You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenTTD-patches/src/linkgraph/demands.cpp

519 lines
15 KiB
C++

/** @file demands.cpp Definition of demand calculating link graph handler. */
#include "../stdafx.h"
#include "demands.h"
#include "../core/ring_buffer_queue.hpp"
#include <algorithm>
#include <tuple>
#include "../safeguards.h"
typedef ring_buffer_queue<NodeID> NodeList;
/**
* Scale various things according to symmetric/asymmetric distribution.
*/
class Scaler {
public:
void SetDemands(LinkGraphJob &job, NodeID from, NodeID to, uint demand_forw);
};
/**
* Scaler for symmetric distribution.
*/
class SymmetricScaler : public Scaler {
public:
/**
* Constructor.
* @param mod_size Size modifier to be used. Determines how much demands
* increase with the supply of the remote station.
*/
inline SymmetricScaler(uint mod_size) : mod_size(mod_size), supply_sum(0),
demand_per_node(0)
{}
/**
* Count a node's supply into the sum of supplies.
* @param node Node.
*/
inline void AddNode(const Node &node)
{
this->supply_sum += node.Supply();
}
/**
* Calculate the mean demand per node using the sum of supplies.
* @param num_demands Number of accepting nodes.
*/
inline void SetDemandPerNode(uint num_demands)
{
this->demand_per_node = std::max(this->supply_sum / num_demands, 1U);
}
/**
* Get the effective supply of one node towards another one. In symmetric
* distribution the supply of the other node is weighed in.
* @param from The supplying node.
* @param to The receiving node.
* @return Effective supply.
*/
inline uint EffectiveSupply(const Node &from, const Node &to)
{
return std::max(from.Supply() * std::max(1U, to.Supply()) * this->mod_size / 100 / this->demand_per_node, 1U);
}
/**
* Check if there is any acceptance left for this node. In symmetric distribution
* nodes only accept anything if they also supply something. So if
* undelivered_supply == 0 at the node there isn't any demand left either.
* @param to Node to be checked.
* @return If demand is left.
*/
inline bool HasDemandLeft(const Node &to)
{
return (to.Supply() == 0 || to.UndeliveredSupply() > 0) && to.Demand() > 0;
}
void SetDemands(LinkGraphJob &job, NodeID from, NodeID to, uint demand_forw);
private:
uint mod_size; ///< Size modifier. Determines how much demands increase with the supply of the remote station.
uint supply_sum; ///< Sum of all supplies in the component.
uint demand_per_node; ///< Mean demand associated with each node.
};
/**
* A scaler for asymmetric distribution.
*/
class AsymmetricScaler : public Scaler {
public:
/**
* Nothing to do here.
* @param unused.
*/
inline void AddNode(const Node &)
{
}
/**
* Nothing to do here.
* @param unused.
*/
inline void SetDemandPerNode(uint)
{
}
/**
* Nothing to do here.
* @param unused.
* @param unused.
*/
inline void AdjustDemandNodes(LinkGraphJob &, const std::vector<NodeID> &)
{
}
/**
* Get the effective supply of one node towards another one.
* @param from The supplying node.
* @param unused.
*/
inline uint EffectiveSupply(const Node &from, const Node &)
{
return from.Supply();
}
/**
* Check if there is any acceptance left for this node. In asymmetric distribution
* nodes always accept as long as their demand > 0.
* @param to The node to be checked.
*/
inline bool HasDemandLeft(const Node &to) { return to.Demand() > 0; }
};
/**
* A scaler for asymmetric distribution (equal supply).
*/
class AsymmetricScalerEq : public Scaler {
public:
/**
* Count a node's supply into the sum of supplies.
* @param node Node.
*/
inline void AddNode(const Node &node)
{
this->supply_sum += node.Supply();
}
/**
* Calculate the mean demand per node using the sum of supplies.
* @param num_demands Number of accepting nodes.
*/
inline void SetDemandPerNode(uint num_demands)
{
this->demand_per_node = CeilDiv(this->supply_sum, num_demands);
this->missing_supply = (this->demand_per_node * num_demands) - this->supply_sum;
}
/**
* Adjust demand nodes after setting demand per node.
* @param job The link graph job.
* @param demands List of demand nodes to adjust.
*/
inline void AdjustDemandNodes(LinkGraphJob &job, const std::vector<NodeID> &demands)
{
const uint count = std::min<uint>((uint)demands.size(), this->missing_supply);
this->missing_supply = 0;
for (uint i = 0; i < count; i++) {
job[demands[i]].ReceiveDemand(1);
}
}
/**
* Get the effective supply of one node towards another one. In symmetric
* distribution the supply of the other node is weighed in.
* @param from The supplying node.
* @param to The receiving node.
* @return Effective supply.
*/
inline uint EffectiveSupply(const Node &from, const Node &to)
{
return std::max<int>(std::min<int>(from.Supply(), ((int) this->demand_per_node) - ((int) to.ReceivedDemand())), 1);
}
/**
* Check if there is any acceptance left for this node. In asymmetric (equal) distribution
* nodes accept as long as their demand > 0 and received_demand < demand_per_node.
* @param to The node to be checked.
*/
inline bool HasDemandLeft(const Node &to)
{
return to.Demand() > 0 && to.ReceivedDemand() < this->demand_per_node;
}
void SetDemands(LinkGraphJob &job, NodeID from, NodeID to, uint demand_forw);
private:
uint supply_sum; ///< Sum of all supplies in the component.
uint demand_per_node; ///< Mean demand associated with each node.
uint missing_supply; ///< Suppply/demand adjustment for in AdjustDemandNodes.
};
/**
* Set the demands between two nodes using the given base demand. In symmetric mode
* this sets demands in both directions.
* @param job The link graph job.
* @param from_id The supplying node.
* @param to_id The receiving node.
* @param demand_forw Demand calculated for the "forward" direction.
*/
void SymmetricScaler::SetDemands(LinkGraphJob &job, NodeID from_id, NodeID to_id, uint demand_forw)
{
if (job[from_id].Demand() > 0) {
uint demand_back = demand_forw * this->mod_size / 100;
uint undelivered = job[to_id].UndeliveredSupply();
if (demand_back > undelivered) {
demand_back = undelivered;
demand_forw = std::max(1U, demand_back * 100 / this->mod_size);
}
this->Scaler::SetDemands(job, to_id, from_id, demand_back);
}
this->Scaler::SetDemands(job, from_id, to_id, demand_forw);
}
/**
* Set the demands between two nodes using the given base demand.
* @param job The link graph job.
* @param from_id The supplying node.
* @param to_id The receiving node.
* @param demand_forw Demand calculated for the "forward" direction.
*/
void AsymmetricScalerEq::SetDemands(LinkGraphJob &job, NodeID from_id, NodeID to_id, uint demand_forw)
{
this->Scaler::SetDemands(job, from_id, to_id, demand_forw);
job[to_id].ReceiveDemand(demand_forw);
}
/**
* Set the demands between two nodes using the given base demand. In asymmetric mode
* this only sets demand in the "forward" direction.
* @param job The link graph job.
* @param from_id The supplying node.
* @param to_id The receiving node.
* @param demand_forw Demand calculated for the "forward" direction.
*/
inline void Scaler::SetDemands(LinkGraphJob &job, NodeID from_id, NodeID to_id, uint demand_forw)
{
if (demand_forw == 0) return;
job[from_id].DeliverSupply(demand_forw);
uint &demand = job.demand_matrix[(from_id * job.Size()) + to_id];
if (demand == 0) job.demand_matrix_count++;
demand += demand_forw;
}
/**
* Do the actual demand calculation, called from constructor.
* @param job Job to calculate the demands for.
* @param reachable_nodes Bitmap of reachable nodes.
* @tparam Tscaler Scaler to be used for scaling demands.
*/
template<class Tscaler>
void DemandCalculator::CalcDemand(LinkGraphJob &job, const std::vector<bool> &reachable_nodes, Tscaler scaler)
{
NodeList supplies;
NodeList demands;
uint num_supplies = 0;
uint num_demands = 0;
for (NodeID node = 0; node < job.Size(); node++) {
if (!reachable_nodes[node]) continue;
scaler.AddNode(job[node]);
if (job[node].Supply() > 0) {
supplies.push(node);
num_supplies++;
}
if (job[node].Demand() > 0) {
demands.push(node);
num_demands++;
}
}
if (num_supplies == 0 || num_demands == 0) return;
/* Mean acceptance attributed to each node. If the distribution is
* symmetric this is relative to remote supply, otherwise it is
* relative to remote demand. */
scaler.SetDemandPerNode(num_demands);
uint chance = 0;
while (!supplies.empty() && !demands.empty()) {
NodeID from_id = supplies.front();
supplies.pop();
for (uint i = 0; i < num_demands; ++i) {
assert(!demands.empty());
NodeID to_id = demands.front();
demands.pop();
if (from_id == to_id) {
/* Only one node with supply and demand left */
if (demands.empty() && supplies.empty()) return;
demands.push(to_id);
continue;
}
int32_t supply = scaler.EffectiveSupply(job[from_id], job[to_id]);
assert(supply > 0);
constexpr int32_t divisor_scale = 16;
int32_t scaled_distance = this->base_distance;
if (this->mod_dist > 0) {
const int32_t distance = DistanceMaxPlusManhattan(job[from_id].XY(), job[to_id].XY());
/* Scale distance around base_distance by (mod_dist * (100 / 1024)).
* mod_dist may be > 1024, so clamp result to be non-negative */
scaled_distance = std::max(0, this->base_distance + (((distance - this->base_distance) * this->mod_dist) / 1024));
}
/* Scale the accuracy by distance around accuracy / 2 */
const int32_t divisor = divisor_scale + ((this->accuracy * scaled_distance * divisor_scale) / (this->base_distance * 2));
assert(divisor >= divisor_scale);
uint demand_forw = 0;
if (divisor <= (supply * divisor_scale)) {
/* At first only distribute demand if
* effective supply / accuracy divisor >= 1
* Others are too small or too far away to be considered. */
demand_forw = (supply * divisor_scale) / divisor;
} else if (++chance > this->accuracy * num_demands * num_supplies) {
/* After some trying, if there is still supply left, distribute
* demand also to other nodes. */
demand_forw = 1;
}
demand_forw = std::min(demand_forw, job[from_id].UndeliveredSupply());
scaler.SetDemands(job, from_id, to_id, demand_forw);
if (scaler.HasDemandLeft(job[to_id])) {
demands.push(to_id);
} else {
num_demands--;
}
if (job[from_id].UndeliveredSupply() == 0) break;
}
if (job[from_id].UndeliveredSupply() != 0) {
supplies.push(from_id);
} else {
num_supplies--;
}
}
}
/**
* Do the actual demand calculation, called from constructor.
* @param job Job to calculate the demands for.
* @param reachable_nodes Bitmap of reachable nodes.
* @tparam Tscaler Scaler to be used for scaling demands.
*/
template<class Tscaler>
void DemandCalculator::CalcMinimisedDistanceDemand(LinkGraphJob &job, const std::vector<bool> &reachable_nodes, Tscaler scaler)
{
std::vector<NodeID> supplies;
std::vector<NodeID> demands;
for (NodeID node = 0; node < job.Size(); node++) {
if (!reachable_nodes[node]) continue;
scaler.AddNode(job[node]);
if (job[node].Supply() > 0) {
supplies.push_back(node);
}
if (job[node].Demand() > 0) {
demands.push_back(node);
}
}
if (supplies.empty() || demands.empty()) return;
scaler.SetDemandPerNode((uint)demands.size());
scaler.AdjustDemandNodes(job, demands);
struct EdgeCandidate {
NodeID from_id;
NodeID to_id;
uint distance;
};
std::vector<EdgeCandidate> candidates;
candidates.reserve(supplies.size() * demands.size() - std::min(supplies.size(), demands.size()));
for (NodeID from_id : supplies) {
for (NodeID to_id : demands) {
if (from_id != to_id) {
candidates.push_back({ from_id, to_id, DistanceMaxPlusManhattan(job[from_id].XY(), job[to_id].XY()) });
}
}
}
std::sort(candidates.begin(), candidates.end(), [](const EdgeCandidate &a, const EdgeCandidate &b) {
return std::tie(a.distance, a.from_id, a.to_id) < std::tie(b.distance, b.from_id, b.to_id);
});
for (const EdgeCandidate &candidate : candidates) {
if (job[candidate.from_id].UndeliveredSupply() == 0) continue;
if (!scaler.HasDemandLeft(job[candidate.to_id])) continue;
scaler.SetDemands(job, candidate.from_id, candidate.to_id, std::min(job[candidate.from_id].UndeliveredSupply(), scaler.EffectiveSupply(job[candidate.from_id], job[candidate.to_id])));
}
}
/**
* Create the DemandCalculator and immediately do the calculation.
* @param job Job to calculate the demands for.
*/
DemandCalculator::DemandCalculator(LinkGraphJob &job) :
base_distance(IntSqrt(DistanceMaxPlusManhattan(TileXY(0,0), TileXY(MapMaxX(), MapMaxY()))))
{
const LinkGraphSettings &settings = job.Settings();
CargoID cargo = job.Cargo();
this->accuracy = settings.accuracy;
this->mod_dist = settings.demand_distance;
if (this->mod_dist > 100) {
/* Increase effect of mod_dist > 100.
* Quadratic:
* 100 --> 100
* 150 --> 308
* 200 --> 933
* 255 --> 2102
*/
int over100 = this->mod_dist - 100;
this->mod_dist = 100 + ((over100 * over100) / 12);
}
if (settings.GetDistributionType(cargo) == DT_MANUAL) return;
const uint size = job.Size();
/* Symmetric edge matrix
* Storage order: e01 e02 e12 e03 e13 e23 e04 e14 e24 e34 ... */
auto se_index = [](uint i, uint j) -> uint {
if (j < i) std::swap(i, j);
return i + (j * (j - 1) / 2);
};
std::vector<bool> symmetric_edges(se_index(0, size));
for (auto &it : job.Graph().GetEdges()) {
if (it.first.first != it.first.second) {
symmetric_edges[se_index(it.first.first, it.first.second)] = true;
}
}
uint first_unseen = 0;
std::vector<bool> reachable_nodes(size);
job.demand_matrix.reset(new uint[size * size]{});
job.demand_matrix_count = 0;
do {
reachable_nodes.assign(size, false);
std::vector<NodeID> queue;
queue.push_back(first_unseen);
reachable_nodes[first_unseen] = true;
while (!queue.empty()) {
NodeID from = queue.back();
queue.pop_back();
for (NodeID to = 0; to < size; ++to) {
if (from == to) continue;
if (symmetric_edges[se_index(from, to)]) {
std::vector<bool>::reference bit = reachable_nodes[to];
if (!bit) {
bit = true;
queue.push_back(to);
}
}
}
}
switch (settings.GetDistributionType(cargo)) {
case DT_SYMMETRIC:
this->CalcDemand<SymmetricScaler>(job, reachable_nodes, SymmetricScaler(settings.demand_size));
break;
case DT_ASYMMETRIC:
this->CalcDemand<AsymmetricScaler>(job, reachable_nodes, AsymmetricScaler());
break;
case DT_ASYMMETRIC_EQ:
this->CalcMinimisedDistanceDemand<AsymmetricScalerEq>(job, reachable_nodes, AsymmetricScalerEq());
break;
case DT_ASYMMETRIC_NEAR:
this->CalcMinimisedDistanceDemand<AsymmetricScaler>(job, reachable_nodes, AsymmetricScaler());
break;
default:
/* Nothing to do. */
break;
}
while (first_unseen < size && reachable_nodes[first_unseen]) {
first_unseen++;
}
} while (first_unseen < size);
if (job.demand_matrix_count > 0) {
job.demand_annotation_store.resize(job.demand_matrix_count);
size_t idx = 0;
const uint *demand = job.demand_matrix.get();
for (NodeID from = 0; from != size; from++) {
const size_t start_idx = idx;
for (NodeID to = 0; to != size; to++) {
if (*demand != 0) {
job.demand_annotation_store[idx] = { to, *demand, *demand };
idx++;
}
demand++;
}
if (idx != start_idx) {
job[from].SetDemandAnnotations({ job.demand_annotation_store.data() + start_idx, idx - start_idx });
}
}
}
job.demand_matrix.reset();
}