/* $Id$ */ /* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file bitmath_func.hpp Functions related to bit mathematics. */ #ifndef BITMATH_FUNC_HPP #define BITMATH_FUNC_HPP #include /** * Fetch \a n bits from \a x, started at bit \a s. * * This function can be used to fetch \a n bits from the value \a x. The * \a s value set the start position to read. The start position is * count from the LSB and starts at \c 0. The result starts at a * LSB, as this isn't just an and-bitmask but also some * bit-shifting operations. GB(0xFF, 2, 1) will so * return 0x01 (0000 0001) instead of * 0x04 (0000 0100). * * @param x The value to read some bits. * @param s The start position to read some bits. * @param n The number of bits to read. * @pre n < sizeof(T) * 8 * @pre s + n <= sizeof(T) * 8 * @return The selected bits, aligned to a LSB. */ template static inline uint GB(const T x, const uint8 s, const uint8 n) { return (x >> s) & (((T)1U << n) - 1); } /** * Set \a n bits in \a x starting at bit \a s to \a d * * This function sets \a n bits from \a x which started as bit \a s to the value of * \a d. The parameters \a x, \a s and \a n works the same as the parameters of * #GB. The result is saved in \a x again. Unused bits in the window * provided by n are set to 0 if the value of \a d isn't "big" enough. * This is not a bug, its a feature. * * @note Parameter \a x must be a variable as the result is saved there. * @note To avoid unexpected results the value of \a d should not use more * space as the provided space of \a n bits (log2) * @param x The variable to change some bits * @param s The start position for the new bits * @param n The size/window for the new bits * @param d The actually new bits to save in the defined position. * @pre n < sizeof(T) * 8 * @pre s + n <= sizeof(T) * 8 * @return The new value of \a x */ template static inline T SB(T &x, const uint8 s, const uint8 n, const U d) { x &= (T)(~((((T)1U << n) - 1) << s)); x |= (T)(d << s); return x; } /** * Add \a i to \a n bits of \a x starting at bit \a s. * * This adds the value of \a i on \a n bits of \a x starting at bit \a s. The parameters \a x, * \a s, \a i are similar to #GB. Besides, \ a x must be a variable as the result are * saved there. An overflow does not affect the following bits of the given * bit window and is simply ignored. * * @note Parameter x must be a variable as the result is saved there. * @param x The variable to add some bits at some position * @param s The start position of the addition * @param n The size/window for the addition * @pre n < sizeof(T) * 8 * @pre s + n <= sizeof(T) * 8 * @param i The value to add at the given start position in the given window. * @return The new value of \a x */ template static inline T AB(T &x, const uint8 s, const uint8 n, const U i) { const T mask = ((((T)1U << n) - 1) << s); x = (T)((x & ~mask) | ((x + (i << s)) & mask)); return x; } /** * Checks if a bit in a value is set. * * This function checks if a bit inside a value is set or not. * The \a y value specific the position of the bit, started at the * LSB and count from \c 0. * * @param x The value to check * @param y The position of the bit to check, started from the LSB * @pre y < sizeof(T) * 8 * @return True if the bit is set, false else. */ template static inline bool HasBit(const T x, const uint8 y) { return (x & ((T)1U << y)) != 0; } /** * Set a bit in a variable. * * This function sets a bit in a variable. The variable is changed * and the value is also returned. Parameter y defines the bit and * starts at the LSB with 0. * * @param x The variable to set a bit * @param y The bit position to set * @pre y < sizeof(T) * 8 * @return The new value of the old value with the bit set */ template static inline T SetBit(T &x, const uint8 y) { return x = (T)(x | ((T)1U << y)); } /** * Sets several bits in a variable. * * This macro sets several bits in a variable. The bits to set are provided * by a value. The new value is also returned. * * @param x The variable to set some bits * @param y The value with set bits for setting them in the variable * @return The new value of x */ #define SETBITS(x, y) ((x) |= (y)) /** * Clears a bit in a variable. * * This function clears a bit in a variable. The variable is * changed and the value is also returned. Parameter y defines the bit * to clear and starts at the LSB with 0. * * @param x The variable to clear the bit * @param y The bit position to clear * @pre y < sizeof(T) * 8 * @return The new value of the old value with the bit cleared */ template static inline T ClrBit(T &x, const uint8 y) { return x = (T)(x & ~((T)1U << y)); } /** * Clears several bits in a variable. * * This macro clears several bits in a variable. The bits to clear are * provided by a value. The new value is also returned. * * @param x The variable to clear some bits * @param y The value with set bits for clearing them in the variable * @return The new value of x */ #define CLRBITS(x, y) ((x) &= ~(y)) /** * Toggles a bit in a variable. * * This function toggles a bit in a variable. The variable is * changed and the value is also returned. Parameter y defines the bit * to toggle and starts at the LSB with 0. * * @param x The variable to toggle the bit * @param y The bit position to toggle * @pre y < sizeof(T) * 8 * @return The new value of the old value with the bit toggled */ template static inline T ToggleBit(T &x, const uint8 y) { return x = (T)(x ^ ((T)1U << y)); } #ifdef WITH_BITMATH_BUILTINS #define FIND_FIRST_BIT(x) FindFirstBit(x) inline uint8 FindFirstBit(uint32 x) { if (x == 0) return 0; return __builtin_ctz(x); } inline uint8 FindFirstBit64(uint64 x) { if (x == 0) return 0; return __builtin_ctzll(x); } #else /** Lookup table to check which bit is set in a 6 bit variable */ extern const uint8 _ffb_64[64]; /** * Returns the first non-zero bit in a 6-bit value (from right). * * Returns the position of the first bit that is not zero, counted from the * LSB. Ie, 110100 returns 2, 000001 returns 0, etc. When x == 0 returns * 0. * * @param x The 6-bit value to check the first zero-bit * @return The first position of a bit started from the LSB or 0 if x is 0. */ #define FIND_FIRST_BIT(x) _ffb_64[(x)] uint8 FindFirstBit(uint32 x); #endif uint8 FindLastBit(uint64 x); /** * Finds the position of the first non-zero bit in an integer. * * This function returns the position of the first bit set in the * integer. It does only check the bits of the bitmask * 0x3F3F (0011111100111111) and checks only the * bits of the bitmask 0x3F00 if and only if the * lower part 0x00FF is 0. This results the bits at 0x00C0 must * be also zero to check the bits at 0x3F00. * * @param value The value to check the first bits * @return The position of the first bit which is set * @see FIND_FIRST_BIT */ static inline uint8 FindFirstBit2x64(const int value) { if ((value & 0xFF) == 0) { return FIND_FIRST_BIT((value >> 8) & 0x3F) + 8; } else { return FIND_FIRST_BIT(value & 0x3F); } } /** * Clear the first bit in an integer. * * This function returns a value where the first bit (from LSB) * is cleared. * So, 110100 returns 110000, 000001 returns 000000, etc. * * @param value The value to clear the first bit * @return The new value with the first bit cleared */ template static inline T KillFirstBit(T value) { return value &= (T)(value - 1); } /** * Counts the number of set bits in a variable. * * @param value the value to count the number of bits in. * @return the number of bits. */ template static inline uint CountBits(T value) { #ifdef WITH_BITMATH_BUILTINS typename std::make_unsigned::type unsigned_value = value; if (sizeof(T) <= sizeof(unsigned int)) { return __builtin_popcount(unsigned_value); } else if (sizeof(T) == sizeof(unsigned long)) { return __builtin_popcountl(unsigned_value); } else { return __builtin_popcountll(unsigned_value); } #else uint num; /* This loop is only called once for every bit set by clearing the lowest * bit in each loop. The number of bits is therefore equal to the number of * times the loop was called. It was found at the following website: * http://graphics.stanford.edu/~seander/bithacks.html */ for (num = 0; value != 0; num++) { value &= (T)(value - 1); } return num; #endif } /** * Test whether \a value has exactly 1 bit set * * @param value the value to test. * @return does \a value have exactly 1 bit set? */ template static inline bool HasExactlyOneBit(T value) { return value != 0 && (value & (value - 1)) == 0; } /** * Test whether \a value has at most 1 bit set * * @param value the value to test. * @return does \a value have at most 1 bit set? */ template static inline bool HasAtMostOneBit(T value) { return (value & (value - 1)) == 0; } /** * ROtate \a x Left by \a n * * @note Assumes a byte has 8 bits * @param x The value which we want to rotate * @param n The number how many we want to rotate * @pre n < sizeof(T) * 8 * @return A bit rotated number */ template static inline T ROL(const T x, const uint8 n) { if (n == 0) return x; return (T)(x << n | x >> (sizeof(x) * 8 - n)); } /** * ROtate \a x Right by \a n * * @note Assumes a byte has 8 bits * @param x The value which we want to rotate * @param n The number how many we want to rotate * @pre n < sizeof(T) * 8 * @return A bit rotated number */ template static inline T ROR(const T x, const uint8 n) { if (n == 0) return x; return (T)(x >> n | x << (sizeof(x) * 8 - n)); } /** * Do an operation for each set bit in a value. * * This macros is used to do an operation for each set * bit in a variable. The second parameter is a * variable that is used as the bit position counter. * The fourth parameter is an expression of the bits * we need to iterate over. This expression will be * evaluated once. * * @param Tbitpos_type Type of the position counter variable. * @param bitpos_var The position counter variable. * @param Tbitset_type Type of the bitset value. * @param bitset_value The bitset value which we check for bits. * * @see FOR_EACH_SET_BIT */ #define FOR_EACH_SET_BIT_EX(Tbitpos_type, bitpos_var, Tbitset_type, bitset_value) \ for ( \ Tbitset_type ___FESBE_bits = (bitpos_var = (Tbitpos_type)0, bitset_value); \ ___FESBE_bits != (Tbitset_type)0; \ ___FESBE_bits = (Tbitset_type)(___FESBE_bits >> 1), bitpos_var++ \ ) \ if ((___FESBE_bits & 1) != 0) /** * Do an operation for each set set bit in a value. * * This macros is used to do an operation for each set * bit in a variable. The first parameter is a variable * that is used as the bit position counter. * The second parameter is an expression of the bits * we need to iterate over. This expression will be * evaluated once. * * @param bitpos_var The position counter variable. * @param bitset_value The value which we check for set bits. */ #define FOR_EACH_SET_BIT(bitpos_var, bitset_value) FOR_EACH_SET_BIT_EX(uint, bitpos_var, uint, bitset_value) #if defined(__APPLE__) /* Make endian swapping use Apple's macros to increase speed * (since it will use hardware swapping if available). * Even though they should return uint16 and uint32, we get * warnings if we don't cast those (why?) */ #define BSWAP64(x) ((uint64)CFSwapInt64((uint64)x)) #define BSWAP32(x) ((uint32)CFSwapInt32((uint32)x)) #define BSWAP16(x) ((uint16)CFSwapInt16((uint16)x)) #elif defined(_MSC_VER) /* MSVC has intrinsics for swapping, resulting in faster code */ #define BSWAP64(x) ((uint64)_byteswap_uint64((uint64)x)) #define BSWAP32(x) ((uint32)_byteswap_ulong((uint32)x)) #define BSWAP16(x) ((uint16)_byteswap_ushort((uint16)x)) #else /** * Perform a 64 bits endianness bitswap on x. * @param x the variable to bitswap * @return the bitswapped value. */ static inline uint64 BSWAP64(uint64 x) { #if !defined(__ICC) && (defined(__GNUC__) || defined(__clang__)) /* GCC >= 4.3 provides a builtin, resulting in faster code */ return (uint64)__builtin_bswap64((uint64)x); #else return ((x >> 56) & 0xFFULL) | ((x >> 40) & 0xFF00ULL) | ((x >> 24) & 0xFF0000ULL) | ((x >> 8) & 0xFF000000ULL) | ((x << 8) & 0xFF00000000ULL) | ((x << 24) & 0xFF0000000000ULL) | ((x << 40) & 0xFF000000000000ULL) | ((x << 56) & 0xFF00000000000000ULL); ; #endif /* __GNUC__ || __clang__ */ } /** * Perform a 32 bits endianness bitswap on x. * @param x the variable to bitswap * @return the bitswapped value. */ static inline uint32 BSWAP32(uint32 x) { #if !defined(__ICC) && (defined(__GNUC__) || defined(__clang__)) /* GCC >= 4.3 provides a builtin, resulting in faster code */ return (uint32)__builtin_bswap32((uint32)x); #else return ((x >> 24) & 0xFF) | ((x >> 8) & 0xFF00) | ((x << 8) & 0xFF0000) | ((x << 24) & 0xFF000000); #endif /* __GNUC__ || __clang__ */ } /** * Perform a 16 bits endianness bitswap on x. * @param x the variable to bitswap * @return the bitswapped value. */ static inline uint16 BSWAP16(uint16 x) { #if !defined(__ICC) && (defined(__GNUC__) || defined(__clang__)) /* GCC >= 4.3 provides a builtin, resulting in faster code */ return (uint16)__builtin_bswap16((uint16)x); #else return (x >> 8) | (x << 8); #endif /* __GNUC__ || __clang__ */ } #endif /* __APPLE__ */ #endif /* BITMATH_FUNC_HPP */