You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenTTD-patches/src/map.cpp

680 lines
22 KiB
C++

/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file map.cpp Base functions related to the map and distances on them. */
#include "stdafx.h"
#include "debug.h"
#include "core/alloc_func.hpp"
#include "water_map.h"
#include "string_func.h"
#include "rail_map.h"
#include "tunnelbridge_map.h"
#include "pathfinder/water_regions.h"
#include "3rdparty/cpp-btree/btree_map.h"
#include "core/ring_buffer.hpp"
#include <array>
#include <memory>
#if defined(__linux__)
#include <sys/mman.h>
#endif
#include "safeguards.h"
uint _map_log_x; ///< 2^_map_log_x == _map_size_x
uint _map_log_y; ///< 2^_map_log_y == _map_size_y
uint _map_size_x; ///< Size of the map along the X
uint _map_size_y; ///< Size of the map along the Y
uint _map_size; ///< The number of tiles on the map
uint _map_tile_mask; ///< _map_size - 1 (to mask the mapsize)
Tile *_m = nullptr; ///< Tiles of the map
TileExtended *_me = nullptr; ///< Extended Tiles of the map
#if defined(__linux__) && defined(MADV_HUGEPAGE)
static size_t _munmap_size = 0;
#endif
/**
* Validates whether a map with the given dimension is valid
* @param size_x the width of the map along the NE/SW edge
* @param size_y the 'height' of the map along the SE/NW edge
* @return true if valid, or false if not valid
*/
bool ValidateMapSize(uint size_x, uint size_y)
{
/* Make sure that the map size is within the limits and that
* size of both axes is a power of 2. */
if (size_x * size_y > MAX_MAP_TILES ||
size_x < MIN_MAP_SIZE ||
size_y < MIN_MAP_SIZE ||
(size_x & (size_x - 1)) != 0 ||
(size_y & (size_y - 1)) != 0) {
return false;
}
return true;
}
/**
* (Re)allocates a map with the given dimension
* @param size_x the width of the map along the NE/SW edge
* @param size_y the 'height' of the map along the SE/NW edge
*/
void AllocateMap(uint size_x, uint size_y)
{
DEBUG(map, 2, "Min/max map size %d/%d, max map tiles %d", MIN_MAP_SIZE, MAX_MAP_SIZE, MAX_MAP_TILES);
DEBUG(map, 1, "Allocating map of size %dx%d", size_x, size_y);
if (!ValidateMapSize(size_x, size_y)) {
error("Invalid map size");
}
_map_log_x = FindFirstBit(size_x);
_map_log_y = FindFirstBit(size_y);
_map_size_x = size_x;
_map_size_y = size_y;
_map_size = size_x * size_y;
_map_tile_mask = _map_size - 1;
#if defined(__linux__) && defined(MADV_HUGEPAGE)
if (_munmap_size != 0) {
munmap(_m, _munmap_size);
_munmap_size = 0;
_m = nullptr;
}
#endif
free(_m);
const size_t total_size = (sizeof(Tile) + sizeof(TileExtended)) * _map_size;
byte *buf = nullptr;
#if defined(__linux__) && defined(MADV_HUGEPAGE)
const size_t alignment = 2 * 1024 * 1024;
/* First try mmap with a 2MB alignment, if that fails, just use calloc */
if (total_size >= alignment) {
size_t allocated = total_size + alignment;
void * const ret = mmap(nullptr, allocated, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (ret != MAP_FAILED) {
void *target = ret;
assert(std::align(alignment, total_size, target, allocated));
/* target is now aligned, allocated has been adjusted accordingly */
const size_t remove_front = static_cast<byte *>(target) - static_cast<byte *>(ret);
if (remove_front != 0) {
munmap(ret, remove_front);
}
const size_t remove_back = allocated - total_size;
if (remove_back != 0) {
munmap(static_cast<char *>(target) + total_size, remove_back);
}
madvise(target, total_size, MADV_HUGEPAGE);
DEBUG(map, 2, "Using mmap for map allocation");
buf = static_cast<byte *>(target);
_munmap_size = total_size;
}
}
#endif
if (buf == nullptr) buf = CallocT<byte>(total_size);
_m = reinterpret_cast<Tile *>(buf);
_me = reinterpret_cast<TileExtended *>(buf + (_map_size * sizeof(Tile)));
InitializeWaterRegions();
}
#ifdef _DEBUG
TileIndex TileAdd(TileIndex tile, TileIndexDiff offset)
{
int dx = offset & MapMaxX();
if (dx >= (int)MapSizeX() / 2) dx -= MapSizeX();
int dy = (offset - dx) / (int)MapSizeX();
uint32_t x = TileX(tile) + dx;
uint32_t y = TileY(tile) + dy;
assert(x < MapSizeX());
assert(y < MapSizeY());
assert(TileXY(x, y) == TILE_MASK(tile + offset));
return TileXY(x, y);
}
#endif
/**
* This function checks if we add addx/addy to tile, if we
* do wrap around the edges. For example, tile = (10,2) and
* addx = +3 and addy = -4. This function will now return
* INVALID_TILE, because the y is wrapped. This is needed in
* for example, farmland. When the tile is not wrapped,
* the result will be tile + TileDiffXY(addx, addy)
*
* @param tile the 'starting' point of the adding
* @param addx the amount of tiles in the X direction to add
* @param addy the amount of tiles in the Y direction to add
* @return translated tile, or INVALID_TILE when it would've wrapped.
*/
TileIndex TileAddWrap(TileIndex tile, int addx, int addy)
{
uint x = TileX(tile) + addx;
uint y = TileY(tile) + addy;
/* Disallow void tiles at the north border. */
if ((x == 0 || y == 0) && _settings_game.construction.freeform_edges) return INVALID_TILE;
/* Are we about to wrap? */
if (x >= MapMaxX() || y >= MapMaxY()) return INVALID_TILE;
return TileXY(x, y);
}
/**
* This function checks if we add addx/addy to tile, if we
* do wrap around the edges. Instead of wrapping, saturate at the map edge.
*
* @param tile the 'starting' point of the adding
* @param addx the amount of tiles in the X direction to add
* @param addy the amount of tiles in the Y direction to add
* @return translated tile
*/
TileIndex TileAddSaturating(TileIndex tile, int addx, int addy)
{
int x = TileX(tile) + addx;
int y = TileY(tile) + addy;
auto clamp = [&](int coord, int map_max) -> uint {
return Clamp<int>(coord, _settings_game.construction.freeform_edges ? 1 : 0, map_max - 1);
};
return TileXY(clamp(x, MapMaxX()), clamp(y, MapMaxY()));
}
/** 'Lookup table' for tile offsets given a DiagDirection */
extern const TileIndexDiffC _tileoffs_by_diagdir[] = {
{-1, 0}, ///< DIAGDIR_NE
{ 0, 1}, ///< DIAGDIR_SE
{ 1, 0}, ///< DIAGDIR_SW
{ 0, -1} ///< DIAGDIR_NW
};
/** 'Lookup table' for tile offsets given a Direction */
extern const TileIndexDiffC _tileoffs_by_dir[] = {
{-1, -1}, ///< DIR_N
{-1, 0}, ///< DIR_NE
{-1, 1}, ///< DIR_E
{ 0, 1}, ///< DIR_SE
{ 1, 1}, ///< DIR_S
{ 1, 0}, ///< DIR_SW
{ 1, -1}, ///< DIR_W
{ 0, -1} ///< DIR_NW
};
/**
* Gets the Manhattan distance between the two given tiles.
* The Manhattan distance is the sum of the delta of both the
* X and Y component.
* Also known as L1-Norm
* @param t0 the start tile
* @param t1 the end tile
* @return the distance
*/
uint DistanceManhattan(TileIndex t0, TileIndex t1)
{
const uint dx = Delta(TileX(t0), TileX(t1));
const uint dy = Delta(TileY(t0), TileY(t1));
return dx + dy;
}
/**
* Gets the 'Square' distance between the two given tiles.
* The 'Square' distance is the square of the shortest (straight line)
* distance between the two tiles.
* Also known as euclidian- or L2-Norm squared.
* @param t0 the start tile
* @param t1 the end tile
* @return the distance
*/
uint DistanceSquare(TileIndex t0, TileIndex t1)
{
const int dx = TileX(t0) - TileX(t1);
const int dy = TileY(t0) - TileY(t1);
return dx * dx + dy * dy;
}
/**
* Gets the biggest distance component (x or y) between the two given tiles.
* Also known as L-Infinity-Norm.
* @param t0 the start tile
* @param t1 the end tile
* @return the distance
*/
uint DistanceMax(TileIndex t0, TileIndex t1)
{
const uint dx = Delta(TileX(t0), TileX(t1));
const uint dy = Delta(TileY(t0), TileY(t1));
return std::max(dx, dy);
}
/**
* Gets the biggest distance component (x or y) between the two given tiles
* plus the Manhattan distance, i.e. two times the biggest distance component
* and once the smallest component.
* @param t0 the start tile
* @param t1 the end tile
* @return the distance
*/
uint DistanceMaxPlusManhattan(TileIndex t0, TileIndex t1)
{
const uint dx = Delta(TileX(t0), TileX(t1));
const uint dy = Delta(TileY(t0), TileY(t1));
return dx > dy ? 2 * dx + dy : 2 * dy + dx;
}
/**
* Param the minimum distance to an edge
* @param tile the tile to get the distance from
* @return the distance from the edge in tiles
*/
uint DistanceFromEdge(TileIndex tile)
{
const uint xl = TileX(tile);
const uint yl = TileY(tile);
const uint xh = MapSizeX() - 1 - xl;
const uint yh = MapSizeY() - 1 - yl;
const uint minl = std::min(xl, yl);
const uint minh = std::min(xh, yh);
return std::min(minl, minh);
}
/**
* Gets the distance to the edge of the map in given direction.
* @param tile the tile to get the distance from
* @param dir the direction of interest
* @return the distance from the edge in tiles
*/
uint DistanceFromEdgeDir(TileIndex tile, DiagDirection dir)
{
switch (dir) {
case DIAGDIR_NE: return TileX(tile) - (_settings_game.construction.freeform_edges ? 1 : 0);
case DIAGDIR_NW: return TileY(tile) - (_settings_game.construction.freeform_edges ? 1 : 0);
case DIAGDIR_SW: return MapMaxX() - TileX(tile) - 1;
case DIAGDIR_SE: return MapMaxY() - TileY(tile) - 1;
default: NOT_REACHED();
}
}
/**
* Function performing a search around a center tile and going outward, thus in circle.
* Although it really is a square search...
* Every tile will be tested by means of the callback function proc,
* which will determine if yes or no the given tile meets criteria of search.
* @param tile to start the search from. Upon completion, it will return the tile matching the search
* @param size: number of tiles per side of the desired search area
* @param proc: callback testing function pointer.
* @param user_data to be passed to the callback function. Depends on the implementation
* @return result of the search
* @pre proc != nullptr
* @pre size > 0
*/
bool CircularTileSearch(TileIndex *tile, uint size, TestTileOnSearchProc proc, void *user_data)
{
dbg_assert(proc != nullptr);
dbg_assert(size > 0);
if (size % 2 == 1) {
/* If the length of the side is uneven, the center has to be checked
* separately, as the pattern of uneven sides requires to go around the center */
if (proc(*tile, user_data)) return true;
/* If tile test is not successful, get one tile up,
* ready for a test in first circle around center tile */
*tile = TileAddByDir(*tile, DIR_N);
return CircularTileSearch(tile, size / 2, 1, 1, proc, user_data);
} else {
return CircularTileSearch(tile, size / 2, 0, 0, proc, user_data);
}
}
/**
* Generalized circular search allowing for rectangles and a hole.
* Function performing a search around a center rectangle and going outward.
* The center rectangle is left out from the search. To do a rectangular search
* without a hole, set either h or w to zero.
* Every tile will be tested by means of the callback function proc,
* which will determine if yes or no the given tile meets criteria of search.
* @param tile to start the search from. Upon completion, it will return the tile matching the search.
* This tile should be directly north of the hole (if any).
* @param radius How many tiles to search outwards. Note: This is a radius and thus different
* from the size parameter of the other CircularTileSearch function, which is a diameter.
* @param w the width of the inner rectangle
* @param h the height of the inner rectangle
* @param proc callback testing function pointer.
* @param user_data to be passed to the callback function. Depends on the implementation
* @return result of the search
* @pre proc != nullptr
* @pre radius > 0
*/
bool CircularTileSearch(TileIndex *tile, uint radius, uint w, uint h, TestTileOnSearchProc proc, void *user_data)
{
dbg_assert(proc != nullptr);
dbg_assert(radius > 0);
uint x = TileX(*tile) + w + 1;
uint y = TileY(*tile);
const uint extent[DIAGDIR_END] = { w, h, w, h };
for (uint n = 0; n < radius; n++) {
for (DiagDirection dir = DIAGDIR_BEGIN; dir < DIAGDIR_END; dir++) {
/* Is the tile within the map? */
for (uint j = extent[dir] + n * 2 + 1; j != 0; j--) {
if (x < MapSizeX() && y < MapSizeY()) {
TileIndex t = TileXY(x, y);
/* Is the callback successful? */
if (proc(t, user_data)) {
/* Stop the search */
*tile = t;
return true;
}
}
/* Step to the next 'neighbour' in the circular line */
x += _tileoffs_by_diagdir[dir].x;
y += _tileoffs_by_diagdir[dir].y;
}
}
/* Jump to next circle to test */
x += _tileoffs_by_dir[DIR_W].x;
y += _tileoffs_by_dir[DIR_W].y;
}
*tile = INVALID_TILE;
return false;
}
/**
* Generalized contiguous matching tile area size threshold function.
* Contiguous means directly adjacent by DiagDirection directions.
*
* @param tile to start the search from.
* @param threshold minimum number of matching tiles for success, searching is halted when this is reached.
* @param proc callback testing function pointer.
* @param user_data to be passed to the callback function. Depends on the implementation
* @return whether the contiguous tile area size is >= threshold
* @pre proc != nullptr
*/
bool EnoughContiguousTilesMatchingCondition(TileIndex tile, uint threshold, TestTileOnSearchProc proc, void *user_data)
{
dbg_assert(proc != nullptr);
if (threshold == 0) return true;
static_assert(MAX_MAP_TILES_BITS <= 30);
btree::btree_set<uint32_t> processed_tiles;
ring_buffer<uint32_t> candidates;
uint matching_count = 0;
auto process_tile = [&](TileIndex t, DiagDirection exclude_onward_dir) {
auto iter = processed_tiles.lower_bound(t);
if (iter != processed_tiles.end() && *iter == t) {
/* done this tile already */
} else {
if (proc(t, user_data)) {
matching_count++;
for (DiagDirection dir = DIAGDIR_BEGIN; dir < DIAGDIR_END; dir++) {
if (dir == exclude_onward_dir) continue;
TileIndex neighbour_tile = AddTileIndexDiffCWrap(t, TileIndexDiffCByDiagDir(dir));
if (IsValidTile(neighbour_tile)) {
candidates.push_back(neighbour_tile | (ReverseDiagDir(dir) << 30));
}
}
}
processed_tiles.insert(iter, t);
}
};
process_tile(tile, INVALID_DIAGDIR);
while (matching_count < threshold && !candidates.empty()) {
uint32_t next = candidates.front();
candidates.pop_front();
TileIndex t = GB(next, 0, 30);
DiagDirection exclude_onward_dir = (DiagDirection)GB(next, 30, 2);
process_tile(t, exclude_onward_dir);
}
return matching_count >= threshold;
}
void IterateCurvedCircularTileArea(TileIndex centre_tile, uint diameter, TileIteratorProc proc, void *user_data)
{
const uint radius_sq = ((diameter * diameter) + 2) / 4;
const uint centre_radius = (diameter + 1) / 2;
const int centre_x = TileX(centre_tile);
const int centre_y = TileY(centre_tile);
/* Centre row */
for (int x = std::max<int>(0, centre_x - centre_radius); x <= std::min<int>(MapMaxX(), centre_x + centre_radius); x++) {
proc(TileXY(x, centre_y), user_data);
}
/* Other (shorter) rows */
for (uint offset = 1; offset <= centre_radius; offset++) {
const uint offset_sq = offset * offset;
uint half_width = 0;
while (offset_sq + (half_width * half_width) < radius_sq) {
half_width++;
}
const int x_left = std::max<int>(0, centre_x - half_width);
const int x_right = std::min<int>(MapMaxX(), centre_x + half_width);
auto iterate_row = [&](int y) {
if (y < 0 || y > (int)MapMaxY()) return;
for (int x = x_left; x <= x_right; x++) {
proc(TileXY(x, y), user_data);
}
};
iterate_row(centre_y - offset);
iterate_row(centre_y + offset);
}
}
/**
* Finds the distance for the closest tile with water/land given a tile
* @param tile the tile to find the distance too
* @param water whether to find water or land
* @return distance to nearest water (max 0x7F) / land (max 0x1FF; 0x200 if there is no land)
*/
uint GetClosestWaterDistance(TileIndex tile, bool water)
{
if (HasTileWaterGround(tile) == water) return 0;
uint max_dist = water ? 0x7F : 0x200;
int x = TileX(tile);
int y = TileY(tile);
uint max_x = MapMaxX();
uint max_y = MapMaxY();
uint min_xy = _settings_game.construction.freeform_edges ? 1 : 0;
/* go in a 'spiral' with increasing manhattan distance in each iteration */
for (uint dist = 1; dist < max_dist; dist++) {
/* next 'diameter' */
y--;
/* going counter-clockwise around this square */
for (DiagDirection dir = DIAGDIR_BEGIN; dir < DIAGDIR_END; dir++) {
static const int8_t ddx[DIAGDIR_END] = { -1, 1, 1, -1};
static const int8_t ddy[DIAGDIR_END] = { 1, 1, -1, -1};
int dx = ddx[dir];
int dy = ddy[dir];
/* each side of this square has length 'dist' */
for (uint a = 0; a < dist; a++) {
/* MP_VOID tiles are not checked (interval is [min; max) for IsInsideMM())*/
if (IsInsideMM(x, min_xy, max_x) && IsInsideMM(y, min_xy, max_y)) {
TileIndex t = TileXY(x, y);
if (HasTileWaterGround(t) == water) return dist;
}
x += dx;
y += dy;
}
}
}
if (!water) {
/* no land found - is this a water-only map? */
for (TileIndex t = 0; t < MapSize(); t++) {
if (!IsTileType(t, MP_VOID) && !IsTileType(t, MP_WATER)) return 0x1FF;
}
}
return max_dist;
}
static const char *tile_type_names[16] = {
"MP_CLEAR",
"MP_RAILWAY",
"MP_ROAD",
"MP_HOUSE",
"MP_TREES",
"MP_STATION",
"MP_WATER",
"MP_VOID",
"MP_INDUSTRY",
"MP_TUNNELBRIDGE",
"MP_OBJECT",
"INVALID_B",
"INVALID_C",
"INVALID_D",
"INVALID_E",
"INVALID_F",
};
char *DumpTileInfo(char *b, const char *last, TileIndex tile)
{
if (tile == INVALID_TILE) {
b += seprintf(b, last, "tile: %X (INVALID_TILE)", tile);
} else {
b += seprintf(b, last, "tile: %X (%u x %u)", tile, TileX(tile), TileY(tile));
}
if (!_m || !_me) {
b += seprintf(b, last, ", NO MAP ALLOCATED");
} else {
if (tile >= MapSize()) {
b += seprintf(b, last, ", TILE OUTSIDE MAP");
} else {
b += seprintf(b, last, ", type: %02X (%s), height: %02X, data: %02X %04X %02X %02X %02X %02X %02X %04X",
_m[tile].type, tile_type_names[GB(_m[tile].type, 4, 4)], _m[tile].height,
_m[tile].m1, _m[tile].m2, _m[tile].m3, _m[tile].m4, _m[tile].m5, _me[tile].m6, _me[tile].m7, _me[tile].m8);
}
}
return b;
}
void DumpMapStats(char *b, const char *last)
{
std::array<uint, 16> tile_types;
uint restricted_signals = 0;
uint prog_signals = 0;
uint dual_rail_type = 0;
uint road_works = 0;
enum TunnelBridgeBits {
TBB_BRIDGE = 1 << 0,
TBB_ROAD = 1 << 1,
TBB_TRAM = 1 << 2,
TBB_RAIL = 1 << 3,
TBB_WATER = 1 << 4,
TBB_CUSTOM_HEAD = 1 << 5,
TBB_DUAL_RT = 1 << 6,
TBB_SIGNALLED = 1 << 7,
TBB_SIGNALLED_BIDI = 1 << 8,
};
btree::btree_map<uint, uint> tunnel_bridge_stats;
for (uint type = 0; type < 16; type++) {
tile_types[type] = 0;
}
for (TileIndex t = 0; t < MapSize(); t++) {
tile_types[GetTileType(t)]++;
if (IsTileType(t, MP_RAILWAY)) {
if (GetRailTileType(t) == RAIL_TILE_SIGNALS) {
if (IsRestrictedSignal(t)) restricted_signals++;
if (HasSignalOnTrack(t, TRACK_LOWER) && GetSignalType(t, TRACK_LOWER) == SIGTYPE_PROG) prog_signals++;
if (HasSignalOnTrack(t, TRACK_UPPER) && GetSignalType(t, TRACK_UPPER) == SIGTYPE_PROG) prog_signals++;
}
}
bool dual_rt = false;
RailType rt1 = GetTileRailType(t);
if (rt1 != INVALID_RAILTYPE) {
RailType rt2 = GetTileSecondaryRailTypeIfValid(t);
if (rt2 != INVALID_RAILTYPE && rt1 != rt2) {
dual_rail_type++;
dual_rt = true;
}
}
if (IsNormalRoadTile(t) && HasRoadWorks(t)) road_works++;
if (IsTileType(t, MP_TUNNELBRIDGE)) {
uint bucket = 0;
if (IsBridge(t)) bucket |= TBB_BRIDGE;
if (IsTunnelBridgeWithSignalSimulation(t)) {
bucket |= TBB_SIGNALLED;
if (IsTunnelBridgeSignalSimulationBidirectional(t)) bucket |= TBB_SIGNALLED_BIDI;
if (IsTunnelBridgeRestrictedSignal(t)) restricted_signals++;
}
if (GetTunnelBridgeTransportType(t) == TRANSPORT_ROAD) {
if (HasTileRoadType(t, RTT_ROAD)) bucket |= TBB_ROAD;
if (HasTileRoadType(t, RTT_TRAM)) bucket |= TBB_TRAM;
}
if (GetTunnelBridgeTransportType(t) == TRANSPORT_RAIL) bucket |= TBB_RAIL;
if (GetTunnelBridgeTransportType(t) == TRANSPORT_WATER) bucket |= TBB_WATER;
if (IsCustomBridgeHeadTile(t)) bucket |= TBB_CUSTOM_HEAD;
if (dual_rt) bucket |= TBB_DUAL_RT;
tunnel_bridge_stats[bucket]++;
}
}
for (uint type = 0; type < 16; type++) {
if (tile_types[type]) b += seprintf(b, last, "%-20s %20u\n", tile_type_names[type], tile_types[type]);
}
b += seprintf(b, last, "\n");
if (restricted_signals) b += seprintf(b, last, "restricted signals %20u\n", restricted_signals);
if (prog_signals) b += seprintf(b, last, "prog signals %20u\n", prog_signals);
if (dual_rail_type) b += seprintf(b, last, "dual rail type %20u\n", dual_rail_type);
if (road_works) b += seprintf(b, last, "road works %20u\n", road_works);
for (auto it : tunnel_bridge_stats) {
b = strecpy(b, it.first & TBB_BRIDGE ? "bridge" : "tunnel", last, true);
if (it.first & TBB_ROAD) b = strecpy(b, ", road", last, true);
if (it.first & TBB_TRAM) b = strecpy(b, ", tram", last, true);
if (it.first & TBB_RAIL) b = strecpy(b, ", rail", last, true);
if (it.first & TBB_WATER) b = strecpy(b, ", water", last, true);
if (it.first & TBB_CUSTOM_HEAD) b = strecpy(b, ", custom head", last, true);
if (it.first & TBB_DUAL_RT) b = strecpy(b, ", dual rail type", last, true);
if (it.first & TBB_SIGNALLED) b = strecpy(b, ", signalled", last, true);
if (it.first & TBB_SIGNALLED_BIDI) b = strecpy(b, ", bidi", last, true);
b += seprintf(b, last, ": %u\n", it.second);
}
}