplyAllowed() const
{
return !HasBit(this->status, GES_NO_CARGO_SUPPLY);
}
/**
* Reports whether a vehicle has ever tried to load the cargo at this station.
* This does not imply that there was cargo available for loading. Refer to GES_RATING for that.
* @return true if vehicle tried to load.
*/
bool HasVehicleEverTriedLoading() const { return this->last_speed != 0; }
/**
* Does this cargo have a rating at this station?
* @return true if the cargo has a rating, i.e. cargo has been moved to the station.
*/
inline bool HasRating() const
{
return HasBit(this->status, GES_RATING);
}
/**
* Get the best next hop for a cargo packet from station source.
* @param source Source of the packet.
* @return The chosen next hop or INVALID_STATION if none was found.
*/
inline StationID GetVia(StationID source) const
{
if (this->data == nullptr) return INVALID_STATION;
FlowStatMap::const_iterator flow_it(this->data->flows.find(source));
return flow_it != this->data->flows.end() ? flow_it->GetVia() : INVALID_STATION;
}
/**
* Get the best next hop for a cargo packet from station source, optionally
* excluding one or two stations.
* @param source Source of the packet.
* @param excluded If this station would be chosen choose the second best one instead.
* @param excluded2 Second station to be excluded, if != INVALID_STATION.
* @return The chosen next hop or INVALID_STATION if none was found.
*/
inline StationID GetVia(StationID source, StationID excluded, StationID excluded2 = INVALID_STATION) const
{
if (this->data == nullptr) return INVALID_STATION;
FlowStatMap::const_iterator flow_it(this->data->flows.find(source));
return flow_it != this->data->flows.end() ? flow_it->GetVia(excluded, excluded2) : INVALID_STATION;
}
GoodsEntryData &CreateData()
{
if (this->data == nullptr) this->data.reset(new GoodsEntryData());
return *this->data;
}
const GoodsEntryData &CreateData() const
{
if (this->data == nullptr) const_cast<GoodsEntry *>(this)->data.reset(new GoodsEntryData());
return *this->data;
}
inline uint CargoAvailableCount() const
{
return this->data != nullptr ? this->data->cargo.AvailableCount() : 0;
}
inline uint CargoReservedCount() const
{
return this->data != nullptr ? this->data->cargo.ReservedCount() : 0;
}
inline uint CargoTotalCount() const
{
return this->data != nullptr ? this->data->cargo.TotalCount() : 0;
}
inline uint CargoAvailableViaCount(StationID next) const
{
return this->data != nullptr ? this->data->cargo.AvailableViaCount(next) : 0;
}
const StationCargoList &ConstCargoList() const
{
return this->data != nullptr ? this->data->cargo : _empty_cargo_list;
}
const FlowStatMap &ConstFlows() const
{
return this->data != nullptr ? this->data->flows : _empty_flows;
}
};
/** All airport-related information. Only valid if tile != INVALID_TILE. */
struct Airport : public TileArea {
Airport() : TileArea(INVALID_TILE, 0, 0) {}
uint64_t flags; ///< stores which blocks on the airport are taken. was 16 bit earlier on, then 32
byte type; ///< Type of this airport, @see AirportTypes
byte layout; ///< Airport layout number.
Direction rotation; ///< How this airport is rotated.
PersistentStorage *psa; ///< Persistent storage for NewGRF airports.
/**
* Get the AirportSpec that from the airport type of this airport. If there
* is no airport (\c tile == INVALID_TILE) then return the dummy AirportSpec.
* @return The AirportSpec for this airport.
*/
const AirportSpec *GetSpec() const
{
if (this->tile == INVALID_TILE) return &AirportSpec::dummy;
return AirportSpec::Get(this->type);
}
/**
* Get the finite-state machine for this airport or the finite-state machine
* for the dummy airport in case this isn't an airport.
* @pre this->type < NEW_AIRPORT_OFFSET.
* @return The state machine for this airport.
*/
const AirportFTAClass *GetFTA() const
{
return this->GetSpec()->fsm;
}
/** Check if this airport has at least one hangar. */
inline bool HasHangar() const
{
return this->GetSpec()->nof_depots > 0;
}
/**
* Add the tileoffset to the base tile of this airport but rotate it first.
* The base tile is the northernmost tile of this airport. This function
* helps to make sure that getting the tile of a hangar works even for
* rotated airport layouts without requiring a rotated array of hangar tiles.
* @param tidc The tilediff to add to the airport tile.
* @return The tile of this airport plus the rotated offset.
*/
inline TileIndex GetRotatedTileFromOffset(TileIndexDiffC tidc) const
{
const AirportSpec *as = this->GetSpec();
switch (this->rotation) {
case DIR_N: return this->tile + ToTileIndexDiff(tidc);
case DIR_E: return this->tile + TileDiffXY(tidc.y, as->size_x - 1 - tidc.x);
case DIR_S: return this->tile + TileDiffXY(as->size_x - 1 - tidc.x, as->size_y - 1 - tidc.y);
case DIR_W: return this->tile + TileDiffXY(as->size_y - 1 - tidc.y, tidc.x);
default: NOT_REACHED();
}
}
/**
* Get the first tile of the given hangar.
* @param hangar_num The hangar to get the location of.
* @pre hangar_num < GetNumHangars().
* @return A tile with the given hangar.
*/
inline TileIndex GetHangarTile(uint hangar_num) const
{
const AirportSpec *as = this->GetSpec();
for (uint i = 0; i < as->nof_depots; i++) {
if (as->depot_table[i].hangar_num == hangar_num) {
return this->GetRotatedTileFromOffset(as->depot_table[i].ti);
}
}
NOT_REACHED();
}
/**
* Get the exit direction of the hangar at a specific tile.
* @param tile The tile to query.
* @pre IsHangarTile(tile).
* @return The exit direction of the hangar, taking airport rotation into account.
*/
inline Direction GetHangarExitDirection(TileIndex tile) const
{
const AirportSpec *as = this->GetSpec();
const HangarTileTable *htt = GetHangarDataByTile(tile);
return ChangeDir(htt->dir, DirDifference(this->rotation, as->rotation[0]));
}
/**
* Get the hangar number of the hangar at a specific tile.
* @param tile The tile to query.
* @pre IsHangarTile(tile).
* @return The hangar number of the hangar at the given tile.
*/
inline uint GetHangarNum(TileIndex tile) const
{
const HangarTileTable *htt = GetHangarDataByTile(tile);
return htt->hangar_num;
}
/** Get the number of hangars on this airport. */
inline uint GetNumHangars() const
{
uint num = 0;
uint counted = 0;
const AirportSpec *as = this->GetSpec();
for (uint i = 0; i < as->nof_depots; i++) {
if (!HasBit(counted, as->depot_table[i].hangar_num)) {
num++;
SetBit(counted, as->depot_table[i].hangar_num);
}
}
return num;
}
private:
/**
* Retrieve hangar information of a hangar at a given tile.
* @param tile %Tile containing the hangar.
* @return The requested hangar information.
* @pre The \a tile must be at a hangar tile at an airport.
*/
inline const HangarTileTable *GetHangarDataByTile(TileIndex tile) const
{
const AirportSpec *as = this->GetSpec();
for (uint i = 0; i < as->nof_depots; i++) {
if (this->GetRotatedTileFromOffset(as->depot_table[i].ti) == tile) {
return as->depot_table + i;
}
}
NOT_REACHED();
}
};
struct IndustryListEntry {
uint distance;
Industry *industry;
bool operator==(const IndustryListEntry &other) const { return this->distance == other.distance && this->industry == other.industry; }
bool operator!=(const IndustryListEntry &other) const { return !(*this == other); }
};
struct IndustryCompare {
bool operator() (const IndustryListEntry &lhs, const IndustryListEntry &rhs) const;
};
typedef btree::btree_set<IndustryListEntry, IndustryCompare> IndustryList;
/** Station data structure */
struct Station final : SpecializedStation<Station, false> {
public:
RoadStop *GetPrimaryRoadStop(RoadStopType type) const
{
return type == ROADSTOP_BUS ? bus_stops : truck_stops;
}
RoadStop *GetPrimaryRoadStop(const struct RoadVehicle *v) const;
RoadStop *bus_stops; ///< All the road stops
TileArea bus_station; ///< Tile area the bus 'station' part covers
RoadStop *truck_stops; ///< All the truck stops
TileArea truck_station; ///< Tile area the truck 'station' part covers
Airport airport; ///< Tile area the airport covers
TileArea ship_station; ///< Tile area the ship 'station' part covers
TileArea docking_station; ///< Tile area the docking tiles cover
std::vector<TileIndex> docking_tiles; ///< Tile vector the docking tiles cover
IndustryType indtype; ///< Industry type to get the name from
uint16_t extra_name_index; ///< Extra name index in use (or UINT16_MAX)
BitmapTileArea catchment_tiles; ///< NOSAVE: Set of individual tiles covered by catchment area
uint station_tiles; ///< NOSAVE: Count of station tiles owned by this station
StationHadVehicleOfType had_vehicle_of_type;
byte time_since_load;
byte time_since_unload;
std::vector<Vehicle *> loading_vehicles;
GoodsEntry goods[NUM_CARGO]; ///< Goods at this station
CargoTypes always_accepted; ///< Bitmask of always accepted cargo types (by houses, HQs, industry tiles when industry doesn't accept cargo)
IndustryList industries_near; ///< Cached list of industries near the station that can accept cargo, @see DeliverGoodsToIndustry()
Industry *industry; ///< NOSAVE: Associated industry for neutral stations. (Rebuilt on load from Industry->st)
CargoTypes station_cargo_history_cargoes; ///< Bitmask of cargoes in station_cargo_history
uint8_t station_cargo_history_offset; ///< Start offset in station_cargo_history cargo ring buffer
std::vector<std::array<uint16_t, MAX_STATION_CARGO_HISTORY_DAYS>> station_cargo_history; ///< Station history of waiting cargo, dynamic range compressed (see RXCompressUint)
Station(TileIndex tile = INVALID_TILE);
~Station();
void AddFacility(StationFacility new_facility_bit, TileIndex facil_xy);
void MarkTilesDirty(bool cargo_change) const;
void UpdateVirtCoord() override;
void UpdateCargoHistory();
void MoveSign(TileIndex new_xy) override;
void AfterStationTileSetChange(bool adding, StationType type);
uint GetPlatformLength(TileIndex tile, DiagDirection dir) const override;
uint GetPlatformLength(TileIndex tile) const override;
void RecomputeCatchment(bool no_clear_nearby_lists = false);
static void RecomputeCatchmentForAll();
uint GetCatchmentRadius() const;
Rect GetCatchmentRectUsingRadius(uint radius) const;
inline Rect GetCatchmentRect() const
{
return GetCatchmentRectUsingRadius(this->GetCatchmentRadius());
}
bool CatchmentCoversTown(TownID t) const;
void AddIndustryToDeliver(Industry *ind, TileIndex tile);
void RemoveIndustryToDeliver(Industry *ind);
void RemoveFromAllNearbyLists();
inline bool TileIsInCatchment(TileIndex tile) const
{
return this->catchment_tiles.HasTile(tile);
}
inline bool TileBelongsToRailStation(TileIndex tile) const override
{
return IsRailStationTile(tile) && GetStationIndex(tile) == this->index;
}
inline bool TileBelongsToRoadStop(TileIndex tile) const
{
return IsAnyRoadStopTile(tile) && GetStationIndex(tile) == this->index;
}
inline bool TileBelongsToAirport(TileIndex tile) const
{
return IsAirportTile(tile) && GetStationIndex(tile) == this->index;
}
bool IsWithinRangeOfDockingTile(TileIndex tile, uint max_distance) const;
uint32_t GetNewGRFVariable(const ResolverObject &object, uint16_t variable, byte parameter, bool *available) const override;
void GetTileArea(TileArea *ta, StationType type) const override;
};
/** Iterator to iterate over all tiles belonging to an airport. */
class AirportTileIterator : public OrthogonalTileIterator {
private:
const Station *st; ///< The station the airport is a part of.
public:
/**
* Construct the iterator.
* @param st Station the airport is part of.
*/
AirportTileIterator(const Station *st) : OrthogonalTileIterator(st->airport), st(st)
{
if (!st->TileBelongsToAirport(this->tile)) ++(*this);
}
inline TileIterator& operator ++() override
{
(*this).OrthogonalTileIterator::operator++();
while (this->tile != INVALID_TILE && !st->TileBelongsToAirport(this->tile)) {
(*this).OrthogonalTileIterator::operator++();
}
return *this;
}
std::unique_ptr<TileIterator> Clone() const override
{
return std::make_unique<AirportTileIterator>(*this);
}
};
void RebuildStationKdtree();
/**
* Call a function on all stations that have any part of the requested area within their catchment.
* @tparam Func The type of funcion to call
* @param area The TileArea to check
* @param func The function to call, must take two parameters: Station* and TileIndex and return true
* if coverage of that tile is acceptable for a given station or false if search should continue
*/
template<typename Func>
void ForAllStationsAroundTiles(const TileArea &ta, Func func)
{
/* There are no stations, so we will never find anything. */
if (Station::GetNumItems() == 0) return;
/* Not using, or don't have a nearby stations list, so we need to scan. */
btree::btree_set<StationID> seen_stations;
/* Scan an area around the building covering the maximum possible station
* to find the possible nearby stations. */
uint max_c = _settings_game.station.modified_catchment ? MAX_CATCHMENT : CA_UNMODIFIED;
max_c += _settings_game.station.catchment_increase;
TileArea ta_ext = TileArea(ta).Expand(max_c);
for (TileIndex tile : ta_ext) {
if (IsTileType(tile, MP_STATION)) seen_stations.insert(GetStationIndex(tile));
}
for (StationID stationid : seen_stations) {
Station *st = Station::GetIfValid(stationid);
if (st == nullptr) continue; /* Waypoint */
/* Check if station is attached to an industry */
if (!_settings_game.station.serve_neutral_industries && st->industry != nullptr) continue;
/* Test if the tile is within the station's catchment */
for (TileIndex tile : ta) {
if (st->TileIsInCatchment(tile)) {
if (func(st, tile)) break;
}
}
}
}
#endif /* STATION_BASE_H */