You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenTTD-patches/src/spritecache.cpp

1202 lines
39 KiB
C++

/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file spritecache.cpp Caching of sprites. */
#include "stdafx.h"
#include "random_access_file_type.h"
#include "spriteloader/grf.hpp"
#include "gfx_func.h"
#include "error.h"
#include "zoom_func.h"
#include "settings_type.h"
#include "blitter/factory.hpp"
#include "core/alloc_func.hpp"
#include "core/math_func.hpp"
#include "core/mem_func.hpp"
#include "video/video_driver.hpp"
#include "scope_info.h"
#include "spritecache.h"
#include "spritecache_internal.h"
#include "table/sprites.h"
#include "table/strings.h"
#include "table/palette_convert.h"
#include "3rdparty/cpp-btree/btree_map.h"
#include <vector>
#include <algorithm>
#include "safeguards.h"
/* Default of 4MB spritecache */
uint _sprite_cache_size = 4;
size_t _spritecache_bytes_used = 0;
static uint32_t _sprite_lru_counter;
static uint32_t _spritecache_prune_events = 0;
static size_t _spritecache_prune_entries = 0;
static size_t _spritecache_prune_total = 0;
static std::vector<SpriteCache> _spritecache;
static SpriteDataBuffer _last_sprite_allocation;
static std::vector<std::unique_ptr<SpriteFile>> _sprite_files;
static inline SpriteCache *GetSpriteCache(uint index)
{
return &_spritecache[index];
}
SpriteCache *AllocateSpriteCache(uint index)
{
if (index >= _spritecache.size()) {
_spritecache.resize(index + 1);
}
return GetSpriteCache(index);
}
/**
* Get the cached SpriteFile given the name of the file.
* @param filename The name of the file at the disk.
* @return The SpriteFile or \c null.
*/
static SpriteFile *GetCachedSpriteFileByName(const std::string &filename)
{
for (auto &f : _sprite_files) {
if (f->GetFilename() == filename) {
return f.get();
}
}
return nullptr;
}
/**
* Open/get the SpriteFile that is cached for use in the sprite cache.
* @param filename Name of the file at the disk.
* @param subdir The sub directory to search this file in.
* @param palette_remap Whether a palette remap needs to be performed for this file.
* @return The reference to the SpriteCache.
*/
SpriteFile &OpenCachedSpriteFile(const std::string &filename, Subdirectory subdir, bool palette_remap)
{
SpriteFile *file = GetCachedSpriteFileByName(filename);
if (file == nullptr) {
file = _sprite_files.insert(std::end(_sprite_files), std::make_unique<SpriteFile>(filename, subdir, palette_remap))->get();
} else {
file->SeekToBegin();
}
return *file;
}
static void *AllocSprite(size_t mem_req);
/**
* Skip the given amount of sprite graphics data.
* @param type the type of sprite (compressed etc)
* @param num the amount of sprites to skip
* @return true if the data could be correctly skipped.
*/
bool SkipSpriteData(SpriteFile &file, byte type, uint16_t num)
{
if (type & 2) {
file.SkipBytes(num);
} else {
while (num > 0) {
int8_t i = file.ReadByte();
if (i >= 0) {
int size = (i == 0) ? 0x80 : i;
if (size > num) return false;
num -= size;
file.SkipBytes(size);
} else {
i = -(i >> 3);
num -= i;
file.ReadByte();
}
}
}
return true;
}
/* Check if the given Sprite ID exists */
bool SpriteExists(SpriteID id)
{
if (id >= _spritecache.size()) return false;
/* Special case for Sprite ID zero -- its position is also 0... */
if (id == 0) return true;
return !(GetSpriteCache(id)->file_pos == 0 && GetSpriteCache(id)->file == nullptr);
}
/**
* Get the sprite type of a given sprite.
* @param sprite The sprite to look at.
* @return the type of sprite.
*/
SpriteType GetSpriteType(SpriteID sprite)
{
if (!SpriteExists(sprite)) return SpriteType::Invalid;
return GetSpriteCache(sprite)->GetType();
}
/**
* Get the SpriteFile of a given sprite.
* @param sprite The sprite to look at.
* @return The SpriteFile.
*/
SpriteFile *GetOriginFile(SpriteID sprite)
{
if (!SpriteExists(sprite)) return nullptr;
return GetSpriteCache(sprite)->file;
}
/**
* Get the GRF-local sprite id of a given sprite.
* @param sprite The sprite to look at.
* @return The GRF-local sprite id.
*/
uint32_t GetSpriteLocalID(SpriteID sprite)
{
if (!SpriteExists(sprite)) return 0;
return GetSpriteCache(sprite)->id;
}
/**
* Count the sprites which originate from a specific file in a range of SpriteIDs.
* @param file The loaded SpriteFile.
* @param begin First sprite in range.
* @param end First sprite not in range.
* @return Number of sprites.
*/
uint GetSpriteCountForFile(const std::string &filename, SpriteID begin, SpriteID end)
{
SpriteFile *file = GetCachedSpriteFileByName(filename);
if (file == nullptr) return 0;
uint count = 0;
for (SpriteID i = begin; i != end; i++) {
if (SpriteExists(i)) {
SpriteCache *sc = GetSpriteCache(i);
if (sc->file == file) {
count++;
DEBUG(sprite, 4, "Sprite: %u", i);
}
}
}
return count;
}
/**
* Get a reasonable (upper bound) estimate of the maximum
* SpriteID used in OpenTTD; there will be no sprites with
* a higher SpriteID.
* @note It's actually the number of spritecache items.
* @return maximum SpriteID
*/
uint GetMaxSpriteID()
{
return (uint)_spritecache.size();
}
static bool ResizeSpriteIn(SpriteLoader::SpriteCollection &sprite, ZoomLevel src, ZoomLevel tgt, bool dry_run)
{
uint8_t scaled_1 = ScaleByZoom(1, (ZoomLevel)(src - tgt));
/* Check for possible memory overflow. */
if (sprite[src].width * scaled_1 > UINT16_MAX || sprite[src].height * scaled_1 > UINT16_MAX) return false;
sprite[tgt].width = sprite[src].width * scaled_1;
sprite[tgt].height = sprite[src].height * scaled_1;
sprite[tgt].x_offs = sprite[src].x_offs * scaled_1;
sprite[tgt].y_offs = sprite[src].y_offs * scaled_1;
sprite[tgt].colours = sprite[src].colours;
if (dry_run) {
sprite[tgt].data = nullptr;
return true;
}
sprite[tgt].AllocateData(tgt, static_cast<size_t>(sprite[tgt].width) * sprite[tgt].height);
SpriteLoader::CommonPixel *dst = sprite[tgt].data;
for (int y = 0; y < sprite[tgt].height; y++) {
const SpriteLoader::CommonPixel *src_ln = &sprite[src].data[y / scaled_1 * sprite[src].width];
for (int x = 0; x < sprite[tgt].width; x++) {
*dst = src_ln[x / scaled_1];
dst++;
}
}
return true;
}
static void ResizeSpriteOut(SpriteLoader::SpriteCollection &sprite, ZoomLevel zoom, bool dry_run)
{
/* Algorithm based on 32bpp_Optimized::ResizeSprite() */
sprite[zoom].width = UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].width, zoom);
sprite[zoom].height = UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].height, zoom);
sprite[zoom].x_offs = UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].x_offs, zoom);
sprite[zoom].y_offs = UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].y_offs, zoom);
sprite[zoom].colours = sprite[ZOOM_LVL_NORMAL].colours;
if (dry_run) {
sprite[zoom].data = nullptr;
return;
}
sprite[zoom].AllocateData(zoom, static_cast<size_t>(sprite[zoom].height) * sprite[zoom].width);
SpriteLoader::CommonPixel *dst = sprite[zoom].data;
const SpriteLoader::CommonPixel *src = sprite[zoom - 1].data;
[[maybe_unused]] const SpriteLoader::CommonPixel *src_end = src + sprite[zoom - 1].height * sprite[zoom - 1].width;
for (uint y = 0; y < sprite[zoom].height; y++) {
const SpriteLoader::CommonPixel *src_ln = src + sprite[zoom - 1].width;
assert(src_ln <= src_end);
for (uint x = 0; x < sprite[zoom].width; x++) {
assert(src < src_ln);
if (src + 1 != src_ln && (src + 1)->a != 0) {
*dst = *(src + 1);
} else {
*dst = *src;
}
dst++;
src += 2;
}
src = src_ln + sprite[zoom - 1].width;
}
}
static bool PadSingleSprite(SpriteLoader::Sprite *sprite, ZoomLevel zoom, uint pad_left, uint pad_top, uint pad_right, uint pad_bottom)
{
uint width = sprite->width + pad_left + pad_right;
uint height = sprite->height + pad_top + pad_bottom;
if (width > UINT16_MAX || height > UINT16_MAX) return false;
if (sprite->data != nullptr) {
/* Copy source data and reallocate sprite memory. */
size_t sprite_size = static_cast<size_t>(sprite->width) * sprite->height;
SpriteLoader::CommonPixel *src_data = MallocT<SpriteLoader::CommonPixel>(sprite_size);
MemCpyT(src_data, sprite->data, sprite_size);
sprite->AllocateData(zoom, static_cast<size_t>(width) * height);
/* Copy with padding to destination. */
SpriteLoader::CommonPixel *src = src_data;
SpriteLoader::CommonPixel *data = sprite->data;
for (uint y = 0; y < height; y++) {
if (y < pad_top || pad_bottom + y >= height) {
/* Top/bottom padding. */
MemSetT(data, 0, width);
data += width;
} else {
if (pad_left > 0) {
/* Pad left. */
MemSetT(data, 0, pad_left);
data += pad_left;
}
/* Copy pixels. */
MemCpyT(data, src, sprite->width);
src += sprite->width;
data += sprite->width;
if (pad_right > 0) {
/* Pad right. */
MemSetT(data, 0, pad_right);
data += pad_right;
}
}
}
free(src_data);
}
/* Update sprite size. */
sprite->width = width;
sprite->height = height;
sprite->x_offs -= pad_left;
sprite->y_offs -= pad_top;
return true;
}
static bool PadSprites(SpriteLoader::SpriteCollection &sprite, unsigned int sprite_avail, SpriteEncoder *encoder)
{
/* Get minimum top left corner coordinates. */
int min_xoffs = INT32_MAX;
int min_yoffs = INT32_MAX;
for (ZoomLevel zoom = ZOOM_LVL_BEGIN; zoom != ZOOM_LVL_SPR_END; zoom++) {
if (HasBit(sprite_avail, zoom)) {
min_xoffs = std::min(min_xoffs, ScaleByZoom(sprite[zoom].x_offs, zoom));
min_yoffs = std::min(min_yoffs, ScaleByZoom(sprite[zoom].y_offs, zoom));
}
}
/* Get maximum dimensions taking necessary padding at the top left into account. */
int max_width = INT32_MIN;
int max_height = INT32_MIN;
for (ZoomLevel zoom = ZOOM_LVL_BEGIN; zoom != ZOOM_LVL_SPR_END; zoom++) {
if (HasBit(sprite_avail, zoom)) {
max_width = std::max(max_width, ScaleByZoom(sprite[zoom].width + sprite[zoom].x_offs - UnScaleByZoom(min_xoffs, zoom), zoom));
max_height = std::max(max_height, ScaleByZoom(sprite[zoom].height + sprite[zoom].y_offs - UnScaleByZoom(min_yoffs, zoom), zoom));
}
}
/* Align height and width if required to match the needs of the sprite encoder. */
uint align = encoder->GetSpriteAlignment();
if (align != 0) {
max_width = Align(max_width, align);
max_height = Align(max_height, align);
}
/* Pad sprites where needed. */
for (ZoomLevel zoom = ZOOM_LVL_BEGIN; zoom != ZOOM_LVL_SPR_END; zoom++) {
if (HasBit(sprite_avail, zoom)) {
/* Scaling the sprite dimensions in the blitter is done with rounding up,
* so a negative padding here is not an error. */
int pad_left = std::max(0, sprite[zoom].x_offs - UnScaleByZoom(min_xoffs, zoom));
int pad_top = std::max(0, sprite[zoom].y_offs - UnScaleByZoom(min_yoffs, zoom));
int pad_right = std::max(0, UnScaleByZoom(max_width, zoom) - sprite[zoom].width - pad_left);
int pad_bottom = std::max(0, UnScaleByZoom(max_height, zoom) - sprite[zoom].height - pad_top);
if (pad_left > 0 || pad_right > 0 || pad_top > 0 || pad_bottom > 0) {
if (!PadSingleSprite(&sprite[zoom], zoom, pad_left, pad_top, pad_right, pad_bottom)) return false;
}
}
}
return true;
}
static bool ResizeSprites(SpriteLoader::SpriteCollection &sprite, unsigned int sprite_avail, SpriteEncoder *encoder, uint8_t zoom_levels)
{
ZoomLevel first_avail = static_cast<ZoomLevel>(FindFirstBit(sprite_avail));
ZoomLevel first_needed = static_cast<ZoomLevel>(FindFirstBit(zoom_levels));
/* Upscale to desired sprite_min_zoom if provided sprite only had zoomed in versions. */
if (first_avail < _settings_client.gui.sprite_zoom_min) {
const unsigned int below_min_zoom_mask = (1 << _settings_client.gui.sprite_zoom_min) - 1;
if ((zoom_levels & below_min_zoom_mask) != 0 && !HasBit(sprite_avail, _settings_client.gui.sprite_zoom_min)) {
if (!HasBit(sprite_avail, ZOOM_LVL_OUT_2X)) ResizeSpriteOut(sprite, ZOOM_LVL_OUT_2X, false);
if (_settings_client.gui.sprite_zoom_min == ZOOM_LVL_OUT_4X) {
if (first_avail != ZOOM_LVL_NORMAL) {
/* Ensure dimensions of ZOOM_LVL_NORMAL are set if the first available sprite level was ZOOM_LVL_OUT_2X */
if (!ResizeSpriteIn(sprite, first_avail, ZOOM_LVL_NORMAL, true)) return false;
}
ResizeSpriteOut(sprite, ZOOM_LVL_OUT_4X, false);
}
sprite_avail &= ~below_min_zoom_mask;
SetBit(sprite_avail, _settings_client.gui.sprite_zoom_min);
first_avail = _settings_client.gui.sprite_zoom_min;
}
}
ZoomLevel start = std::min(first_avail, first_needed);
bool needed = false;
for (ZoomLevel zoom = ZOOM_LVL_SPR_END; zoom-- > start; ) {
if (HasBit(sprite_avail, zoom) && sprite[zoom].data != nullptr) {
needed = false;
} else if (HasBit(zoom_levels, zoom)) {
needed = true;
} else if (needed) {
SetBit(zoom_levels, zoom);
}
}
/* Create a fully zoomed image if it does not exist */
if (first_avail != ZOOM_LVL_NORMAL) {
if (!ResizeSpriteIn(sprite, first_avail, ZOOM_LVL_NORMAL, !HasBit(zoom_levels, ZOOM_LVL_NORMAL))) return false;
SetBit(sprite_avail, ZOOM_LVL_NORMAL);
}
/* Create a zoomed image of the first required zoom if there any no sources which are equally or more zoomed in */
if (zoom_levels != 0 && start > ZOOM_LVL_NORMAL && start < first_avail && HasBit(zoom_levels, start)) {
if (!ResizeSpriteIn(sprite, first_avail, start, false)) return false;
SetBit(sprite_avail, start);
}
/* Pad sprites to make sizes match. */
if (!PadSprites(sprite, sprite_avail, encoder)) return false;
/* Create other missing zoom levels */
for (ZoomLevel zoom = ZOOM_LVL_OUT_2X; zoom != ZOOM_LVL_SPR_END; zoom++) {
if (HasBit(sprite_avail, zoom)) {
/* Check that size and offsets match the fully zoomed image. */
assert(sprite[zoom].width == UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].width, zoom));
assert(sprite[zoom].height == UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].height, zoom));
assert(sprite[zoom].x_offs == UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].x_offs, zoom));
assert(sprite[zoom].y_offs == UnScaleByZoom(sprite[ZOOM_LVL_NORMAL].y_offs, zoom));
}
/* Zoom level is not available, or unusable, so create it */
if (!HasBit(sprite_avail, zoom)) ResizeSpriteOut(sprite, zoom, !HasBit(zoom_levels, zoom));
}
return true;
}
/**
* Load a recolour sprite into memory.
* @param file GRF we're reading from.
* @param num Size of the sprite in the GRF.
* @return Sprite data.
*/
static void *ReadRecolourSprite(SpriteFile &file, uint num)
{
/* "Normal" recolour sprites are ALWAYS 257 bytes. Then there is a small
* number of recolour sprites that are 17 bytes that only exist in DOS
* GRFs which are the same as 257 byte recolour sprites, but with the last
* 240 bytes zeroed. */
byte *dest = (byte *)AllocSprite(RECOLOUR_SPRITE_SIZE);
auto read_data = [&](byte *targ) {
file.ReadBlock(targ, std::min(num, RECOLOUR_SPRITE_SIZE));
if (num > RECOLOUR_SPRITE_SIZE) {
file.SkipBytes(num - RECOLOUR_SPRITE_SIZE);
}
};
if (file.NeedsPaletteRemap()) {
byte *dest_tmp = AllocaM(byte, RECOLOUR_SPRITE_SIZE);
/* Only a few recolour sprites are less than 257 bytes */
if (num < RECOLOUR_SPRITE_SIZE) memset(dest_tmp, 0, RECOLOUR_SPRITE_SIZE);
read_data(dest_tmp);
/* The data of index 0 is never used; "literal 00" according to the (New)GRF specs. */
for (uint i = 1; i < RECOLOUR_SPRITE_SIZE; i++) {
dest[i] = _palmap_w2d[dest_tmp[_palmap_d2w[i - 1] + 1]];
}
} else {
read_data(dest);
}
return dest;
}
static const char *GetSpriteTypeName(SpriteType type)
{
static const char * const sprite_types[] = {
"normal", // SpriteType::Normal
"map generator", // SpriteType::MapGen
"character", // SpriteType::Font
"recolour", // SpriteType::Recolour
};
return sprite_types[static_cast<byte>(type)];
}
/**
* Read a sprite from disk.
* @param sc Location of sprite.
* @param id Sprite number.
* @param sprite_type Type of sprite.
* @param allocator Allocator function to use.
* @param encoder Sprite encoder to use.
* @return Read sprite data.
*/
static void *ReadSprite(const SpriteCache *sc, SpriteID id, SpriteType sprite_type, AllocatorProc *allocator, SpriteEncoder *encoder, uint8_t zoom_levels)
{
/* Use current blitter if no other sprite encoder is given. */
if (encoder == nullptr) {
encoder = BlitterFactory::GetCurrentBlitter();
if (!encoder->SupportsMissingZoomLevels()) zoom_levels = UINT8_MAX;
} else {
zoom_levels = UINT8_MAX;
}
if (encoder->NoSpriteDataRequired()) zoom_levels = 0;
SpriteFile &file = *sc->file;
size_t file_pos = sc->file_pos;
SCOPE_INFO_FMT([&], "ReadSprite: pos: " PRINTF_SIZE ", id: %u, file: (%s), type: %s", file_pos, id, file.GetSimplifiedFilename().c_str(), GetSpriteTypeName(sprite_type));
assert(sprite_type != SpriteType::Recolour);
assert(IsMapgenSpriteID(id) == (sprite_type == SpriteType::MapGen));
assert(sc->GetType() == sprite_type);
DEBUG(sprite, 9, "Load sprite %d", id);
SpriteLoader::SpriteCollection sprite;
uint8_t sprite_avail = 0;
sprite[ZOOM_LVL_NORMAL].type = sprite_type;
SpriteLoaderGrf sprite_loader(file.GetContainerVersion());
if (sprite_type != SpriteType::MapGen && sc->GetHasNonPalette() && encoder->Is32BppSupported()) {
/* Try for 32bpp sprites first. */
sprite_avail = sprite_loader.LoadSprite(sprite, file, file_pos, sprite_type, true, sc->count, sc->flags, zoom_levels);
}
if (sprite_avail == 0) {
sprite_avail = sprite_loader.LoadSprite(sprite, file, file_pos, sprite_type, false, sc->count, sc->flags, zoom_levels);
}
if (sprite_avail == 0) {
if (sprite_type == SpriteType::MapGen) return nullptr;
if (id == SPR_IMG_QUERY) usererror("Okay... something went horribly wrong. I couldn't load the fallback sprite. What should I do?");
return (void*)GetRawSprite(SPR_IMG_QUERY, SpriteType::Normal, UINT8_MAX, allocator, encoder);
}
if (sprite_type == SpriteType::MapGen) {
/* Ugly hack to work around the problem that the old landscape
* generator assumes that those sprites are stored uncompressed in
* the memory, and they are only read directly by the code, never
* send to the blitter. So do not send it to the blitter (which will
* result in a data array in the format the blitter likes most), but
* extract the data directly and store that as sprite.
* Ugly: yes. Other solution: no. Blame the original author or
* something ;) The image should really have been a data-stream
* (so type = 0xFF basically). */
uint num = sprite[ZOOM_LVL_NORMAL].width * sprite[ZOOM_LVL_NORMAL].height;
Sprite *s = (Sprite *)allocator(sizeof(*s) + num);
s->width = sprite[ZOOM_LVL_NORMAL].width;
s->height = sprite[ZOOM_LVL_NORMAL].height;
s->x_offs = sprite[ZOOM_LVL_NORMAL].x_offs;
s->y_offs = sprite[ZOOM_LVL_NORMAL].y_offs;
s->next = nullptr;
s->missing_zoom_levels = 0;
SpriteLoader::CommonPixel *src = sprite[ZOOM_LVL_NORMAL].data;
byte *dest = s->data;
while (num-- > 0) {
*dest++ = src->m;
src++;
}
return s;
}
if (!ResizeSprites(sprite, sprite_avail, encoder, zoom_levels)) {
if (id == SPR_IMG_QUERY) usererror("Okay... something went horribly wrong. I couldn't resize the fallback sprite. What should I do?");
return (void*)GetRawSprite(SPR_IMG_QUERY, SpriteType::Normal, UINT8_MAX, allocator, encoder);
}
if (sprite[ZOOM_LVL_NORMAL].type == SpriteType::Font && _font_zoom != ZOOM_LVL_NORMAL) {
/* Make ZOOM_LVL_NORMAL be ZOOM_LVL_GUI */
sprite[ZOOM_LVL_NORMAL].width = sprite[_font_zoom].width;
sprite[ZOOM_LVL_NORMAL].height = sprite[_font_zoom].height;
sprite[ZOOM_LVL_NORMAL].x_offs = sprite[_font_zoom].x_offs;
sprite[ZOOM_LVL_NORMAL].y_offs = sprite[_font_zoom].y_offs;
sprite[ZOOM_LVL_NORMAL].data = sprite[_font_zoom].data;
sprite[ZOOM_LVL_NORMAL].colours = sprite[_font_zoom].colours;
}
if (sprite[ZOOM_LVL_NORMAL].type == SpriteType::Normal) {
/* Remove unwanted zoom levels before encoding */
for (ZoomLevel zoom = ZOOM_LVL_BEGIN; zoom != ZOOM_LVL_SPR_END; zoom++) {
if (!HasBit(zoom_levels, zoom)) sprite[zoom].data = nullptr;
}
}
return encoder->Encode(sprite, allocator);
}
struct GrfSpriteOffset {
size_t file_pos;
uint count;
uint16_t control_flags;
};
/** Map from sprite numbers to position in the GRF file. */
static btree::btree_map<uint32_t, GrfSpriteOffset> _grf_sprite_offsets;
/**
* Get the file offset for a specific sprite in the sprite section of a GRF.
* @param id ID of the sprite to look up.
* @return Position of the sprite in the sprite section or SIZE_MAX if no such sprite is present.
*/
size_t GetGRFSpriteOffset(uint32_t id)
{
auto iter = _grf_sprite_offsets.find(id);
return iter != _grf_sprite_offsets.end() ? iter->second.file_pos : SIZE_MAX;
}
/**
* Parse the sprite section of GRFs.
* @param container_version Container version of the GRF we're currently processing.
*/
void ReadGRFSpriteOffsets(SpriteFile &file)
{
_grf_sprite_offsets.clear();
if (file.GetContainerVersion() >= 2) {
/* Seek to sprite section of the GRF. */
size_t data_offset = file.ReadDword();
size_t old_pos = file.GetPos();
file.SeekTo(data_offset, SEEK_CUR);
GrfSpriteOffset offset = { 0, 0, 0 };
/* Loop over all sprite section entries and store the file
* offset for each newly encountered ID. */
uint32_t id, prev_id = 0;
while ((id = file.ReadDword()) != 0) {
if (id != prev_id) {
_grf_sprite_offsets[prev_id] = offset;
offset.file_pos = file.GetPos() - 4;
offset.count = 0;
offset.control_flags = 0;
}
offset.count++;
prev_id = id;
uint length = file.ReadDword();
if (length > 0) {
byte colour = file.ReadByte() & SCC_MASK;
length--;
if (length > 0) {
byte zoom = file.ReadByte();
length--;
if (colour != 0) {
static const ZoomLevel zoom_lvl_map[6] = {ZOOM_LVL_OUT_4X, ZOOM_LVL_NORMAL, ZOOM_LVL_OUT_2X, ZOOM_LVL_OUT_8X, ZOOM_LVL_OUT_16X, ZOOM_LVL_OUT_32X};
if (zoom < 6) SetBit(offset.control_flags, static_cast<uint>(zoom_lvl_map[zoom]) + static_cast<uint>((colour != SCC_PAL) ? SCC_32BPP_ZOOM_START : SCC_PAL_ZOOM_START));
}
}
}
file.SkipBytes(length);
}
if (prev_id != 0) _grf_sprite_offsets[prev_id] = offset;
/* Continue processing the data section. */
file.SeekTo(old_pos, SEEK_SET);
}
}
/**
* Load a real or recolour sprite.
* @param load_index Global sprite index.
* @param file GRF to load from.
* @param file_sprite_id Sprite number in the GRF.
* @param container_version Container version of the GRF.
* @return True if a valid sprite was loaded, false on any error.
*/
bool LoadNextSprite(int load_index, SpriteFile &file, uint file_sprite_id)
{
size_t file_pos = file.GetPos();
SCOPE_INFO_FMT([&], "LoadNextSprite: pos: " PRINTF_SIZE ", file: %s, load_index: %d, file_sprite_id: %u, container_ver: %u", file_pos, file.GetSimplifiedFilename().c_str(), load_index, file_sprite_id, file.GetContainerVersion());
/* Read sprite header. */
uint32_t num = file.GetContainerVersion() >= 2 ? file.ReadDword() : file.ReadWord();
if (num == 0) return false;
byte grf_type = file.ReadByte();
SpriteType type;
void *data = nullptr;
uint count = 0;
uint16_t control_flags = 0;
if (grf_type == 0xFF) {
/* Some NewGRF files have "empty" pseudo-sprites which are 1
* byte long. Catch these so the sprites won't be displayed. */
if (num == 1) {
file.ReadByte();
return false;
}
type = SpriteType::Recolour;
data = ReadRecolourSprite(file, num);
} else if (file.GetContainerVersion() >= 2 && grf_type == 0xFD) {
if (num != 4) {
/* Invalid sprite section include, ignore. */
file.SkipBytes(num);
return false;
}
/* It is not an error if no sprite with the provided ID is found in the sprite section. */
auto iter = _grf_sprite_offsets.find(file.ReadDword());
if (iter != _grf_sprite_offsets.end()) {
file_pos = iter->second.file_pos;
count = iter->second.count;
control_flags = iter->second.control_flags;
} else {
file_pos = SIZE_MAX;
}
type = SpriteType::Normal;
} else {
file.SkipBytes(7);
type = SkipSpriteData(file, grf_type, num - 8) ? SpriteType::Normal : SpriteType::Invalid;
/* Inline sprites are not supported for container version >= 2. */
if (file.GetContainerVersion() >= 2) return false;
}
if (type == SpriteType::Invalid) return false;
if (load_index == -1) {
if (data != nullptr) _last_sprite_allocation.Clear();
return false;
}
if (load_index >= MAX_SPRITES) {
usererror("Tried to load too many sprites (#%d; max %d)", load_index, MAX_SPRITES);
}
bool is_mapgen = IsMapgenSpriteID(load_index);
if (is_mapgen) {
if (type != SpriteType::Normal) usererror("Uhm, would you be so kind not to load a NewGRF that changes the type of the map generator sprites?");
type = SpriteType::MapGen;
}
SpriteCache *sc = AllocateSpriteCache(load_index);
sc->file = &file;
sc->file_pos = file_pos;
sc->SetType(type);
if (data != nullptr) {
assert(data == _last_sprite_allocation.GetPtr());
sc->Assign(std::move(_last_sprite_allocation));
} else {
sc->Clear();
}
sc->id = file_sprite_id;
sc->count = count;
sc->flags = control_flags;
return true;
}
void DupSprite(SpriteID old_spr, SpriteID new_spr)
{
SpriteCache *scnew = AllocateSpriteCache(new_spr); // may reallocate: so put it first
SpriteCache *scold = GetSpriteCache(old_spr);
scnew->file = scold->file;
scnew->file_pos = scold->file_pos;
scnew->id = scold->id;
scnew->SetType(scold->GetType());
scnew->flags = scold->flags;
scnew->SetWarned(false);
}
static size_t GetSpriteCacheUsage()
{
return _spritecache_bytes_used;
}
/**
* Delete a single entry from the sprite cache.
* @param item Entry to delete.
*/
static void DeleteEntryFromSpriteCache(uint item)
{
GetSpriteCache(item)->Clear();
}
static void DeleteEntriesFromSpriteCache(size_t target)
{
const size_t initial_in_use = GetSpriteCacheUsage();
struct SpriteInfo {
uint32_t lru;
SpriteID id;
uint32_t size;
uint8_t missing_zoom_levels;
bool operator<(const SpriteInfo &other) const
{
return this->lru < other.lru;
}
};
std::vector<SpriteInfo> candidates;
size_t candidate_bytes = 0;
auto push = [&](SpriteInfo info) {
candidates.push_back(info);
std::push_heap(candidates.begin(), candidates.end());
candidate_bytes += info.size;
};
auto pop = [&]() {
candidate_bytes -= candidates.front().size;
std::pop_heap(candidates.begin(), candidates.end());
candidates.pop_back();
};
size_t total_candidates = 0;
SpriteID i = 0;
for (; i != _spritecache.size() && candidate_bytes < target; i++) {
SpriteCache *sc = GetSpriteCache(i);
if (sc->GetType() != SpriteType::Recolour) {
Sprite *sp = (Sprite *)sc->GetPtr();
while (sp != nullptr) {
push({ sp->lru, i, sp->size, sp->missing_zoom_levels });
total_candidates++;
sp = sp->next;
}
if (candidate_bytes >= target) break;
}
}
for (; i != _spritecache.size(); i++) {
SpriteCache *sc = GetSpriteCache(i);
if (sc->GetType() != SpriteType::Recolour) {
Sprite *sp = (Sprite *)sc->GetPtr();
while (sp != nullptr) {
total_candidates++;
/* Only add to candidates if LRU <= current highest */
if (sp->lru <= candidates.front().lru) {
push({ sp->lru, i, sp->size, sp->missing_zoom_levels });
while (!candidates.empty() && candidate_bytes - candidates.front().size >= target) {
pop();
}
}
sp = sp->next;
}
}
}
for (auto &it : candidates) {
GetSpriteCache(it.id)->RemoveByMissingZoomLevels(it.missing_zoom_levels);
}
DEBUG(sprite, 3, "DeleteEntriesFromSpriteCache, deleted: " PRINTF_SIZE " of " PRINTF_SIZE ", freed: " PRINTF_SIZE ", in use: " PRINTF_SIZE " --> " PRINTF_SIZE ", delta: " PRINTF_SIZE ", requested: " PRINTF_SIZE,
candidates.size(), total_candidates, candidate_bytes, initial_in_use, GetSpriteCacheUsage(), initial_in_use - GetSpriteCacheUsage(), target);
_spritecache_prune_events++;
_spritecache_prune_entries += candidates.size();
_spritecache_prune_total += (initial_in_use - GetSpriteCacheUsage());
}
uint GetTargetSpriteSize()
{
int bpp = BlitterFactory::GetCurrentBlitter()->GetScreenDepth();
return (bpp > 0 ? _sprite_cache_size * bpp / 8 : 1) * 1024 * 1024;
}
void IncreaseSpriteLRU()
{
uint target_size = GetTargetSpriteSize();
if (_spritecache_bytes_used > target_size) {
DeleteEntriesFromSpriteCache(_spritecache_bytes_used - target_size + 512 * 1024);
}
/* Adjust all LRU values */
if (_sprite_lru_counter >= 0xC0000000) {
DEBUG(sprite, 5, "Fixing lru %u, inuse=" PRINTF_SIZE, _sprite_lru_counter, GetSpriteCacheUsage());
for (SpriteID i = 0; i != _spritecache.size(); i++) {
SpriteCache *sc = GetSpriteCache(i);
if (sc->GetType() != SpriteType::Recolour) {
Sprite *sp = (Sprite *)sc->GetPtr();
while (sp != nullptr) {
if (sp->lru > 0x80000000) {
sp->lru -= 0x80000000;
} else {
sp->lru = 0;
}
sp = sp->next;
}
}
}
_sprite_lru_counter -= 0x80000000;
}
}
static void *AllocSprite(size_t mem_req)
{
assert(_last_sprite_allocation.GetPtr() == nullptr);
_last_sprite_allocation.Allocate((uint32_t)mem_req);
return _last_sprite_allocation.GetPtr();
}
/**
* Sprite allocator simply using malloc.
*/
void *SimpleSpriteAlloc(size_t size)
{
return MallocT<byte>(size);
}
/**
* Handles the case when a sprite of different type is requested than is present in the SpriteCache.
* For SpriteType::Font sprites, it is normal. In other cases, default sprite is loaded instead.
* @param sprite ID of loaded sprite
* @param requested requested sprite type
* @param sc the currently known sprite cache for the requested sprite
* @return fallback sprite
* @note this function will do usererror() in the case the fallback sprite isn't available
*/
static void *HandleInvalidSpriteRequest(SpriteID sprite, SpriteType requested, SpriteCache *sc, AllocatorProc *allocator)
{
SpriteType available = sc->GetType();
if (requested == SpriteType::Font && available == SpriteType::Normal) {
if (sc->GetPtr() == nullptr) sc->SetType(SpriteType::Font);
return GetRawSprite(sprite, sc->GetType(), UINT8_MAX, allocator);
}
byte warning_level = sc->GetWarned() ? 6 : 0;
sc->SetWarned(true);
DEBUG(sprite, warning_level, "Tried to load %s sprite #%d as a %s sprite. Probable cause: NewGRF interference", GetSpriteTypeName(available), sprite, GetSpriteTypeName(requested));
switch (requested) {
case SpriteType::Normal:
if (sprite == SPR_IMG_QUERY) usererror("Uhm, would you be so kind not to load a NewGRF that makes the 'query' sprite a non-normal sprite?");
[[fallthrough]];
case SpriteType::Font:
return GetRawSprite(SPR_IMG_QUERY, SpriteType::Normal, UINT8_MAX, allocator);
case SpriteType::Recolour:
if (sprite == PALETTE_TO_DARK_BLUE) usererror("Uhm, would you be so kind not to load a NewGRF that makes the 'PALETTE_TO_DARK_BLUE' sprite a non-remap sprite?");
return GetRawSprite(PALETTE_TO_DARK_BLUE, SpriteType::Recolour, UINT8_MAX, allocator);
case SpriteType::MapGen:
/* this shouldn't happen, overriding of SpriteType::MapGen sprites is checked in LoadNextSprite()
* (the only case the check fails is when these sprites weren't even loaded...) */
default:
NOT_REACHED();
}
}
/**
* Reads a sprite (from disk or sprite cache).
* If the sprite is not available or of wrong type, a fallback sprite is returned.
* @param sprite Sprite to read.
* @param type Expected sprite type.
* @param allocator Allocator function to use. Set to nullptr to use the usual sprite cache.
* @param encoder Sprite encoder to use. Set to nullptr to use the currently active blitter.
* @return Sprite raw data
*/
void *GetRawSprite(SpriteID sprite, SpriteType type, uint8_t zoom_levels, AllocatorProc *allocator, SpriteEncoder *encoder)
{
assert(type != SpriteType::MapGen || IsMapgenSpriteID(sprite));
assert(type < SpriteType::Invalid);
if (!SpriteExists(sprite)) {
DEBUG(sprite, 1, "Tried to load non-existing sprite #%d. Probable cause: Wrong/missing NewGRFs", sprite);
/* SPR_IMG_QUERY is a BIG FAT RED ? */
sprite = SPR_IMG_QUERY;
}
SpriteCache *sc = GetSpriteCache(sprite);
if (sc->GetType() != type) return HandleInvalidSpriteRequest(sprite, type, sc, allocator);
if (allocator == nullptr && encoder == nullptr) {
/* Load sprite into/from spritecache */
if (type != SpriteType::Normal) zoom_levels = UINT8_MAX;
/* Load the sprite, if it is not loaded, yet */
if (sc->GetPtr() == nullptr) {
[[maybe_unused]] void *ptr = ReadSprite(sc, sprite, type, AllocSprite, nullptr, zoom_levels);
assert(ptr == _last_sprite_allocation.GetPtr());
sc->Assign(std::move(_last_sprite_allocation));
} else if ((sc->total_missing_zoom_levels & zoom_levels) != 0) {
[[maybe_unused]] void *ptr = ReadSprite(sc, sprite, type, AllocSprite, nullptr, sc->total_missing_zoom_levels & zoom_levels);
assert(ptr == _last_sprite_allocation.GetPtr());
sc->Append(std::move(_last_sprite_allocation));
}
if (type != SpriteType::Recolour) {
uint8_t lvls = zoom_levels;
Sprite *sp = (Sprite *)sc->GetPtr();
while (lvls != 0 && sp != nullptr) {
uint8_t usable = ~sp->missing_zoom_levels;
if (usable & lvls) {
/* Update LRU */
sp->lru = ++_sprite_lru_counter;
lvls &= ~usable;
}
sp = sp->next;
}
}
return sc->GetPtr();
} else {
/* Do not use the spritecache, but a different allocator. */
return ReadSprite(sc, sprite, type, allocator, encoder, UINT8_MAX);
}
}
/**
* Reads a sprite and finds its most representative colour.
* @param sprite Sprite to read.
* @param palette_id Palette for remapping colours.
* @return if blitter supports 32bpp, average Colour.data else a palette index.
*/
uint32_t GetSpriteMainColour(SpriteID sprite_id, PaletteID palette_id)
{
if (!SpriteExists(sprite_id)) return 0;
SpriteCache *sc = GetSpriteCache(sprite_id);
if (sc->GetType() != SpriteType::Normal) return 0;
const byte * const remap = (palette_id == PAL_NONE ? nullptr : GetNonSprite(GB(palette_id, 0, PALETTE_WIDTH), SpriteType::Recolour) + 1);
SpriteFile &file = *sc->file;
size_t file_pos = sc->file_pos;
SpriteLoader::SpriteCollection sprites;
sprites[ZOOM_LVL_NORMAL].type = SpriteType::Normal;
SpriteLoaderGrf sprite_loader(file.GetContainerVersion());
uint8_t sprite_avail;
const uint8_t screen_depth = BlitterFactory::GetCurrentBlitter()->GetScreenDepth();
auto zoom_mask = [&](bool is32bpp) -> uint8_t {
return 1 << FindFirstBit(GB(sc->flags, is32bpp ? SCC_32BPP_ZOOM_START : SCC_PAL_ZOOM_START, 6));
};
/* Try to read the 32bpp sprite first. */
if (screen_depth == 32 && sc->GetHasNonPalette()) {
sprite_avail = sprite_loader.LoadSprite(sprites, file, file_pos, SpriteType::Normal, true, sc->count, sc->flags, zoom_mask(true));
if (sprite_avail != 0) {
SpriteLoader::Sprite *sprite = &sprites[FindFirstBit(sprite_avail)];
/* Return the average colour. */
uint32_t r = 0, g = 0, b = 0, cnt = 0;
SpriteLoader::CommonPixel *pixel = sprite->data;
for (uint x = sprite->width * sprite->height; x != 0; x--) {
if (pixel->a) {
if (remap && pixel->m) {
const Colour c = _cur_palette.palette[remap[pixel->m]];
if (c.a) {
r += c.r;
g += c.g;
b += c.b;
cnt++;
}
} else {
r += pixel->r;
g += pixel->g;
b += pixel->b;
cnt++;
}
}
pixel++;
}
return cnt ? Colour(r / cnt, g / cnt, b / cnt).data : 0;
}
}
/* No 32bpp, try 8bpp. */
sprite_avail = sprite_loader.LoadSprite(sprites, file, file_pos, SpriteType::Normal, false, sc->count, sc->flags, zoom_mask(false));
if (sprite_avail != 0) {
SpriteLoader::Sprite *sprite = &sprites[FindFirstBit(sprite_avail)];
SpriteLoader::CommonPixel *pixel = sprite->data;
if (screen_depth == 32) {
/* Return the average colour. */
uint32_t r = 0, g = 0, b = 0, cnt = 0;
for (uint x = sprite->width * sprite->height; x != 0; x--) {
if (pixel->a) {
const uint col_index = remap ? remap[pixel->m] : pixel->m;
const Colour c = _cur_palette.palette[col_index];
r += c.r;
g += c.g;
b += c.b;
cnt++;
}
pixel++;
}
return cnt ? Colour(r / cnt, g / cnt, b / cnt).data : 0;
} else {
/* Return the most used indexed colour. */
int cnt[256];
memset(cnt, 0, sizeof(cnt));
for (uint x = sprite->width * sprite->height; x != 0; x--) {
cnt[remap ? remap[pixel->m] : pixel->m]++;
pixel++;
}
int cnt_max = -1;
uint32_t rk = 0;
for (uint x = 1; x < lengthof(cnt); x++) {
if (cnt[x] > cnt_max) {
rk = x;
cnt_max = cnt[x];
}
}
return rk;
}
}
return 0;
}
void GfxInitSpriteMem()
{
/* Reset the spritecache 'pool' */
_spritecache.clear();
_sprite_files.clear();
assert(_spritecache_bytes_used == 0);
_spritecache_prune_events = 0;
_spritecache_prune_entries = 0;
_spritecache_prune_total = 0;
}
/**
* Remove all encoded sprites from the sprite cache without
* discarding sprite location information.
*/
void GfxClearSpriteCache()
{
/* Clear sprite ptr for all cached items */
for (uint i = 0; i != _spritecache.size(); i++) {
SpriteCache *sc = GetSpriteCache(i);
if (sc->GetType() != SpriteType::Recolour && sc->GetPtr() != nullptr) DeleteEntryFromSpriteCache(i);
}
VideoDriver::GetInstance()->ClearSystemSprites();
}
/**
* Remove all encoded font sprites from the sprite cache without
* discarding sprite location information.
*/
void GfxClearFontSpriteCache()
{
/* Clear sprite ptr for all cached font items */
for (uint i = 0; i != _spritecache.size(); i++) {
SpriteCache *sc = GetSpriteCache(i);
if (sc->GetType() == SpriteType::Font && sc->GetPtr() != nullptr) DeleteEntryFromSpriteCache(i);
}
}
void DumpSpriteCacheStats(char *buffer, const char *last)
{
uint target_size = GetTargetSpriteSize();
buffer += seprintf(buffer, last, "Sprite cache: entries: %u, size: %u, target: %u, percent used: %.1f%%\n",
(uint)_spritecache.size(), (uint)_spritecache_bytes_used, target_size, (100.0f * _spritecache_bytes_used) / target_size);
uint types[(uint)SpriteType::Invalid] = {};
uint have_data = 0;
uint have_warned = 0;
uint have_8bpp = 0;
uint have_32bpp = 0;
uint depths[16] = {};
uint have_partial_zoom = 0;
for (const SpriteCache &entry : _spritecache) {
if ((uint)entry.GetType() >= (uint)SpriteType::Invalid) continue;
types[(uint)entry.GetType()]++;
if (entry.GetPtr() != nullptr) have_data++;
if (entry.GetHasPalette()) have_8bpp++;
if (entry.GetHasNonPalette()) have_32bpp++;
if (entry.GetType() == SpriteType::Normal) {
if (entry.total_missing_zoom_levels != 0) have_partial_zoom++;
uint depth = 0;
const Sprite *p = (const Sprite *)entry.GetPtr();
while (p != nullptr) {
depth++;
p = p->next;
}
if (depth < lengthof(depths)) depths[depth]++;
}
}
buffer += seprintf(buffer, last, " Normal: %u, MapGen: %u, Font: %u, Recolour: %u\n",
types[(uint)SpriteType::Normal], types[(uint)SpriteType::MapGen], types[(uint)SpriteType::Font], types[(uint)SpriteType::Recolour]);
buffer += seprintf(buffer, last, " Data loaded: %u, Warned: %u, 8bpp: %u, 32bpp: %u\n",
have_data, have_warned, have_8bpp, have_32bpp);
buffer += seprintf(buffer, last, " Cache prune events: %u, pruned entry total: " PRINTF_SIZE ", pruned data total: " PRINTF_SIZE "\n",
_spritecache_prune_events, _spritecache_prune_entries, _spritecache_prune_total);
buffer += seprintf(buffer, last, " Normal:\n");
buffer += seprintf(buffer, last, " Partial zoom: %u\n", have_partial_zoom);
for (uint i = 0; i < lengthof(depths); i++) {
if (depths[i] > 0) buffer += seprintf(buffer, last, " Data depth %u: %u\n", i, depths[i]);
}
}
/* static */ ReusableBuffer<SpriteLoader::CommonPixel> SpriteLoader::Sprite::buffer[ZOOM_LVL_SPR_COUNT];