You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenTTD-patches/src/landscape.cpp

1638 lines
56 KiB
C++

/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file landscape.cpp Functions related to the landscape (slopes etc.). */
/** @defgroup SnowLineGroup Snowline functions and data structures */
#include "stdafx.h"
#include "heightmap.h"
#include "clear_map.h"
#include "spritecache.h"
#include "viewport_func.h"
#include "command_func.h"
#include "landscape.h"
#include "void_map.h"
#include "tgp.h"
#include "genworld.h"
#include "fios.h"
#include "date_func.h"
#include "water.h"
#include "effectvehicle_func.h"
#include "landscape_type.h"
#include "animated_tile_func.h"
#include "core/random_func.hpp"
#include "object_base.h"
#include "company_func.h"
#include "tunnelbridge_map.h"
#include "pathfinder/npf/aystar.h"
#include "sl/saveload.h"
#include "framerate_type.h"
#include "town.h"
#include "3rdparty/cpp-btree/btree_set.h"
#include "scope_info.h"
#include "core/ring_buffer.hpp"
#include "network/network_sync.h"
#include <array>
#include <list>
#include <set>
#include "table/strings.h"
#include "table/sprites.h"
#include INCLUDE_FOR_PREFETCH_NTA
#include "safeguards.h"
extern const TileTypeProcs
_tile_type_clear_procs,
_tile_type_rail_procs,
_tile_type_road_procs,
_tile_type_town_procs,
_tile_type_trees_procs,
_tile_type_station_procs,
_tile_type_water_procs,
_tile_type_void_procs,
_tile_type_industry_procs,
_tile_type_tunnelbridge_procs,
_tile_type_object_procs;
/**
* Tile callback functions for each type of tile.
* @ingroup TileCallbackGroup
* @see TileType
*/
const TileTypeProcs * const _tile_type_procs[16] = {
&_tile_type_clear_procs, ///< Callback functions for MP_CLEAR tiles
&_tile_type_rail_procs, ///< Callback functions for MP_RAILWAY tiles
&_tile_type_road_procs, ///< Callback functions for MP_ROAD tiles
&_tile_type_town_procs, ///< Callback functions for MP_HOUSE tiles
&_tile_type_trees_procs, ///< Callback functions for MP_TREES tiles
&_tile_type_station_procs, ///< Callback functions for MP_STATION tiles
&_tile_type_water_procs, ///< Callback functions for MP_WATER tiles
&_tile_type_void_procs, ///< Callback functions for MP_VOID tiles
&_tile_type_industry_procs, ///< Callback functions for MP_INDUSTRY tiles
&_tile_type_tunnelbridge_procs, ///< Callback functions for MP_TUNNELBRIDGE tiles
&_tile_type_object_procs, ///< Callback functions for MP_OBJECT tiles
};
/** landscape slope => sprite */
extern const byte _slope_to_sprite_offset[32] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0,
0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 17, 0, 15, 18, 0,
};
/**
* Description of the snow line throughout the year.
*
* If it is \c nullptr, a static snowline height is used, as set by \c _settings_game.game_creation.snow_line_height.
* Otherwise it points to a table loaded from a newGRF file that describes the variable snowline.
* @ingroup SnowLineGroup
* @see GetSnowLine() GameCreationSettings
*/
static SnowLine *_snow_line = nullptr;
/** The current spring during river generation */
static TileIndex _current_spring = INVALID_TILE;
/** The current estuary during river generation when one river flows into another */
static TileIndex _current_estuary = INVALID_TILE;
/** Whether the current river is a big river that others flow into */
static bool _is_main_river = false;
byte _cached_snowline = 0;
byte _cached_highest_snowline = 0;
byte _cached_lowest_snowline = 0;
byte _cached_tree_placement_highest_snowline = 0;
/**
* Map 2D viewport or smallmap coordinate to 3D world or tile coordinate.
* Function takes into account height of tiles and foundations.
*
* @param x X viewport 2D coordinate.
* @param y Y viewport 2D coordinate.
* @param clamp_to_map Clamp the coordinate outside of the map to the closest, non-void tile within the map.
* @param[out] clamped Whether coordinates were clamped.
* @return 3D world coordinate of point visible at the given screen coordinate (3D perspective).
*
* @note Inverse of #RemapCoords2 function. Smaller values may get rounded.
* @see InverseRemapCoords
*/
Point InverseRemapCoords2(int x, int y, bool clamp_to_map, bool *clamped)
{
if (clamped != nullptr) *clamped = false; // Not clamping yet.
/* Initial x/y world coordinate is like if the landscape
* was completely flat on height 0. */
Point pt = InverseRemapCoords(x, y);
const uint min_coord = _settings_game.construction.freeform_edges ? TILE_SIZE : 0;
const uint max_x = MapMaxX() * TILE_SIZE - 1;
const uint max_y = MapMaxY() * TILE_SIZE - 1;
if (clamp_to_map) {
/* Bring the coordinates near to a valid range. At the top we allow a number
* of extra tiles. This is mostly due to the tiles on the north side of
* the map possibly being drawn higher due to the extra height levels. */
int extra_tiles = CeilDiv(_settings_game.construction.map_height_limit * TILE_HEIGHT, TILE_PIXELS);
Point old_pt = pt;
pt.x = Clamp(pt.x, -extra_tiles * TILE_SIZE, max_x);
pt.y = Clamp(pt.y, -extra_tiles * TILE_SIZE, max_y);
if (clamped != nullptr) *clamped = (pt.x != old_pt.x) || (pt.y != old_pt.y);
}
/* Now find the Z-world coordinate by fix point iteration.
* This is a bit tricky because the tile height is non-continuous at foundations.
* The clicked point should be approached from the back, otherwise there are regions that are not clickable.
* (FOUNDATION_HALFTILE_LOWER on SLOPE_STEEP_S hides north halftile completely)
* So give it a z-malus of 4 in the first iterations. */
int z = 0;
if (clamp_to_map) {
for (int i = 0; i < 5; i++) z = GetSlopePixelZ(Clamp(pt.x + std::max(z, 4) - 4, min_coord, max_x), Clamp(pt.y + std::max(z, 4) - 4, min_coord, max_y)) / 2;
for (int m = 3; m > 0; m--) z = GetSlopePixelZ(Clamp(pt.x + std::max(z, m) - m, min_coord, max_x), Clamp(pt.y + std::max(z, m) - m, min_coord, max_y)) / 2;
for (int i = 0; i < 5; i++) z = GetSlopePixelZ(Clamp(pt.x + z, min_coord, max_x), Clamp(pt.y + z, min_coord, max_y)) / 2;
} else {
for (int i = 0; i < 5; i++) z = GetSlopePixelZOutsideMap(pt.x + std::max(z, 4) - 4, pt.y + std::max(z, 4) - 4) / 2;
for (int m = 3; m > 0; m--) z = GetSlopePixelZOutsideMap(pt.x + std::max(z, m) - m, pt.y + std::max(z, m) - m) / 2;
for (int i = 0; i < 5; i++) z = GetSlopePixelZOutsideMap(pt.x + z, pt.y + z ) / 2;
}
pt.x += z;
pt.y += z;
if (clamp_to_map) {
Point old_pt = pt;
pt.x = Clamp(pt.x, min_coord, max_x);
pt.y = Clamp(pt.y, min_coord, max_y);
if (clamped != nullptr) *clamped = *clamped || (pt.x != old_pt.x) || (pt.y != old_pt.y);
}
return pt;
}
/**
* Applies a foundation to a slope.
*
* @pre Foundation and slope must be valid combined.
* @param f The #Foundation.
* @param s The #Slope to modify.
* @return Increment to the tile Z coordinate.
*/
uint ApplyFoundationToSlope(Foundation f, Slope &s)
{
if (!IsFoundation(f)) return 0;
if (IsLeveledFoundation(f)) {
uint dz = 1 + (IsSteepSlope(s) ? 1 : 0);
s = SLOPE_FLAT;
return dz;
}
if (f != FOUNDATION_STEEP_BOTH && IsNonContinuousFoundation(f)) {
s = HalftileSlope(s, GetHalftileFoundationCorner(f));
return 0;
}
if (IsSpecialRailFoundation(f)) {
s = SlopeWithThreeCornersRaised(OppositeCorner(GetRailFoundationCorner(f)));
return 0;
}
uint dz = IsSteepSlope(s) ? 1 : 0;
Corner highest_corner = GetHighestSlopeCorner(s);
switch (f) {
case FOUNDATION_INCLINED_X:
s = (((highest_corner == CORNER_W) || (highest_corner == CORNER_S)) ? SLOPE_SW : SLOPE_NE);
break;
case FOUNDATION_INCLINED_Y:
s = (((highest_corner == CORNER_S) || (highest_corner == CORNER_E)) ? SLOPE_SE : SLOPE_NW);
break;
case FOUNDATION_STEEP_LOWER:
s = SlopeWithOneCornerRaised(highest_corner);
break;
case FOUNDATION_STEEP_BOTH:
s = HalftileSlope(SlopeWithOneCornerRaised(highest_corner), highest_corner);
break;
default: NOT_REACHED();
}
return dz;
}
/**
* Return world \c Z coordinate of a given point of a tile. Normally this is the
* Z of the ground/foundation at the given location, but in some cases the
* ground/foundation can differ from the Z coordinate that the (ground) vehicle
* passing over it would take. For example when entering a tunnel or bridge.
*
* @param x World X coordinate in tile "units".
* @param y World Y coordinate in tile "units".
* @param ground_vehicle Whether to get the Z coordinate of the ground vehicle, or the ground.
* @return World Z coordinate at tile ground (vehicle) level, including slopes and foundations.
*/
int GetSlopePixelZ(int x, int y, bool ground_vehicle)
{
TileIndex tile = TileVirtXY(x, y);
return _tile_type_procs[GetTileType(tile)]->get_slope_z_proc(tile, x, y, ground_vehicle);
}
/**
* Return world \c z coordinate of a given point of a tile,
* also for tiles outside the map (virtual "black" tiles).
*
* @param x World X coordinate in tile "units", may be outside the map.
* @param y World Y coordinate in tile "units", may be outside the map.
* @return World Z coordinate at tile ground level, including slopes and foundations.
*/
int GetSlopePixelZOutsideMap(int x, int y)
{
if (IsInsideBS(x, 0, MapSizeX() * TILE_SIZE) && IsInsideBS(y, 0, MapSizeY() * TILE_SIZE)) {
return GetSlopePixelZ(x, y, false);
} else {
return _tile_type_procs[MP_VOID]->get_slope_z_proc(INVALID_TILE, x, y, false);
}
}
/**
* Determine the Z height of a corner relative to TileZ.
*
* @pre The slope must not be a halftile slope.
*
* @param tileh The slope.
* @param corner The corner.
* @return Z position of corner relative to TileZ.
*/
int GetSlopeZInCorner(Slope tileh, Corner corner)
{
assert(!IsHalftileSlope(tileh));
return ((tileh & SlopeWithOneCornerRaised(corner)) != 0 ? 1 : 0) + (tileh == SteepSlope(corner) ? 1 : 0);
}
/**
* Determine the Z height of the corners of a specific tile edge
*
* @note If a tile has a non-continuous halftile foundation, a corner can have different heights wrt. its edges.
*
* @pre z1 and z2 must be initialized (typ. with TileZ). The corner heights just get added.
*
* @param tileh The slope of the tile.
* @param edge The edge of interest.
* @param z1 Gets incremented by the height of the first corner of the edge. (near corner wrt. the camera)
* @param z2 Gets incremented by the height of the second corner of the edge. (far corner wrt. the camera)
*/
void GetSlopePixelZOnEdge(Slope tileh, DiagDirection edge, int &z1, int &z2)
{
static const Slope corners[4][4] = {
/* corner | steep slope
* z1 z2 | z1 z2 */
{SLOPE_E, SLOPE_N, SLOPE_STEEP_E, SLOPE_STEEP_N}, // DIAGDIR_NE, z1 = E, z2 = N
{SLOPE_S, SLOPE_E, SLOPE_STEEP_S, SLOPE_STEEP_E}, // DIAGDIR_SE, z1 = S, z2 = E
{SLOPE_S, SLOPE_W, SLOPE_STEEP_S, SLOPE_STEEP_W}, // DIAGDIR_SW, z1 = S, z2 = W
{SLOPE_W, SLOPE_N, SLOPE_STEEP_W, SLOPE_STEEP_N}, // DIAGDIR_NW, z1 = W, z2 = N
};
int halftile_test = (IsHalftileSlope(tileh) ? SlopeWithOneCornerRaised(GetHalftileSlopeCorner(tileh)) : 0);
if (halftile_test == corners[edge][0]) z2 += TILE_HEIGHT; // The slope is non-continuous in z2. z2 is on the upper side.
if (halftile_test == corners[edge][1]) z1 += TILE_HEIGHT; // The slope is non-continuous in z1. z1 is on the upper side.
if ((tileh & corners[edge][0]) != 0) z1 += TILE_HEIGHT; // z1 is raised
if ((tileh & corners[edge][1]) != 0) z2 += TILE_HEIGHT; // z2 is raised
if (RemoveHalftileSlope(tileh) == corners[edge][2]) z1 += TILE_HEIGHT; // z1 is highest corner of a steep slope
if (RemoveHalftileSlope(tileh) == corners[edge][3]) z2 += TILE_HEIGHT; // z2 is highest corner of a steep slope
}
Slope UpdateFoundationSlopeFromTileSlope(TileIndex tile, Slope tileh, int &tilez)
{
Foundation f = _tile_type_procs[GetTileType(tile)]->get_foundation_proc(tile, tileh);
tilez += ApplyFoundationToSlope(f, tileh);
return tileh;
}
/**
* Get slope of a tile on top of a (possible) foundation
* If a tile does not have a foundation, the function returns the same as GetTileSlope.
*
* @param tile The tile of interest.
* @return The slope on top of the foundation and the z of the foundation slope.
*/
std::tuple<Slope, int> GetFoundationSlope(TileIndex tile)
{
auto [tileh, z] = GetTileSlopeZ(tile);
tileh = UpdateFoundationSlopeFromTileSlope(tile, tileh, z);
return {tileh, z};
}
bool HasFoundationNW(TileIndex tile, Slope slope_here, uint z_here)
{
if (IsCustomBridgeHeadTile(tile) && GetTunnelBridgeDirection(tile) == DIAGDIR_NW) return false;
int z_W_here = z_here;
int z_N_here = z_here;
GetSlopePixelZOnEdge(slope_here, DIAGDIR_NW, z_W_here, z_N_here);
auto [slope, z] = GetFoundationPixelSlope(TileAddXY(tile, 0, -1));
int z_W = z;
int z_N = z;
GetSlopePixelZOnEdge(slope, DIAGDIR_SE, z_W, z_N);
return (z_N_here > z_N) || (z_W_here > z_W);
}
bool HasFoundationNE(TileIndex tile, Slope slope_here, uint z_here)
{
if (IsCustomBridgeHeadTile(tile) && GetTunnelBridgeDirection(tile) == DIAGDIR_NE) return false;
int z_E_here = z_here;
int z_N_here = z_here;
GetSlopePixelZOnEdge(slope_here, DIAGDIR_NE, z_E_here, z_N_here);
auto [slope, z] = GetFoundationPixelSlope(TileAddXY(tile, -1, 0));
int z_E = z;
int z_N = z;
GetSlopePixelZOnEdge(slope, DIAGDIR_SW, z_E, z_N);
return (z_N_here > z_N) || (z_E_here > z_E);
}
/**
* Draw foundation \a f at tile \a ti. Updates \a ti.
* @param ti Tile to draw foundation on
* @param f Foundation to draw
*/
void DrawFoundation(TileInfo *ti, Foundation f)
{
if (!IsFoundation(f)) return;
/* Two part foundations must be drawn separately */
assert(f != FOUNDATION_STEEP_BOTH);
uint sprite_block = 0;
auto [slope, z] = GetFoundationPixelSlope(ti->tile);
/* Select the needed block of foundations sprites
* Block 0: Walls at NW and NE edge
* Block 1: Wall at NE edge
* Block 2: Wall at NW edge
* Block 3: No walls at NW or NE edge
*/
if (!HasFoundationNW(ti->tile, slope, z)) sprite_block += 1;
if (!HasFoundationNE(ti->tile, slope, z)) sprite_block += 2;
/* Use the original slope sprites if NW and NE borders should be visible */
SpriteID leveled_base = (sprite_block == 0 ? (int)SPR_FOUNDATION_BASE : (SPR_SLOPES_VIRTUAL_BASE + sprite_block * SPR_TRKFOUND_BLOCK_SIZE));
SpriteID inclined_base = SPR_SLOPES_VIRTUAL_BASE + SPR_SLOPES_INCLINED_OFFSET + sprite_block * SPR_TRKFOUND_BLOCK_SIZE;
SpriteID halftile_base = SPR_HALFTILE_FOUNDATION_BASE + sprite_block * SPR_HALFTILE_BLOCK_SIZE;
if (IsSteepSlope(ti->tileh)) {
if (!IsNonContinuousFoundation(f)) {
/* Lower part of foundation */
AddSortableSpriteToDraw(
leveled_base + (ti->tileh & ~SLOPE_STEEP), PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z
);
}
Corner highest_corner = GetHighestSlopeCorner(ti->tileh);
ti->z += ApplyPixelFoundationToSlope(f, ti->tileh);
if (IsInclinedFoundation(f)) {
/* inclined foundation */
byte inclined = highest_corner * 2 + (f == FOUNDATION_INCLINED_Y ? 1 : 0);
AddSortableSpriteToDraw(inclined_base + inclined, PAL_NONE, ti->x, ti->y,
f == FOUNDATION_INCLINED_X ? TILE_SIZE : 1,
f == FOUNDATION_INCLINED_Y ? TILE_SIZE : 1,
TILE_HEIGHT, ti->z
);
OffsetGroundSprite(0, 0);
} else if (IsLeveledFoundation(f)) {
AddSortableSpriteToDraw(leveled_base + SlopeWithOneCornerRaised(highest_corner), PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z - TILE_HEIGHT);
OffsetGroundSprite(0, -(int)TILE_HEIGHT);
} else if (f == FOUNDATION_STEEP_LOWER) {
/* one corner raised */
OffsetGroundSprite(0, -(int)TILE_HEIGHT);
} else {
/* halftile foundation */
int x_bb = (((highest_corner == CORNER_W) || (highest_corner == CORNER_S)) ? TILE_SIZE / 2 : 0);
int y_bb = (((highest_corner == CORNER_S) || (highest_corner == CORNER_E)) ? TILE_SIZE / 2 : 0);
AddSortableSpriteToDraw(halftile_base + highest_corner, PAL_NONE, ti->x + x_bb, ti->y + y_bb, TILE_SIZE / 2, TILE_SIZE / 2, TILE_HEIGHT - 1, ti->z + TILE_HEIGHT);
/* Reposition ground sprite back to original position after bounding box change above. This is similar to
* RemapCoords() but without zoom scaling. */
Point pt = {(y_bb - x_bb) * 2, y_bb + x_bb};
OffsetGroundSprite(-pt.x, -pt.y);
}
} else {
if (IsLeveledFoundation(f)) {
/* leveled foundation */
AddSortableSpriteToDraw(leveled_base + ti->tileh, PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z);
OffsetGroundSprite(0, -(int)TILE_HEIGHT);
} else if (IsNonContinuousFoundation(f)) {
/* halftile foundation */
Corner halftile_corner = GetHalftileFoundationCorner(f);
int x_bb = (((halftile_corner == CORNER_W) || (halftile_corner == CORNER_S)) ? TILE_SIZE / 2 : 0);
int y_bb = (((halftile_corner == CORNER_S) || (halftile_corner == CORNER_E)) ? TILE_SIZE / 2 : 0);
AddSortableSpriteToDraw(halftile_base + halftile_corner, PAL_NONE, ti->x + x_bb, ti->y + y_bb, TILE_SIZE / 2, TILE_SIZE / 2, TILE_HEIGHT - 1, ti->z);
/* Reposition ground sprite back to original position after bounding box change above. This is similar to
* RemapCoords() but without zoom scaling. */
Point pt = {(y_bb - x_bb) * 2, y_bb + x_bb};
OffsetGroundSprite(-pt.x, -pt.y);
} else if (IsSpecialRailFoundation(f)) {
/* anti-zig-zag foundation */
SpriteID spr;
if (ti->tileh == SLOPE_NS || ti->tileh == SLOPE_EW) {
/* half of leveled foundation under track corner */
spr = leveled_base + SlopeWithThreeCornersRaised(GetRailFoundationCorner(f));
} else {
/* tile-slope = sloped along X/Y, foundation-slope = three corners raised */
spr = inclined_base + 2 * GetRailFoundationCorner(f) + ((ti->tileh == SLOPE_SW || ti->tileh == SLOPE_NE) ? 1 : 0);
}
AddSortableSpriteToDraw(spr, PAL_NONE, ti->x, ti->y, TILE_SIZE, TILE_SIZE, TILE_HEIGHT - 1, ti->z);
OffsetGroundSprite(0, 0);
} else {
/* inclined foundation */
byte inclined = GetHighestSlopeCorner(ti->tileh) * 2 + (f == FOUNDATION_INCLINED_Y ? 1 : 0);
AddSortableSpriteToDraw(inclined_base + inclined, PAL_NONE, ti->x, ti->y,
f == FOUNDATION_INCLINED_X ? TILE_SIZE : 1,
f == FOUNDATION_INCLINED_Y ? TILE_SIZE : 1,
TILE_HEIGHT, ti->z
);
OffsetGroundSprite(0, 0);
}
ti->z += ApplyPixelFoundationToSlope(f, ti->tileh);
}
}
void DoClearSquare(TileIndex tile)
{
/* If the tile can have animation and we clear it, delete it from the animated tile list. */
if (_tile_type_procs[GetTileType(tile)]->animate_tile_proc != nullptr) DeleteAnimatedTile(tile);
MakeClear(tile, CLEAR_GRASS, _generating_world ? 3 : 0);
MarkTileDirtyByTile(tile);
}
/**
* Returns information about trackdirs and signal states.
* If there is any trackbit at 'side', return all trackdirbits.
* For TRANSPORT_ROAD, return no trackbits if there is no roadbit (of given subtype) at given side.
* @param tile tile to get info about
* @param mode transport type
* @param sub_mode for TRANSPORT_ROAD, roadtypes to check
* @param side side we are entering from, INVALID_DIAGDIR to return all trackbits
* @return trackdirbits and other info depending on 'mode'
*/
TrackStatus GetTileTrackStatus(TileIndex tile, TransportType mode, uint sub_mode, DiagDirection side)
{
return _tile_type_procs[GetTileType(tile)]->get_tile_track_status_proc(tile, mode, sub_mode, side);
}
/**
* Change the owner of a tile
* @param tile Tile to change
* @param old_owner Current owner of the tile
* @param new_owner New owner of the tile
*/
void ChangeTileOwner(TileIndex tile, Owner old_owner, Owner new_owner)
{
_tile_type_procs[GetTileType(tile)]->change_tile_owner_proc(tile, old_owner, new_owner);
}
void GetTileDesc(TileIndex tile, TileDesc *td)
{
_tile_type_procs[GetTileType(tile)]->get_tile_desc_proc(tile, td);
}
/**
* Has a snow line table already been loaded.
* @return true if the table has been loaded already.
* @ingroup SnowLineGroup
*/
bool IsSnowLineSet()
{
return _snow_line != nullptr;
}
/**
* Set a variable snow line, as loaded from a newgrf file.
* @param table the 12 * 32 byte table containing the snowline for each day
* @ingroup SnowLineGroup
*/
void SetSnowLine(byte table[SNOW_LINE_MONTHS][SNOW_LINE_DAYS])
{
_snow_line = CallocT<SnowLine>(1);
_snow_line->lowest_value = 0xFF;
memcpy(_snow_line->table, table, sizeof(_snow_line->table));
for (uint i = 0; i < SNOW_LINE_MONTHS; i++) {
for (uint j = 0; j < SNOW_LINE_DAYS; j++) {
_snow_line->highest_value = std::max(_snow_line->highest_value, table[i][j]);
_snow_line->lowest_value = std::min(_snow_line->lowest_value, table[i][j]);
}
}
UpdateCachedSnowLine();
UpdateCachedSnowLineBounds();
}
/**
* Get the current snow line, either variable or static.
* @return the snow line height.
* @ingroup SnowLineGroup
*/
byte GetSnowLineUncached()
{
if (_snow_line == nullptr) return _settings_game.game_creation.snow_line_height;
return _snow_line->table[CalTime::CurMonth()][CalTime::CurDay()];
}
void UpdateCachedSnowLine()
{
_cached_snowline = GetSnowLineUncached();
}
/**
* Cache the lowest and highest possible snow line heights, either variable or static.
* @ingroup SnowLineGroup
*/
void UpdateCachedSnowLineBounds()
{
_cached_highest_snowline = _snow_line == nullptr ? _settings_game.game_creation.snow_line_height : _snow_line->highest_value;
_cached_lowest_snowline = _snow_line == nullptr ? _settings_game.game_creation.snow_line_height : _snow_line->lowest_value;
uint snowline_range = ((_settings_game.construction.trees_around_snow_line_dynamic_range * (HighestSnowLine() - LowestSnowLine())) + 50) / 100;
_cached_tree_placement_highest_snowline = LowestSnowLine() + snowline_range;
}
/**
* Clear the variable snow line table and free the memory.
* @ingroup SnowLineGroup
*/
void ClearSnowLine()
{
free(_snow_line);
_snow_line = nullptr;
UpdateCachedSnowLine();
UpdateCachedSnowLineBounds();
}
/**
* Clear a piece of landscape
* @param tile tile to clear
* @param flags of operation to conduct
* @param p1 unused
* @param p2 unused
* @param text unused
* @return the cost of this operation or an error
*/
CommandCost CmdLandscapeClear(TileIndex tile, DoCommandFlag flags, uint32_t p1, uint32_t p2, const char *text)
{
CommandCost cost(EXPENSES_CONSTRUCTION);
bool do_clear = false;
/* Test for stuff which results in water when cleared. Then add the cost to also clear the water. */
if ((flags & DC_FORCE_CLEAR_TILE) && HasTileWaterClass(tile) && IsTileOnWater(tile) && !IsWaterTile(tile) && !IsCoastTile(tile)) {
if ((flags & DC_AUTO) && GetWaterClass(tile) == WATER_CLASS_CANAL) return_cmd_error(STR_ERROR_MUST_DEMOLISH_CANAL_FIRST);
do_clear = true;
const bool is_canal = GetWaterClass(tile) == WATER_CLASS_CANAL;
if (!is_canal && _game_mode != GM_EDITOR && !_settings_game.construction.enable_remove_water && !(flags & DC_ALLOW_REMOVE_WATER)) return_cmd_error(STR_ERROR_CAN_T_BUILD_ON_WATER);
cost.AddCost(is_canal ? _price[PR_CLEAR_CANAL] : _price[PR_CLEAR_WATER]);
}
Company *c = (flags & (DC_AUTO | DC_BANKRUPT)) ? nullptr : Company::GetIfValid(_current_company);
if (c != nullptr && (int)GB(c->clear_limit, 16, 16) < 1) {
return_cmd_error(STR_ERROR_CLEARING_LIMIT_REACHED);
}
if ((flags & DC_TOWN) && !MayTownModifyRoad(tile)) return CMD_ERROR;
const ClearedObjectArea *coa = FindClearedObject(tile);
/* If this tile was the first tile which caused object destruction, always
* pass it on to the tile_type_proc. That way multiple test runs and the exec run stay consistent. */
if (coa != nullptr && coa->first_tile != tile) {
/* If this tile belongs to an object which was already cleared via another tile, pretend it has been
* already removed.
* However, we need to check stuff, which is not the same for all object tiles. (e.g. being on water or not) */
/* If a object is removed, it leaves either bare land or water. */
if ((flags & DC_NO_WATER) && HasTileWaterClass(tile) && IsTileOnWater(tile)) {
return_cmd_error(STR_ERROR_CAN_T_BUILD_ON_WATER);
}
} else {
cost.AddCost(_tile_type_procs[GetTileType(tile)]->clear_tile_proc(tile, flags));
}
if (flags & DC_EXEC) {
if (c != nullptr) c->clear_limit -= 1 << 16;
if (do_clear) ForceClearWaterTile(tile);
}
return cost;
}
/**
* Clear a big piece of landscape
* @param tile end tile of area dragging
* @param flags of operation to conduct
* @param p1 start tile of area dragging
* @param p2 various bitstuffed data.
* bit 0: Whether to use the Orthogonal (0) or Diagonal (1) iterator.
* @param text unused
* @return the cost of this operation or an error
*/
CommandCost CmdClearArea(TileIndex tile, DoCommandFlag flags, uint32_t p1, uint32_t p2, const char *text)
{
if (p1 >= MapSize()) return CMD_ERROR;
Money money = GetAvailableMoneyForCommand();
CommandCost cost(EXPENSES_CONSTRUCTION);
CommandCost last_error = CMD_ERROR;
bool had_success = false;
const Company *c = (flags & (DC_AUTO | DC_BANKRUPT)) ? nullptr : Company::GetIfValid(_current_company);
int limit = (c == nullptr ? INT32_MAX : GB(c->clear_limit, 16, 16));
if (tile != p1) flags |= DC_FORCE_CLEAR_TILE;
OrthogonalOrDiagonalTileIterator iter(tile, p1, HasBit(p2, 0));
for (; *iter != INVALID_TILE; ++iter) {
TileIndex t = *iter;
CommandCost ret = DoCommand(t, 0, 0, flags & ~DC_EXEC, CMD_LANDSCAPE_CLEAR);
if (ret.Failed()) {
last_error = ret;
/* We may not clear more tiles. */
if (c != nullptr && GB(c->clear_limit, 16, 16) < 1) break;
continue;
}
had_success = true;
if (flags & DC_EXEC) {
money -= ret.GetCost();
if (ret.GetCost() > 0 && money < 0) {
_additional_cash_required = ret.GetCost();
return cost;
}
DoCommand(t, 0, 0, flags, CMD_LANDSCAPE_CLEAR);
/* draw explosion animation...
* Disable explosions when game is paused. Looks silly and blocks the view. */
if ((t == tile || t == p1) && _pause_mode == PM_UNPAUSED) {
/* big explosion in two corners, or small explosion for single tiles */
CreateEffectVehicleAbove(TileX(t) * TILE_SIZE + TILE_SIZE / 2, TileY(t) * TILE_SIZE + TILE_SIZE / 2, 2,
TileX(tile) == TileX(p1) && TileY(tile) == TileY(p1) ? EV_EXPLOSION_SMALL : EV_EXPLOSION_LARGE
);
}
} else {
/* When we're at the clearing limit we better bail (unneed) testing as well. */
if (ret.GetCost() != 0 && --limit <= 0) break;
}
cost.AddCost(ret);
}
return had_success ? cost : last_error;
}
TileIndex _cur_tileloop_tile;
TileIndex _aux_tileloop_tile;
static uint32_t GetTileLoopFeedback()
{
/* The pseudorandom sequence of tiles is generated using a Galois linear feedback
* shift register (LFSR). This allows a deterministic pseudorandom ordering, but
* still with minimal state and fast iteration. */
/* Maximal length LFSR feedback terms, from 12-bit (for 64x64 maps) to 28-bit (for 16kx16k maps).
* Extracted from http://www.ece.cmu.edu/~koopman/lfsr/ */
static const uint32_t feedbacks[] = {
0xD8F, 0x1296, 0x2496, 0x4357, 0x8679, 0x1030E, 0x206CD, 0x403FE, 0x807B8, 0x1004B2, 0x2006A8,
0x4004B2, 0x800B87, 0x10004F3, 0x200072D, 0x40006AE, 0x80009E3,
};
static_assert(lengthof(feedbacks) == MAX_MAP_TILES_BITS - 2 * MIN_MAP_SIZE_BITS + 1);
return feedbacks[MapLogX() + MapLogY() - 2 * MIN_MAP_SIZE_BITS];
}
static std::vector<uint> _tile_loop_counts;
void SetupTileLoopCounts()
{
_tile_loop_counts.resize(DayLengthFactor());
if (DayLengthFactor() == 0) return;
uint64_t count_per_tick_fp16 = (static_cast<uint64_t>(1) << (MapLogX() + MapLogY() + 8)) / DayLengthFactor();
uint64_t accumulator = 0;
for (uint &count : _tile_loop_counts) {
accumulator += count_per_tick_fp16;
count = static_cast<uint32_t>(accumulator >> 16);
accumulator &= 0xFFFF;
}
if (accumulator > 0) _tile_loop_counts[0]++;
}
/**
* Gradually iterate over all tiles on the map, calling their TileLoopProcs once every 256 ticks.
*/
void RunTileLoop(bool apply_day_length)
{
/* We update every tile every 256 ticks, so divide the map size by 2^8 = 256 */
uint count;
if (apply_day_length && DayLengthFactor() > 1) {
count = _tile_loop_counts[TickSkipCounter()];
if (count == 0) return;
} else {
count = 1 << (MapLogX() + MapLogY() - 8);
}
PerformanceAccumulator framerate(PFE_GL_LANDSCAPE);
const uint32_t feedback = GetTileLoopFeedback();
TileIndex tile = _cur_tileloop_tile;
/* The LFSR cannot have a zeroed state. */
dbg_assert(tile != 0);
SCOPE_INFO_FMT([&], "RunTileLoop: tile: %dx%d", TileX(tile), TileY(tile));
/* Manually update tile 0 every 256 ticks - the LFSR never iterates over it itself. */
if (_tick_counter % 256 == 0) {
_tile_type_procs[GetTileType(0)]->tile_loop_proc(0);
count--;
}
while (count--) {
/* Get the next tile in sequence using a Galois LFSR. */
TileIndex next = (tile >> 1) ^ (-(int32_t)(tile & 1) & feedback);
if (count > 0) {
PREFETCH_NTA(&_m[next]);
}
_tile_type_procs[GetTileType(tile)]->tile_loop_proc(tile);
tile = next;
}
_cur_tileloop_tile = tile;
RecordSyncEvent(NSRE_TILE);
}
void RunAuxiliaryTileLoop()
{
/* At day lengths <= 4, flooding is handled by main tile loop */
if (DayLengthFactor() <= 4 || (_scaled_tick_counter % 4) != 0) return;
PerformanceAccumulator framerate(PFE_GL_LANDSCAPE);
const uint32_t feedback = GetTileLoopFeedback();
uint count = 1 << (MapLogX() + MapLogY() - 8);
TileIndex tile = _aux_tileloop_tile;
while (count--) {
/* Get the next tile in sequence using a Galois LFSR. */
TileIndex next = (tile >> 1) ^ (-(int32_t)(tile & 1) & feedback);
if (count > 0) {
PREFETCH_NTA(&_m[next]);
}
if (IsFloodingTypeTile(tile) && !IsNonFloodingWaterTile(tile)) {
FloodingBehaviour fb = GetFloodingBehaviour(tile);
if (fb != FLOOD_NONE) TileLoopWaterFlooding(fb, tile);
}
tile = next;
}
_aux_tileloop_tile = tile;
RecordSyncEvent(NSRE_AUX_TILE);
}
void InitializeLandscape()
{
for (uint y = _settings_game.construction.freeform_edges ? 1 : 0; y < MapMaxY(); y++) {
for (uint x = _settings_game.construction.freeform_edges ? 1 : 0; x < MapMaxX(); x++) {
MakeClear(TileXY(x, y), CLEAR_GRASS, 3);
SetTileHeight(TileXY(x, y), 0);
SetTropicZone(TileXY(x, y), TROPICZONE_NORMAL);
ClearBridgeMiddle(TileXY(x, y));
}
}
for (uint x = 0; x < MapSizeX(); x++) MakeVoid(TileXY(x, MapMaxY()));
for (uint y = 0; y < MapSizeY(); y++) MakeVoid(TileXY(MapMaxX(), y));
}
static const byte _genterrain_tbl_1[5] = { 10, 22, 33, 37, 4 };
static const byte _genterrain_tbl_2[5] = { 0, 0, 0, 0, 33 };
static void GenerateTerrain(int type, uint flag)
{
uint32_t r = Random();
/* Choose one of the templates from the graphics file. */
const Sprite *templ = GetSprite((((r >> 24) * _genterrain_tbl_1[type]) >> 8) + _genterrain_tbl_2[type] + SPR_MAPGEN_BEGIN, SpriteType::MapGen, 0);
if (templ == nullptr) usererror("Map generator sprites could not be loaded");
/* Chose a random location to apply the template to. */
uint x = r & MapMaxX();
uint y = (r >> MapLogX()) & MapMaxY();
/* Make sure the template is not too close to the upper edges; bottom edges are checked later. */
uint edge_distance = 1 + (_settings_game.construction.freeform_edges ? 1 : 0);
if (x <= edge_distance || y <= edge_distance) return;
DiagDirection direction = (DiagDirection)GB(r, 22, 2);
uint w = templ->width;
uint h = templ->height;
if (DiagDirToAxis(direction) == AXIS_Y) Swap(w, h);
const byte *p = templ->data;
if ((flag & 4) != 0) {
/* This is only executed in secondary/tertiary loops to generate the terrain for arctic and tropic.
* It prevents the templates to be applied to certain parts of the map based on the flags, thus
* creating regions with different elevations/topography. */
uint xw = x * MapSizeY();
uint yw = y * MapSizeX();
uint bias = (MapSizeX() + MapSizeY()) * 16;
switch (flag & 3) {
default: NOT_REACHED();
case 0:
if (xw + yw > MapSize() - bias) return;
break;
case 1:
if (yw < xw + bias) return;
break;
case 2:
if (xw + yw < MapSize() + bias) return;
break;
case 3:
if (xw < yw + bias) return;
break;
}
}
/* Ensure the template does not overflow at the bottom edges of the map; upper edges were checked before. */
if (x + w >= MapMaxX()) return;
if (y + h >= MapMaxY()) return;
TileIndex tile = TileXY(x, y);
/* Get the template and overlay in a particular direction over the map's height from the given
* origin point (tile), and update the map's height everywhere where the height from the template
* is higher than the height of the map. In other words, this only raises the tile heights. */
switch (direction) {
default: NOT_REACHED();
case DIAGDIR_NE:
do {
TileIndex tile_cur = tile;
for (uint w_cur = w; w_cur != 0; --w_cur) {
if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
p++;
tile_cur++;
}
tile += TileDiffXY(0, 1);
} while (--h != 0);
break;
case DIAGDIR_SE:
do {
TileIndex tile_cur = tile;
for (uint h_cur = h; h_cur != 0; --h_cur) {
if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
p++;
tile_cur += TileDiffXY(0, 1);
}
tile += TileDiffXY(1, 0);
} while (--w != 0);
break;
case DIAGDIR_SW:
tile += TileDiffXY(w - 1, 0);
do {
TileIndex tile_cur = tile;
for (uint w_cur = w; w_cur != 0; --w_cur) {
if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
p++;
tile_cur--;
}
tile += TileDiffXY(0, 1);
} while (--h != 0);
break;
case DIAGDIR_NW:
tile += TileDiffXY(0, h - 1);
do {
TileIndex tile_cur = tile;
for (uint h_cur = h; h_cur != 0; --h_cur) {
if (GB(*p, 0, 4) >= TileHeight(tile_cur)) SetTileHeight(tile_cur, GB(*p, 0, 4));
p++;
tile_cur -= TileDiffXY(0, 1);
}
tile += TileDiffXY(1, 0);
} while (--w != 0);
break;
}
}
#include "table/genland.h"
static std::pair<const Rect16 *, const Rect16 *> GetDesertOrRainforestData()
{
switch (_settings_game.game_creation.coast_tropics_width) {
case 0:
return { _make_desert_or_rainforest_data, endof(_make_desert_or_rainforest_data) };
case 1:
return { _make_desert_or_rainforest_data_medium, endof(_make_desert_or_rainforest_data_medium) };
case 2:
return { _make_desert_or_rainforest_data_large, endof(_make_desert_or_rainforest_data_large) };
case 3:
return { _make_desert_or_rainforest_data_extralarge, endof(_make_desert_or_rainforest_data_extralarge) };
default:
NOT_REACHED();
}
}
template <typename F>
void DesertOrRainforestProcessTiles(const std::pair<const Rect16 *, const Rect16 *> desert_rainforest_data, const Rect16 *&data, TileIndex tile, F handle_tile)
{
for (data = desert_rainforest_data.first; data != desert_rainforest_data.second; ++data) {
const Rect16 r = *data;
for (int16_t x = r.left; x <= r.right; x++) {
for (int16_t y = r.top; y <= r.bottom; y++) {
TileIndex t = AddTileIndexDiffCWrap(tile, { x, y });
if (handle_tile(t)) return;
}
}
}
}
static void CreateDesertOrRainForest(uint desert_tropic_line)
{
TileIndex update_freq = MapSize() / 4;
const Rect16 *data;
const std::pair<const Rect16 *, const Rect16 *> desert_rainforest_data = GetDesertOrRainforestData();
for (TileIndex tile = 0; tile != MapSize(); ++tile) {
if ((tile % update_freq) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
if (!IsValidTile(tile)) continue;
DesertOrRainforestProcessTiles(desert_rainforest_data, data, tile, [&](TileIndex t) -> bool {
return (t != INVALID_TILE && (TileHeight(t) >= desert_tropic_line || IsTileType(t, MP_WATER)));
});
if (data == desert_rainforest_data.second) {
SetTropicZone(tile, TROPICZONE_DESERT);
}
}
for (uint i = 0; i != 256; i++) {
if ((i % 64) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
RunTileLoop();
}
for (TileIndex tile = 0; tile != MapSize(); ++tile) {
if ((tile % update_freq) == 0) IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
if (!IsValidTile(tile)) continue;
DesertOrRainforestProcessTiles(desert_rainforest_data, data, tile, [&](TileIndex t) -> bool {
return (t != INVALID_TILE && IsTileType(t, MP_CLEAR) && IsClearGround(t, CLEAR_DESERT));
});
if (data == desert_rainforest_data.second) {
SetTropicZone(tile, TROPICZONE_RAINFOREST);
}
}
}
/**
* Find the spring of a river.
* @param tile The tile to consider for being the spring.
* @return True iff it is suitable as a spring.
*/
static bool FindSpring(TileIndex tile, void *)
{
int referenceHeight;
if (!IsTileFlat(tile, &referenceHeight) || IsWaterTile(tile)) return false;
/* In the tropics rivers start in the rainforest. */
if (_settings_game.game_creation.landscape == LT_TROPIC && GetTropicZone(tile) != TROPICZONE_RAINFOREST && !_settings_game.game_creation.lakes_allowed_in_deserts) return false;
/* Are there enough higher tiles to warrant a 'spring'? */
uint num = 0;
for (int dx = -1; dx <= 1; dx++) {
for (int dy = -1; dy <= 1; dy++) {
TileIndex t = TileAddWrap(tile, dx, dy);
if (t != INVALID_TILE && GetTileMaxZ(t) > referenceHeight) num++;
}
}
if (num < 4) return false;
if (_settings_game.game_creation.rivers_top_of_hill) {
/* Are we near the top of a hill? */
for (int dx = -16; dx <= 16; dx++) {
for (int dy = -16; dy <= 16; dy++) {
TileIndex t = TileAddWrap(tile, dx, dy);
if (t != INVALID_TILE && GetTileMaxZ(t) > referenceHeight + 2) return false;
}
}
}
return true;
}
struct MakeLakeData {
TileIndex centre; ///< Lake centre tile
uint height; ///< Lake height
int max_distance; ///< Max radius
int secondary_axis_scale; ///< Multiplier for ellipse narrow axis, 16 bit fixed point
int sin_fp; ///< sin of ellipse rotation angle, 16 bit fixed point
int cos_fp; ///< cos of ellipse rotation angle, 16 bit fixed point
};
/**
* Make a connected lake; fill all tiles in the circular tile search that are connected.
* @param tile The tile to consider for lake making.
* @param user_data The height of the lake.
* @return Always false, so it continues searching.
*/
static bool MakeLake(TileIndex tile, void *user_data)
{
const MakeLakeData *data = (const MakeLakeData *)user_data;
if (!IsValidTile(tile) || TileHeight(tile) != data->height || !IsTileFlat(tile)) return false;
if (_settings_game.game_creation.landscape == LT_TROPIC && GetTropicZone(tile) == TROPICZONE_DESERT && !_settings_game.game_creation.lakes_allowed_in_deserts) return false;
/* Offset from centre tile */
const int64_t x_delta = (int)TileX(tile) - (int)TileX(data->centre);
const int64_t y_delta = (int)TileY(tile) - (int)TileY(data->centre);
/* Rotate to new coordinate system */
const int64_t a_delta = (x_delta * data->cos_fp + y_delta * data->sin_fp) >> 8;
const int64_t b_delta = (-x_delta * data->sin_fp + y_delta * data->cos_fp) >> 8;
int max_distance = data->max_distance;
if (max_distance >= 6) {
/* Vary radius a bit for larger lakes */
uint coord = (std::abs(x_delta) > std::abs(y_delta)) ? TileY(tile) : TileX(tile);
static const int8_t offset_fuzz[4] = { 0, 1, 0, -1 };
max_distance += offset_fuzz[(coord / 3) & 3];
}
/* Check if inside ellipse */
if ((a_delta * a_delta) + ((data->secondary_axis_scale * b_delta * b_delta) >> 16) > ((int64_t)(max_distance * max_distance) << 16)) return false;
for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
TileIndex t2 = tile + TileOffsByDiagDir(d);
if (IsWaterTile(t2)) {
MakeRiver(tile, Random());
MarkTileDirtyByTile(tile);
/* Remove desert directly around the river tile. */
IterateCurvedCircularTileArea(tile, _settings_game.game_creation.lake_tropics_width, RiverModifyDesertZone, nullptr);
return false;
}
}
return false;
}
/**
* Check whether a river at begin could (logically) flow down to end.
* @param begin The origin of the flow.
* @param end The destination of the flow.
* @return True iff the water can be flowing down.
*/
static bool FlowsDown(TileIndex begin, TileIndex end)
{
dbg_assert(DistanceManhattan(begin, end) == 1);
auto [slopeBegin, heightBegin] = GetTileSlopeZ(begin);
auto [slopeEnd, heightEnd] = GetTileSlopeZ(end);
return heightEnd <= heightBegin &&
/* Slope either is inclined or flat; rivers don't support other slopes. */
(slopeEnd == SLOPE_FLAT || IsInclinedSlope(slopeEnd)) &&
/* Slope continues, then it must be lower... or either end must be flat. */
((slopeEnd == slopeBegin && heightEnd < heightBegin) || slopeEnd == SLOPE_FLAT || slopeBegin == SLOPE_FLAT);
}
/* AyStar callback for checking whether we reached our destination. */
static int32_t River_EndNodeCheck(const AyStar *aystar, const OpenListNode *current)
{
return current->path.node.tile == *(TileIndex*)aystar->user_target ? AYSTAR_FOUND_END_NODE : AYSTAR_DONE;
}
/* AyStar callback for getting the cost of the current node. */
static int32_t River_CalculateG(AyStar *aystar, AyStarNode *current, OpenListNode *parent)
{
return 1 + RandomRange(_settings_game.game_creation.river_route_random);
}
/* AyStar callback for getting the estimated cost to the destination. */
static int32_t River_CalculateH(AyStar *aystar, AyStarNode *current, OpenListNode *parent)
{
return DistanceManhattan(*(TileIndex*)aystar->user_target, current->tile);
}
/* AyStar callback for getting the neighbouring nodes of the given node. */
static void River_GetNeighbours(AyStar *aystar, OpenListNode *current)
{
TileIndex tile = current->path.node.tile;
aystar->num_neighbours = 0;
for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
TileIndex t2 = tile + TileOffsByDiagDir(d);
if (IsValidTile(t2) && FlowsDown(tile, t2)) {
aystar->neighbours[aystar->num_neighbours].tile = t2;
aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR;
aystar->num_neighbours++;
}
}
}
/** Callback to widen a river tile. */
static bool RiverMakeWider(TileIndex tile, void *data)
{
if (IsValidTile(tile) && !IsWaterTile(tile) && GetTileSlope(tile) == GetTileSlope(*(TileIndex *)data)) {
MakeRiver(tile, Random());
/* Remove desert directly around the river tile. */
MarkTileDirtyByTile(tile);
IterateCurvedCircularTileArea(tile, _settings_game.game_creation.river_tropics_width, RiverModifyDesertZone, nullptr);
}
return false;
}
/* AyStar callback when an route has been found. */
static void River_FoundEndNode(AyStar *aystar, OpenListNode *current)
{
for (PathNode *path = &current->path; path != nullptr; path = path->parent) {
TileIndex tile = path->node.tile;
if (!IsWaterTile(tile)) {
MakeRiver(tile, Random());
// Widen river depending on how far we are away from the source.
const uint current_river_length = DistanceManhattan(_current_spring, path->node.tile);
const uint long_river_length = _settings_game.game_creation.min_river_length * 4;
const uint radius = std::min(3u, (current_river_length / (long_river_length / 3u)) + 1u);
MarkTileDirtyByTile(tile);
if (_settings_game.game_creation.land_generator != LG_ORIGINAL && _is_main_river && (radius > 1)) {
CircularTileSearch(&tile, radius + RandomRange(1), RiverMakeWider, (void *)&path->node.tile);
} else {
/* Remove desert directly around the river tile. */
IterateCurvedCircularTileArea(tile, _settings_game.game_creation.river_tropics_width, RiverModifyDesertZone, nullptr);
}
}
}
}
static const uint RIVER_HASH_SIZE = 8; ///< The number of bits the hash for river finding should have.
/**
* Actually build the river between the begin and end tiles using AyStar.
* @param begin The begin of the river.
* @param end The end of the river.
*/
static void BuildRiver(TileIndex begin, TileIndex end)
{
AyStar finder = {};
finder.CalculateG = River_CalculateG;
finder.CalculateH = River_CalculateH;
finder.GetNeighbours = River_GetNeighbours;
finder.EndNodeCheck = River_EndNodeCheck;
finder.FoundEndNode = River_FoundEndNode;
finder.user_target = &end;
finder.max_search_nodes = 100 * AYSTAR_DEF_MAX_SEARCH_NODES;
finder.Init(1 << RIVER_HASH_SIZE);
AyStarNode start;
start.tile = begin;
start.direction = INVALID_TRACKDIR;
finder.AddStartNode(&start, 0);
finder.Main();
finder.Free();
}
/**
* Try to flow the river down from a given begin.
* @param spring The springing point of the river.
* @param begin The begin point we are looking from; somewhere down hill from the spring.
* @param min_river_length The minimum length for the river.
* @return True iff a river could/has been built, otherwise false.
*/
static bool FlowRiver(TileIndex spring, TileIndex begin, uint min_river_length)
{
# define SET_MARK(x) marks.insert(x)
# define IS_MARKED(x) (marks.find(x) != marks.end())
uint height = TileHeight(begin);
if (IsWaterTile(begin))
{
if (GetTileZ(begin) == 0) {
_current_estuary = begin;
_is_main_river = true;
}
return DistanceManhattan(spring, begin) > min_river_length;
}
btree::btree_set<TileIndex> marks;
SET_MARK(begin);
/* Breadth first search for the closest tile we can flow down to. */
ring_buffer<TileIndex> queue;
queue.push_back(begin);
bool found = false;
uint count = 0; // Number of tiles considered; to be used for lake location guessing.
TileIndex end;
do {
end = queue.front();
queue.pop_front();
uint height2 = TileHeight(end);
if (IsTileFlat(end) && (height2 < height || (height2 == height && IsWaterTile(end)))) {
found = true;
break;
}
for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) {
TileIndex t2 = end + TileOffsByDiagDir(d);
if (IsValidTile(t2) && !IS_MARKED(t2) && FlowsDown(end, t2)) {
SET_MARK(t2);
count++;
queue.push_back(t2);
}
}
} while (!queue.empty());
if (found) {
/* Flow further down hill. */
found = FlowRiver(spring, end, min_river_length);
} else if (count > 32 && _settings_game.game_creation.lake_size != 0) {
/* Maybe we can make a lake. Find the Nth of the considered tiles. */
TileIndex lakeCenter = 0;
int i = RandomRange(count - 1) + 1;
btree::btree_set<TileIndex>::const_iterator cit = marks.begin();
while (--i) cit++;
lakeCenter = *cit;
if (IsValidTile(lakeCenter) &&
/* A river, or lake, can only be built on flat slopes. */
IsTileFlat(lakeCenter) &&
/* We want the lake to be built at the height of the river. */
TileHeight(begin) == TileHeight(lakeCenter) &&
/* We don't want the lake at the entry of the valley. */
lakeCenter != begin &&
/* We don't want lakes in the desert. */
(_settings_game.game_creation.landscape != LT_TROPIC || _settings_game.game_creation.lakes_allowed_in_deserts || GetTropicZone(lakeCenter) != TROPICZONE_DESERT) &&
/* We only want a lake if the river is long enough. */
DistanceManhattan(spring, lakeCenter) > min_river_length) {
end = lakeCenter;
MakeRiver(lakeCenter, Random());
MarkTileDirtyByTile(lakeCenter);
/* Remove desert directly around the river tile. */
IterateCurvedCircularTileArea(lakeCenter, _settings_game.game_creation.river_tropics_width, RiverModifyDesertZone, nullptr);
// Setting lake size +- 25%
const auto random_percentage = 75 + RandomRange(50);
const uint range = ((_settings_game.game_creation.lake_size * random_percentage) / 100) + 3;
MakeLakeData data;
data.centre = lakeCenter;
data.height = height;
data.max_distance = range / 2;
/* Square of ratio of ellipse dimensions: 1 to 5 (16 bit fixed point) */
data.secondary_axis_scale = (1 << 16) + RandomRange(1 << 18);
/* Range from -1 to 1 (16 bit fixed point) */
data.sin_fp = RandomRange(1 << 17) - (1 << 16);
/* sin^2 + cos^2 = 1 */
data.cos_fp = IntSqrt64(((int64_t)1 << 32) - ((int64_t)data.sin_fp * (int64_t)data.sin_fp));
CircularTileSearch(&lakeCenter, range, MakeLake, &data);
/* Call the search a second time so artefacts from going circular in one direction get (mostly) hidden. */
lakeCenter = end;
CircularTileSearch(&lakeCenter, range, MakeLake, &data);
found = true;
}
}
marks.clear();
if (found) BuildRiver(begin, end);
return found;
}
/**
* Actually (try to) create some rivers.
*/
static void CreateRivers()
{
int amount = _settings_game.game_creation.amount_of_rivers;
if (amount == 0) return;
uint wells = ScaleByMapSize(4 << _settings_game.game_creation.amount_of_rivers);
const uint num_short_rivers = wells - std::max(1u, wells / 10);
SetGeneratingWorldProgress(GWP_RIVER, wells + 256 / 64); // Include the tile loop calls below.
for (; wells > num_short_rivers; wells--) {
IncreaseGeneratingWorldProgress(GWP_RIVER);
for (int tries = 0; tries < 128; tries++) {
TileIndex t = RandomTile();
if (!CircularTileSearch(&t, 8, FindSpring, nullptr)) continue;
_current_spring = t;
_is_main_river = false;
if (FlowRiver(t, t, _settings_game.game_creation.min_river_length * 4)) break;
}
}
for (; wells != 0; wells--) {
IncreaseGeneratingWorldProgress(GWP_RIVER);
for (int tries = 0; tries < 128; tries++) {
TileIndex t = RandomTile();
if (!CircularTileSearch(&t, 8, FindSpring, nullptr)) continue;
_current_spring = t;
_is_main_river = false;
if (FlowRiver(t, t, _settings_game.game_creation.min_river_length)) break;
}
}
/* Widening rivers may have left some tiles requiring to be watered. */
ConvertGroundTilesIntoWaterTiles();
/* Run tile loop to update the ground density. */
for (uint i = 0; i != 256; i++) {
if (i % 64 == 0) IncreaseGeneratingWorldProgress(GWP_RIVER);
RunTileLoop();
}
}
/**
* Calculate what height would be needed to cover N% of the landmass.
*
* The function allows both snow and desert/tropic line to be calculated. It
* tries to find the closests height which covers N% of the landmass; it can
* be below or above it.
*
* Tropic has a mechanism where water and tropic tiles in mountains grow
* inside the desert. To better approximate the requested coverage, this is
* taken into account via an edge histogram, which tells how many neighbouring
* tiles are lower than the tiles of that height. The multiplier indicates how
* severe this has to be taken into account.
*
* @param coverage A value between 0 and 100 indicating a percentage of landmass that should be covered.
* @param edge_multiplier How much effect neighbouring tiles that are of a lower height level have on the score.
* @return The estimated best height to use to cover N% of the landmass.
*/
static uint CalculateCoverageLine(uint coverage, uint edge_multiplier)
{
const DiagDirection neighbour_dir[] = {
DIAGDIR_NE,
DIAGDIR_SE,
DIAGDIR_SW,
DIAGDIR_NW,
};
/* Histogram of how many tiles per height level exist. */
std::array<int, MAX_TILE_HEIGHT + 1> histogram = {};
/* Histogram of how many neighbour tiles are lower than the tiles of the height level. */
std::array<int, MAX_TILE_HEIGHT + 1> edge_histogram = {};
/* Build a histogram of the map height. */
for (TileIndex tile = 0; tile < MapSize(); tile++) {
uint h = TileHeight(tile);
histogram[h]++;
if (edge_multiplier != 0) {
/* Check if any of our neighbours is below us. */
for (auto dir : neighbour_dir) {
TileIndex neighbour_tile = AddTileIndexDiffCWrap(tile, TileIndexDiffCByDiagDir(dir));
if (IsValidTile(neighbour_tile) && TileHeight(neighbour_tile) < h) {
edge_histogram[h]++;
}
}
}
}
/* The amount of land we have is the map size minus the first (sea) layer. */
uint land_tiles = MapSize() - histogram[0];
int best_score = land_tiles;
/* Our goal is the coverage amount of the land-mass. */
int goal_tiles = land_tiles * coverage / 100;
/* We scan from top to bottom. */
uint h = MAX_TILE_HEIGHT;
uint best_h = h;
int current_tiles = 0;
for (; h > 0; h--) {
current_tiles += histogram[h];
int current_score = goal_tiles - current_tiles;
/* Tropic grows from water and mountains into the desert. This is a
* great visual, but it also means we* need to take into account how
* much less desert tiles are being created if we are on this
* height-level. We estimate this based on how many neighbouring
* tiles are below us for a given length, assuming that is where
* tropic is growing from.
*/
if (edge_multiplier != 0 && h > 1) {
/* From water tropic tiles grow for a few tiles land inward. */
current_score -= edge_histogram[1] * edge_multiplier;
/* Tropic tiles grow into the desert for a few tiles. */
current_score -= edge_histogram[h] * edge_multiplier;
}
if (std::abs(current_score) < std::abs(best_score)) {
best_score = current_score;
best_h = h;
}
/* Always scan all height-levels, as h == 1 might give a better
* score than any before. This is true for example with 0% desert
* coverage. */
}
return best_h;
}
/**
* Calculate the line from which snow begins.
*/
static void CalculateSnowLine()
{
if (_settings_game.game_creation.climate_threshold_mode == 0) {
/* We do not have snow sprites on coastal tiles, so never allow "1" as height. */
_settings_game.game_creation.snow_line_height = std::max(CalculateCoverageLine(_settings_game.game_creation.snow_coverage, 0), 2u);
}
UpdateCachedSnowLine();
UpdateCachedSnowLineBounds();
}
/**
* Calculate the line (in height) between desert and tropic.
* @return The height of the line between desert and tropic.
*/
static uint8_t CalculateDesertLine()
{
if (_settings_game.game_creation.climate_threshold_mode != 0) return _settings_game.game_creation.rainforest_line_height;
/* CalculateCoverageLine() runs from top to bottom, so we need to invert the coverage. */
return CalculateCoverageLine(100 - _settings_game.game_creation.desert_coverage, 4);
}
bool GenerateLandscape(byte mode)
{
/** Number of steps of landscape generation */
enum GenLandscapeSteps {
GLS_HEIGHTMAP = 3, ///< Loading a heightmap
GLS_TERRAGENESIS = 5, ///< Terragenesis generator
GLS_ORIGINAL = 2, ///< Original generator
GLS_TROPIC = 12, ///< Extra steps needed for tropic landscape
GLS_OTHER = 0, ///< Extra steps for other landscapes
};
uint steps = (_settings_game.game_creation.landscape == LT_TROPIC) ? GLS_TROPIC : GLS_OTHER;
if (mode == GWM_HEIGHTMAP) {
SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_HEIGHTMAP);
if (!LoadHeightmap(_file_to_saveload.detail_ftype, _file_to_saveload.name.c_str())) {
return false;
}
IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
} else if (_settings_game.game_creation.land_generator == LG_TERRAGENESIS) {
SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_TERRAGENESIS);
GenerateTerrainPerlin();
} else {
SetGeneratingWorldProgress(GWP_LANDSCAPE, steps + GLS_ORIGINAL);
if (_settings_game.construction.freeform_edges) {
for (uint x = 0; x < MapSizeX(); x++) MakeVoid(TileXY(x, 0));
for (uint y = 0; y < MapSizeY(); y++) MakeVoid(TileXY(0, y));
}
switch (_settings_game.game_creation.landscape) {
case LT_ARCTIC: {
uint32_t r = Random();
for (uint i = ScaleByMapSize(GB(r, 0, 7) + 950); i != 0; --i) {
GenerateTerrain(2, 0);
}
uint flag = GB(r, 7, 2) | 4;
for (uint i = ScaleByMapSize(GB(r, 9, 7) + 450); i != 0; --i) {
GenerateTerrain(4, flag);
}
break;
}
case LT_TROPIC: {
uint32_t r = Random();
for (uint i = ScaleByMapSize(GB(r, 0, 7) + 170); i != 0; --i) {
GenerateTerrain(0, 0);
}
uint flag = GB(r, 7, 2) | 4;
for (uint i = ScaleByMapSize(GB(r, 9, 8) + 1700); i != 0; --i) {
GenerateTerrain(0, flag);
}
flag ^= 2;
for (uint i = ScaleByMapSize(GB(r, 17, 7) + 410); i != 0; --i) {
GenerateTerrain(3, flag);
}
break;
}
default: {
uint32_t r = Random();
assert(_settings_game.difficulty.quantity_sea_lakes != CUSTOM_SEA_LEVEL_NUMBER_DIFFICULTY);
uint i = ScaleByMapSize(GB(r, 0, 7) + (3 - _settings_game.difficulty.quantity_sea_lakes) * 256 + 100);
for (; i != 0; --i) {
/* Make sure we do not overflow. */
GenerateTerrain(Clamp(_settings_game.difficulty.terrain_type, 0, 3), 0);
}
break;
}
}
}
/* Do not call IncreaseGeneratingWorldProgress() before FixSlopes(),
* it allows screen redraw. Drawing of broken slopes crashes the game */
FixSlopes();
MarkWholeScreenDirty();
IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
ConvertGroundTilesIntoWaterTiles();
MarkWholeScreenDirty();
IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
switch (_settings_game.game_creation.landscape) {
case LT_ARCTIC:
CalculateSnowLine();
break;
case LT_TROPIC: {
uint desert_tropic_line = CalculateDesertLine();
CreateDesertOrRainForest(desert_tropic_line);
break;
}
default:
break;
}
CreateRivers();
return true;
}
void OnTick_Town();
void OnTick_Trees();
void OnTick_Station();
void OnTick_Industry();
void CallLandscapeTick()
{
{
PerformanceAccumulator framerate(PFE_GL_LANDSCAPE);
OnTick_Town();
RecordSyncEvent(NSRE_TOWN);
OnTick_Trees();
RecordSyncEvent(NSRE_TREE);
OnTick_Station();
RecordSyncEvent(NSRE_STATION);
OnTick_Industry();
RecordSyncEvent(NSRE_INDUSTRY);
}
}