/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file road.cpp Generic road related functions. */ #include "stdafx.h" #include #include #include #include #include #include #include "rail_map.h" #include "road_map.h" #include "water_map.h" #include "genworld.h" #include "company_func.h" #include "company_base.h" #include "engine_base.h" #include "date_func.h" #include "landscape.h" #include "road.h" #include "town.h" #include "pathfinder/npf/aystar.h" #include "tunnelbridge.h" #include "road_func.h" #include "roadveh.h" #include "map_func.h" #include "core/backup_type.hpp" #include "core/random_func.hpp" #include #include "cheat_func.h" #include "command_func.h" #include "safeguards.h" uint32 _road_layout_change_counter = 0; /** Whether to build public roads */ enum PublicRoadsConstruction { PRC_NONE, ///< Generate no public roads PRC_WITH_CURVES, ///< Generate roads with lots of curves PRC_AVOID_CURVES, ///< Generate roads avoiding curves if possible }; /** * Return if the tile is a valid tile for a crossing. * * @param tile the current tile * @param ax the axis of the road over the rail * @return true if it is a valid tile */ static bool IsPossibleCrossing(const TileIndex tile, Axis ax) { return (IsTileType(tile, MP_RAILWAY) && GetRailTileType(tile) == RAIL_TILE_NORMAL && GetTrackBits(tile) == (ax == AXIS_X ? TRACK_BIT_Y : TRACK_BIT_X) && GetFoundationSlope(tile) == SLOPE_FLAT); } /** * Clean up unnecessary RoadBits of a planned tile. * @param tile current tile * @param org_rb planned RoadBits * @return optimised RoadBits */ RoadBits CleanUpRoadBits(const TileIndex tile, RoadBits org_rb) { if (!IsValidTile(tile)) return ROAD_NONE; for (DiagDirection dir = DIAGDIR_BEGIN; dir < DIAGDIR_END; dir++) { TileIndex neighbor_tile = TileAddByDiagDir(tile, dir); /* Get the Roadbit pointing to the neighbor_tile */ const RoadBits target_rb = DiagDirToRoadBits(dir); /* If the roadbit is in the current plan */ if (org_rb & target_rb) { bool connective = false; const RoadBits mirrored_rb = MirrorRoadBits(target_rb); test_tile: if (IsValidTile(neighbor_tile)) { switch (GetTileType(neighbor_tile)) { /* Always connective ones */ case MP_CLEAR: case MP_TREES: connective = true; break; /* The conditionally connective ones */ case MP_TUNNELBRIDGE: case MP_STATION: case MP_ROAD: if (IsNormalRoadTile(neighbor_tile)) { /* Always connective */ connective = true; } else { const RoadBits neighbor_rb = GetAnyRoadBits(neighbor_tile, RTT_ROAD) | GetAnyRoadBits(neighbor_tile, RTT_TRAM); /* Accept only connective tiles */ connective = (neighbor_rb & mirrored_rb) != ROAD_NONE; } break; case MP_RAILWAY: { if (IsPossibleCrossing(neighbor_tile, DiagDirToAxis(dir))) { /* Check far side of crossing */ neighbor_tile = TileAddByDiagDir(neighbor_tile, dir); goto test_tile; } break; } case MP_WATER: /* Check for real water tile */ connective = !IsWater(neighbor_tile); break; /* The definitely not connective ones */ default: break; } } /* If the neighbor tile is inconnective, remove the planned road connection to it */ if (!connective) org_rb ^= target_rb; } } return org_rb; } /** * Finds out, whether given company has a given RoadType available for construction. * @param company ID of company * @param roadtypet RoadType to test * @return true if company has the requested RoadType available */ bool HasRoadTypeAvail(const CompanyID company, RoadType roadtype) { if (company == OWNER_DEITY || company == OWNER_TOWN || _game_mode == GM_EDITOR || _generating_world) { return true; // TODO: should there be a proper check? } else { const Company *c = Company::GetIfValid(company); if (c == nullptr) return false; return HasBit(c->avail_roadtypes & ~_roadtypes_hidden_mask, roadtype); } } static RoadTypes GetMaskForRoadTramType(RoadTramType rtt) { return rtt == RTT_TRAM ? _roadtypes_type : ~_roadtypes_type; } /** * Test if any buildable RoadType is available for a company. * @param company the company in question * @return true if company has any RoadTypes available */ bool HasAnyRoadTypesAvail(CompanyID company, RoadTramType rtt) { return (Company::Get(company)->avail_roadtypes & ~_roadtypes_hidden_mask & GetMaskForRoadTramType(rtt)) != ROADTYPES_NONE; } /** * Validate functions for rail building. * @param roadtype road type to check. * @return true if the current company may build the road. */ bool ValParamRoadType(RoadType roadtype) { return roadtype != INVALID_ROADTYPE && HasRoadTypeAvail(_current_company, roadtype); } /** * Add the road types that are to be introduced at the given date. * @param rt Roadtype * @param current The currently available roadtypes. * @param date The date for the introduction comparisons. * @return The road types that should be available when date * introduced road types are taken into account as well. */ RoadTypes AddDateIntroducedRoadTypes(RoadTypes current, Date date) { RoadTypes rts = current; for (RoadType rt = ROADTYPE_BEGIN; rt != ROADTYPE_END; rt++) { const RoadTypeInfo *rti = GetRoadTypeInfo(rt); /* Unused road type. */ if (rti->label == 0) continue; /* Not date introduced. */ if (!IsInsideMM(rti->introduction_date, 0, MAX_DAY)) continue; /* Not yet introduced at this date. */ if (rti->introduction_date > date) continue; /* Have we introduced all required roadtypes? */ RoadTypes required = rti->introduction_required_roadtypes; if ((rts & required) != required) continue; rts |= rti->introduces_roadtypes; } /* When we added roadtypes we need to run this method again; the added * roadtypes might enable more rail types to become introduced. */ return rts == current ? rts : AddDateIntroducedRoadTypes(rts, date); } /** * Get the road types the given company can build. * @param company the company to get the road types for. * @param introduces If true, include road types introduced by other road types * @return the road types. */ RoadTypes GetCompanyRoadTypes(CompanyID company, bool introduces) { RoadTypes rts = ROADTYPES_NONE; for (const Engine *e : Engine::IterateType(VEH_ROAD)) { const EngineInfo *ei = &e->info; if (HasBit(ei->climates, _settings_game.game_creation.landscape) && (HasBit(e->company_avail, company) || _date >= e->intro_date + DAYS_IN_YEAR)) { const RoadVehicleInfo *rvi = &e->u.road; assert(rvi->roadtype < ROADTYPE_END); if (introduces) { rts |= GetRoadTypeInfo(rvi->roadtype)->introduces_roadtypes; } else { SetBit(rts, rvi->roadtype); } } } if (introduces) return AddDateIntroducedRoadTypes(rts, _date); return rts; } /** * Get list of road types, regardless of company availability. * @param introduces If true, include road types introduced by other road types * @return the road types. */ RoadTypes GetRoadTypes(bool introduces) { RoadTypes rts = ROADTYPES_NONE; for (const Engine *e : Engine::IterateType(VEH_ROAD)) { const EngineInfo *ei = &e->info; if (!HasBit(ei->climates, _settings_game.game_creation.landscape)) continue; const RoadVehicleInfo *rvi = &e->u.road; assert(rvi->roadtype < ROADTYPE_END); if (introduces) { rts |= GetRoadTypeInfo(rvi->roadtype)->introduces_roadtypes; } else { SetBit(rts, rvi->roadtype); } } if (introduces) return AddDateIntroducedRoadTypes(rts, MAX_DAY); return rts; } /** * Get the road type for a given label. * @param label the roadtype label. * @param allow_alternate_labels Search in the alternate label lists as well. * @return the roadtype. */ RoadType GetRoadTypeByLabel(RoadTypeLabel label, bool allow_alternate_labels) { /* Loop through each road type until the label is found */ for (RoadType r = ROADTYPE_BEGIN; r != ROADTYPE_END; r++) { const RoadTypeInfo *rti = GetRoadTypeInfo(r); if (rti->label == label) return r; } if (allow_alternate_labels) { /* Test if any road type defines the label as an alternate. */ for (RoadType r = ROADTYPE_BEGIN; r != ROADTYPE_END; r++) { const RoadTypeInfo *rti = GetRoadTypeInfo(r); if (std::find(rti->alternate_labels.begin(), rti->alternate_labels.end(), label) != rti->alternate_labels.end()) return r; } } /* No matching label was found, so it is invalid */ return INVALID_ROADTYPE; } /** * Returns the available RoadSubTypes for the provided RoadType * If the given company is valid then will be returned a list of the available sub types at the current date, while passing * a deity company will make all the sub types available * @param rt the RoadType to filter * @param c the company ID to check the roadtype against * @param any_date whether to return only currently introduced roadtypes or also future ones * @returns the existing RoadSubTypes */ RoadTypes ExistingRoadTypes(CompanyID c) { /* Check only players which can actually own vehicles, editor and gamescripts are considered deities */ if (c < OWNER_END) { const Company *company = Company::GetIfValid(c); if (company != nullptr) return company->avail_roadtypes; } RoadTypes known_roadtypes = ROADTYPES_NONE; /* Find used roadtypes */ for (Engine *e : Engine::IterateType(VEH_ROAD)) { /* Check if the roadtype can be used in the current climate */ if (!HasBit(e->info.climates, _settings_game.game_creation.landscape)) continue; /* Check whether available for all potential companies */ if (e->company_avail != (CompanyMask)-1) continue; known_roadtypes |= GetRoadTypeInfo(e->u.road.roadtype)->introduces_roadtypes; } /* Get the date introduced roadtypes as well. */ known_roadtypes = AddDateIntroducedRoadTypes(known_roadtypes, MAX_DAY); return known_roadtypes; } /* ========================================================================= */ /* PUBLIC ROADS */ /* ========================================================================= */ CommandCost CmdBuildBridge(TileIndex end_tile, DoCommandFlag flags, uint32 p1, uint32 p2, const char *text = nullptr); CommandCost CmdBuildTunnel(TileIndex tile, DoCommandFlag flags, uint32 p1, uint32 p2, const char *text = nullptr); CommandCost CmdBuildRoad(TileIndex tile, DoCommandFlag flags, uint32 p1, uint32 p2, const char *text = nullptr); static std::vector _town_centers; static std::vector _towns_visited_along_the_way; static RoadType _public_road_type; static const uint _public_road_hash_size = 8U; ///< The number of bits the hash for river finding should have. /** Helper function to check if a tile along a certain direction is going up an inclined slope. */ static bool IsUpwardsSlope(TileIndex tile, DiagDirection road_direction) { const auto slope = GetTileSlope(tile); if (!IsInclinedSlope(slope)) return false; const auto slope_direction = GetInclinedSlopeDirection(slope); return road_direction == slope_direction; } /** Helper function to check if a tile along a certain direction is going down an inclined slope. */ static bool IsDownwardsSlope(const TileIndex tile, const DiagDirection road_direction) { const auto slope = GetTileSlope(tile); if (!IsInclinedSlope(slope)) return false; const auto slope_direction = GetInclinedSlopeDirection(slope); return road_direction == ReverseDiagDir(slope_direction); } static TileIndex BuildTunnel(PathNode *current, TileIndex end_tile = INVALID_TILE, const bool build_tunnel = false) { const TileIndex start_tile = current->node.tile; int start_z; GetTileSlope(start_tile, &start_z); if (start_z == 0) return INVALID_TILE; const DiagDirection direction = GetInclinedSlopeDirection(GetTileSlope(start_tile)); if (!build_tunnel) { // We are not building yet, so we still need to find the end_tile. const TileIndexDiff delta = TileOffsByDiagDir(direction); end_tile = start_tile; int end_z; for (int tunnel_length = 1;;tunnel_length++) { end_tile += delta; if (!IsValidTile(end_tile)) return INVALID_TILE; if (tunnel_length > _settings_game.construction.max_tunnel_length) return INVALID_TILE; GetTileSlope(end_tile, &end_z); if (start_z == end_z) break; if (!_cheats.crossing_tunnels.value && IsTunnelInWay(end_tile, start_z)) return INVALID_TILE; } // No too long or super-short tunnels and always ending up on a matching upwards slope. if (IsSteepSlope(GetTileSlope(end_tile)) || IsHalftileSlope(GetTileSlope(end_tile))) return INVALID_TILE; if (GetTileSlope(start_tile) != ComplementSlope(GetTileSlope(end_tile))) return INVALID_TILE; if (AreTilesAdjacent(start_tile, end_tile)) return INVALID_TILE; if (!IsValidTile(end_tile)) return INVALID_TILE; if (!IsTileType(end_tile, MP_CLEAR) && !IsTileType(end_tile, MP_TREES)) return INVALID_TILE; } assert(!build_tunnel || (IsValidTile(end_tile) && GetTileSlope(start_tile) == ComplementSlope(GetTileSlope(end_tile)))); Backup cur_company(_current_company, OWNER_DEITY, FILE_LINE); const auto build_tunnel_cmd = CmdBuildTunnel(start_tile, build_tunnel ? DC_EXEC : DC_NONE, _public_road_type | (TRANSPORT_ROAD << 8), 0); cur_company.Restore(); assert(!build_tunnel || build_tunnel_cmd.Succeeded()); assert(!build_tunnel || (IsTileType(start_tile, MP_TUNNELBRIDGE) && IsTileType(end_tile, MP_TUNNELBRIDGE))); if (!build_tunnel_cmd.Succeeded()) return INVALID_TILE; return end_tile; } static TileIndex BuildBridge(PathNode *current, TileIndex end_tile = INVALID_TILE, const bool build_bridge = false) { const TileIndex start_tile = current->node.tile; // We are not building yet, so we still need to find the end_tile. // We will only build a bridge if we need to cross a river, so first check for that. if (!build_bridge) { const DiagDirection direction = ReverseDiagDir(GetInclinedSlopeDirection(GetTileSlope(start_tile))); // We are not building yet, so we still need to find the end_tile. for (TileIndex tile = start_tile + TileOffsByDiagDir(direction); IsValidTile(tile) && (GetTunnelBridgeLength(start_tile, tile) <= std::min(_settings_game.construction.max_bridge_length, (uint16)10)) && (GetTileZ(start_tile) < (GetTileZ(tile) + _settings_game.construction.max_bridge_height)) && (GetTileZ(tile) <= GetTileZ(start_tile)); tile += TileOffsByDiagDir(direction)) { auto is_complementary_slope = !IsSteepSlope(GetTileSlope(tile)) && !IsHalftileSlope(GetTileSlope(tile)) && GetTileSlope(start_tile) == ComplementSlope(GetTileSlope(tile)); // No super-short bridges and always ending up on a matching upwards slope. if (!AreTilesAdjacent(start_tile, tile) && is_complementary_slope) { end_tile = tile; break; } } if (!IsValidTile(end_tile)) return INVALID_TILE; if (GetTileSlope(start_tile) != ComplementSlope(GetTileSlope(end_tile))) return INVALID_TILE; if (!IsTileType(end_tile, MP_CLEAR) && !IsTileType(end_tile, MP_TREES)) return INVALID_TILE; } assert(!build_bridge || (IsValidTile(end_tile) && GetTileSlope(start_tile) == ComplementSlope(GetTileSlope(end_tile)))); std::vector available_bridge_types; for (uint i = 0; i < MAX_BRIDGES; ++i) { if (CheckBridgeAvailability(i, GetTunnelBridgeLength(start_tile, end_tile)).Succeeded()) { available_bridge_types.push_back(i); } } assert(!build_bridge || !available_bridge_types.empty()); if (available_bridge_types.empty()) return INVALID_TILE; const auto bridge_type = available_bridge_types[build_bridge ? RandomRange(uint32(available_bridge_types.size())) : 0]; Backup cur_company(_current_company, OWNER_DEITY, FILE_LINE); const auto build_bridge_cmd = CmdBuildBridge(end_tile, build_bridge ? DC_EXEC : DC_NONE, start_tile, bridge_type | (_public_road_type << 8) | (TRANSPORT_ROAD << 15)); cur_company.Restore(); assert(!build_bridge || build_bridge_cmd.Succeeded()); assert(!build_bridge || (IsTileType(start_tile, MP_TUNNELBRIDGE) && IsTileType(end_tile, MP_TUNNELBRIDGE))); if (!build_bridge_cmd.Succeeded()) return INVALID_TILE; return end_tile; } static TileIndex BuildRiverBridge(PathNode *current, const DiagDirection road_direction, TileIndex end_tile = INVALID_TILE, const bool build_bridge = false) { const TileIndex start_tile = current->node.tile; if (!build_bridge) { // We are not building yet, so we still need to find the end_tile. // We will only build a bridge if we need to cross a river, so first check for that. TileIndex tile = start_tile + TileOffsByDiagDir(road_direction); if (!IsWaterTile(tile) || !IsRiver(tile)) return INVALID_TILE; // Now let's see if we can bridge it. But don't bridge anything more than 4 river tiles. Cities aren't allowed to, so public roads we are not either. // Only bridges starting at slopes should be longer ones. The others look like crap when built this way. Players can build them but the map generator // should not force that on them. This is just to bridge rivers, not to make long bridges. for (; IsValidTile(tile) && (GetTunnelBridgeLength(start_tile, tile) <= std::min(_settings_game.construction.max_bridge_length, (uint16)3)) && (GetTileZ(start_tile) < (GetTileZ(tile) + _settings_game.construction.max_bridge_height)) && (GetTileZ(tile) <= GetTileZ(start_tile)); tile += TileOffsByDiagDir(road_direction)) { if ((IsTileType(tile, MP_CLEAR) || IsTileType(tile, MP_TREES)) && GetTileZ(tile) <= GetTileZ(start_tile) && GetTileSlope(tile) == SLOPE_FLAT) { end_tile = tile; break; } } if (!IsValidTile(end_tile)) return INVALID_TILE; if (!IsTileType(end_tile, MP_CLEAR) && !IsTileType(end_tile, MP_TREES)) return INVALID_TILE; } assert(!build_bridge || IsValidTile(end_tile)); std::vector available_bridge_types; for (uint i = 0; i < MAX_BRIDGES; ++i) { if (CheckBridgeAvailability(i, GetTunnelBridgeLength(start_tile, end_tile)).Succeeded()) { available_bridge_types.push_back(i); } } const auto bridge_type = available_bridge_types[build_bridge ? RandomRange(uint32(available_bridge_types.size())) : 0]; Backup cur_company(_current_company, OWNER_DEITY, FILE_LINE); const auto build_bridge_cmd = CmdBuildBridge(end_tile, build_bridge ? DC_EXEC : DC_NONE, start_tile, bridge_type | (_public_road_type << 8) | (TRANSPORT_ROAD << 15)); cur_company.Restore(); assert(!build_bridge || build_bridge_cmd.Succeeded()); assert(!build_bridge || (IsTileType(start_tile, MP_TUNNELBRIDGE) && IsTileType(end_tile, MP_TUNNELBRIDGE))); if (!build_bridge_cmd.Succeeded()) return INVALID_TILE; return end_tile; } static bool IsValidNeighbourOfPreviousTile(const TileIndex tile, const TileIndex previous_tile) { if (!IsValidTile(tile) || (tile == previous_tile)) return false; const auto forward_direction = DiagdirBetweenTiles(previous_tile, tile); if (IsTileType(tile, MP_TUNNELBRIDGE)) { if (GetOtherTunnelBridgeEnd(tile) == previous_tile) return true; const auto tunnel_direction = GetTunnelBridgeDirection(tile); return (tunnel_direction == forward_direction); } if (!IsTileType(tile, MP_CLEAR) && !IsTileType(tile, MP_TREES) && !IsTileType(tile, MP_ROAD)) return false; const auto slope = GetTileSlope(tile); // Do not allow foundations. We'll mess things up later. const bool has_foundation = GetFoundationSlope(tile) != slope; if (has_foundation) return false; if (IsInclinedSlope(slope)) { const auto slope_direction = GetInclinedSlopeDirection(slope); if (slope_direction != forward_direction && ReverseDiagDir(slope_direction) != forward_direction) { return false; } } else if (slope != SLOPE_FLAT) { return false; } return true; } static bool AreParallelOverlapping(const Point &start_a, const Point &end_a, const Point &start_b, const Point &end_b) { // Check parallel overlaps. if (start_a.x == end_a.x && start_b.x == end_b.x && start_a.x == start_b.x) { if ((start_a.y <= start_b.y && end_a.y >= start_b.y) || (start_a.y >= start_b.y && end_a.y <= start_b.y) || (start_a.y <= end_b.y && end_a.y >= end_b.y) || (start_a.y >= end_b.y && end_a.y <= end_b.y)) { return true; } } if (start_a.y == end_a.y && start_b.y == end_b.y && start_a.y == start_b.y) { if ((start_a.x <= start_b.x && end_a.x >= start_b.x) || (start_a.x >= start_b.x && end_a.x <= start_b.x) || (start_a.x <= end_b.x && end_a.x >= end_b.x) || (start_a.x >= end_b.x && end_a.x <= end_b.x)) { return true; } } return false; } static bool AreIntersecting(const Point &start_a, const Point &end_a, const Point &start_b, const Point &end_b) { if (start_a.x == end_a.x && start_b.y == end_b.y) { if ((start_b.x <= start_a.x && end_b.x >= start_a.x) || (start_b.x >= start_a.x && end_b.x <= start_a.x)) { if ((start_a.y <= start_b.y && end_a.y >= start_b.y) || (start_a.y >= start_b.y && end_a.y <= start_b.y)) { return true; } } } if (start_a.y == end_a.y && start_b.x == end_b.x) { if ((start_b.y <= start_a.y && end_b.y >= start_a.y) || (start_b.y >= start_a.y && end_b.y <= start_a.y)) { if ((start_a.x <= start_b.x && end_a.x >= start_b.x) || (start_a.x >= start_b.x && end_a.x <= start_b.x)) { return true; } } } return false; } static bool IsBlockedByPreviousBridgeOrTunnel(OpenListNode *current, TileIndex start_tile, TileIndex end_tile) { PathNode* start = ¤t->path; PathNode* end = current->path.parent; while (end != nullptr) { Point start_a {}; start_a.x = TileX(start->node.tile); start_a.y = TileY(start->node.tile); Point end_a {}; end_a.x = TileX(end->node.tile); end_a.y = TileY(end->node.tile); Point start_b {}; start_b.x = TileX(start_tile); start_b.y = TileY(start_tile); Point end_b {}; end_b.x = TileX(end_tile); end_b.y = TileY(end_tile); if (!AreTilesAdjacent(start->node.tile, end->node.tile) && (AreIntersecting(start_a, end_a, start_b, end_b) || AreParallelOverlapping(start_a, end_a, start_b, end_b))) { return true; } start = end; end = start->parent; } return false; } /** AyStar callback for getting the neighbouring nodes of the given node. */ static void PublicRoad_GetNeighbours(AyStar *aystar, OpenListNode *current) { const auto current_tile = current->path.node.tile; const auto previous_tile = current->path.parent != nullptr ? current->path.parent->node.tile : INVALID_TILE; const auto forward_direction = DiagdirBetweenTiles(previous_tile, current_tile); aystar->num_neighbours = 0; // Check if we just went through a tunnel or a bridge. if (IsValidTile(previous_tile) && !AreTilesAdjacent(current_tile, previous_tile)) { // We went through a tunnel or bridge, this limits our options to proceed to only forward. const TileIndex next_tile = current_tile + TileOffsByDiagDir(forward_direction); if (IsValidNeighbourOfPreviousTile(next_tile, current_tile)) { aystar->neighbours[aystar->num_neighbours].tile = next_tile; aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR; aystar->num_neighbours++; } } else if (IsTileType(current_tile, MP_TUNNELBRIDGE)) { // Handle existing tunnels and bridges const auto tunnel_bridge_end = GetOtherTunnelBridgeEnd(current_tile); aystar->neighbours[aystar->num_neighbours].tile = tunnel_bridge_end; aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR; aystar->num_neighbours++; } else { // Handle regular neighbors. for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) { const auto neighbour = current_tile + TileOffsByDiagDir(d); if (neighbour == previous_tile) { continue; } if (IsValidNeighbourOfPreviousTile(neighbour, current_tile)) { aystar->neighbours[aystar->num_neighbours].tile = neighbour; aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR; aystar->num_neighbours++; } } // Check if we can turn this into a tunnel or a bridge. if (IsValidTile(previous_tile)) { if (IsUpwardsSlope(current_tile, forward_direction)) { const auto tunnel_end = BuildTunnel(¤t->path); if (IsValidTile(tunnel_end) && !IsBlockedByPreviousBridgeOrTunnel(current, current_tile, tunnel_end) && !IsSteepSlope(GetTileSlope(tunnel_end)) && !IsHalftileSlope(GetTileSlope(tunnel_end)) && (GetTileSlope(tunnel_end) == ComplementSlope(GetTileSlope(current_tile)))) { assert(IsValidDiagDirection(DiagdirBetweenTiles(current_tile, tunnel_end))); aystar->neighbours[aystar->num_neighbours].tile = tunnel_end; aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR; aystar->num_neighbours++; } } else if (IsDownwardsSlope(current_tile, forward_direction)) { const auto bridge_end = BuildBridge(¤t->path, forward_direction); if (IsValidTile(bridge_end) && !IsBlockedByPreviousBridgeOrTunnel(current, current_tile, bridge_end) && !IsSteepSlope(GetTileSlope(bridge_end)) && !IsHalftileSlope(GetTileSlope(bridge_end)) && (GetTileSlope(bridge_end) == ComplementSlope(GetTileSlope(current_tile)))) { assert(IsValidDiagDirection(DiagdirBetweenTiles(current_tile, bridge_end))); aystar->neighbours[aystar->num_neighbours].tile = bridge_end; aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR; aystar->num_neighbours++; } } else if (GetTileSlope(current_tile) == SLOPE_FLAT) { // Check if we could bridge a river from a flat tile. Not looking pretty on the map but you gotta do what you gotta do. const auto bridge_end = BuildRiverBridge(¤t->path, forward_direction); assert(!IsValidTile(bridge_end) || GetTileSlope(bridge_end) == SLOPE_FLAT); if (IsValidTile(bridge_end) && !IsBlockedByPreviousBridgeOrTunnel(current, current_tile, bridge_end)) { assert(IsValidDiagDirection(DiagdirBetweenTiles(current_tile, bridge_end))); aystar->neighbours[aystar->num_neighbours].tile = bridge_end; aystar->neighbours[aystar->num_neighbours].direction = INVALID_TRACKDIR; aystar->num_neighbours++; } } } } } /** AyStar callback for checking whether we reached our destination. */ static int32 PublicRoad_EndNodeCheck(const AyStar *aystar, const OpenListNode *current) { // Mark towns visited along the way. const auto search_result = std::find(_town_centers.begin(), _town_centers.end(), current->path.node.tile); if (search_result != _town_centers.end()) { _towns_visited_along_the_way.push_back(current->path.node.tile); } return current->path.node.tile == *static_cast(aystar->user_target) ? AYSTAR_FOUND_END_NODE : AYSTAR_DONE; } /** AyStar callback when an route has been found. */ static void PublicRoad_FoundEndNode(AyStar *aystar, OpenListNode *current) { PathNode* child = nullptr; for (PathNode *path = ¤t->path; path != nullptr; path = path->parent) { const TileIndex tile = path->node.tile; if (IsTileType(tile, MP_TUNNELBRIDGE)) { // Just follow the path; infrastructure is already in place. continue; } if (path->parent == nullptr || AreTilesAdjacent(tile, path->parent->node.tile)) { RoadBits road_bits = ROAD_NONE; if (child != nullptr) { const TileIndex tile2 = child->node.tile; road_bits |= DiagDirToRoadBits(DiagdirBetweenTiles(tile, tile2)); } if (path->parent != nullptr) { const TileIndex tile2 = path->parent->node.tile; road_bits |= DiagDirToRoadBits(DiagdirBetweenTiles(tile, tile2)); } if (child != nullptr || path->parent != nullptr) { // Check if we need to build anything. bool need_to_build_road = true; if (IsTileType(tile, MP_ROAD)) { const RoadBits existing_bits = GetRoadBits(tile, RTT_ROAD); CLRBITS(road_bits, existing_bits); if (road_bits == ROAD_NONE) need_to_build_road = false; } // If it is already a road and has the right bits, we are good. Otherwise build the needed ones. if (need_to_build_road) { Backup cur_company(_current_company, OWNER_DEITY, FILE_LINE); CmdBuildRoad(tile, DC_EXEC, _public_road_type << 4 | road_bits, 0); cur_company.Restore(); } } } else { // We only get here if we have a parent and we're not adjacent to it. River/Tunnel time! const DiagDirection road_direction = DiagdirBetweenTiles(tile, path->parent->node.tile); auto end_tile = INVALID_TILE; if (IsUpwardsSlope(tile, road_direction)) { end_tile = BuildTunnel(path, path->parent->node.tile, true); assert(IsValidTile(end_tile) && IsDownwardsSlope(end_tile, road_direction)); } else if (IsDownwardsSlope(tile, road_direction)) { // Provide the function with the end tile, since we already know it, but still check the result. end_tile = BuildBridge(path, path->parent->node.tile, true); assert(IsValidTile(end_tile) && IsUpwardsSlope(end_tile, road_direction)); } else { // River bridge is the last possibility. assert(GetTileSlope(tile) == SLOPE_FLAT); end_tile = BuildRiverBridge(path, road_direction, path->parent->node.tile, true); assert(IsValidTile(end_tile) && GetTileSlope(end_tile) == SLOPE_FLAT); } } child = path; } } static const int32 BASE_COST_PER_TILE = 1; // Cost for building a new road. static const int32 COST_FOR_NEW_ROAD = 100; // Cost for building a new road. static const int32 COST_FOR_SLOPE = 50; // Additional cost if the road heads up or down a slope. /** AyStar callback for getting the cost of the current node. */ static int32 PublicRoad_CalculateG(AyStar *, AyStarNode *current, OpenListNode *parent) { int32 cost = 0; if (IsTileType(current->tile, MP_ROAD) || IsTileType(current->tile, MP_TUNNELBRIDGE)) { cost += (DistanceManhattan(parent->path.node.tile, current->tile)) * BASE_COST_PER_TILE; } else { cost += (DistanceManhattan(parent->path.node.tile, current->tile)) * COST_FOR_NEW_ROAD; if (GetTileZ(parent->path.node.tile) != GetTileZ(current->tile)) { cost += COST_FOR_SLOPE; } if (DistanceManhattan(parent->path.node.tile, current->tile) > 1) { // We are planning to build a bridge or tunnel. Make that a bit more expensive. cost += 6 * COST_FOR_SLOPE; } } if (_settings_game.game_creation.build_public_roads == PRC_AVOID_CURVES && parent->path.parent != nullptr && DiagdirBetweenTiles(parent->path.parent->node.tile, parent->path.node.tile) != DiagdirBetweenTiles(parent->path.node.tile, current->tile)) { cost += 1; } return cost; } /** AyStar callback for getting the estimated cost to the destination. */ static int32 PublicRoad_CalculateH(AyStar *aystar, AyStarNode *current, OpenListNode *parent) { return DistanceManhattan(*static_cast(aystar->user_target), current->tile) * BASE_COST_PER_TILE; } bool FindPath(AyStar& finder, const TileIndex from, TileIndex to) { finder.CalculateG = PublicRoad_CalculateG; finder.CalculateH = PublicRoad_CalculateH; finder.GetNeighbours = PublicRoad_GetNeighbours; finder.EndNodeCheck = PublicRoad_EndNodeCheck; finder.FoundEndNode = PublicRoad_FoundEndNode; finder.user_target = &(to); finder.max_search_nodes = 1 << 20; finder.Init(1 << _public_road_hash_size); AyStarNode start {}; start.tile = from; start.direction = INVALID_TRACKDIR; finder.AddStartNode(&start, 0); int result = AYSTAR_STILL_BUSY; while (result == AYSTAR_STILL_BUSY) { result = finder.Main(); } const bool found_path = (result == AYSTAR_FOUND_END_NODE); return found_path; } struct TownNetwork { uint failures_to_connect {}; std::vector towns; }; /** * Build the public road network connecting towns using AyStar. */ void GeneratePublicRoads() { using namespace std; if (_settings_game.game_creation.build_public_roads == PRC_NONE) return; _town_centers.clear(); _towns_visited_along_the_way.clear(); vector towns; towns.clear(); { for (const Town *town : Town::Iterate()) { towns.push_back(town->xy); _town_centers.push_back(town->xy); } } if (towns.empty()) { return; } SetGeneratingWorldProgress(GWP_PUBLIC_ROADS, uint(towns.size())); // Create a list of networks which also contain a value indicating how many times we failed to connect to them. vector> networks; unordered_map> town_to_network_map; sort(towns.begin(), towns.end(), [&](auto a, auto b) { return DistanceFromEdge(a) > DistanceFromEdge(b); }); TileIndex main_town = *towns.begin(); towns.erase(towns.begin()); _public_road_type = GetTownRoadType(Town::GetByTile(main_town)); std::unordered_set checked_towns; auto main_network = make_shared(); main_network->towns.push_back(main_town); main_network->failures_to_connect = 0; networks.push_back(main_network); town_to_network_map[main_town] = main_network; IncreaseGeneratingWorldProgress(GWP_PUBLIC_ROADS); auto town_network_distance = [](const TileIndex town, const std::shared_ptr &network) { const auto min_element = std::min_element(network->towns.begin(), network->towns.end(), [&](const TileIndex town_a, const TileIndex town_b) { return DistanceManhattan(town, town_a) < DistanceManhattan(town, town_b); }); return DistanceManhattan(*min_element, town); }; sort(towns.begin(), towns.end(), [&](auto a, auto b) { return DistanceManhattan(a, main_town) < DistanceManhattan(b, main_town); }); for (auto start_town : towns) { // Check if we can connect to any of the networks. _towns_visited_along_the_way.clear(); checked_towns.clear(); auto reachable_from_town = town_to_network_map.find(start_town); bool found_path = false; if (reachable_from_town != town_to_network_map.end()) { auto reachable_network = reachable_from_town->second; sort(reachable_network->towns.begin(), reachable_network->towns.end(), [&](auto a, auto b) { return DistanceManhattan(start_town, a) < DistanceManhattan(start_town, b); }); const TileIndex end_town = *reachable_network->towns.begin(); checked_towns.emplace(end_town); AyStar finder {}; { found_path = FindPath(finder, start_town, end_town); } finder.Free(); if (found_path) { reachable_network->towns.push_back(start_town); if (reachable_network->failures_to_connect > 0) { reachable_network->failures_to_connect--; } for (const TileIndex visited_town : _towns_visited_along_the_way) { town_to_network_map[visited_town] = reachable_network; } } else { town_to_network_map.erase(reachable_from_town); reachable_network->failures_to_connect++; } } if (!found_path) { // Sort networks by failed connection attempts, so we try the most likely one first. sort(networks.begin(), networks.end(), [&](const std::shared_ptr &a, const std::shared_ptr &b) { return town_network_distance(start_town, a) < town_network_distance(start_town, b); }); std::function can_reach = [&](const std::shared_ptr &network) { if (reachable_from_town != town_to_network_map.end() && network.get() == reachable_from_town->second.get()) { return false; } // Try to connect to the town in the network that is closest to us. // If we can't connect to that one, we can't connect to any of them since they are all interconnected. sort(network->towns.begin(), network->towns.end(), [&](auto a, auto b) { return DistanceManhattan(start_town, a) < DistanceManhattan(start_town, b); }); const TileIndex end_town = *network->towns.begin(); if (checked_towns.find(end_town) != checked_towns.end()) { return false; } checked_towns.emplace(end_town); AyStar finder {}; { found_path = FindPath(finder, start_town, end_town); } finder.Free(); if (found_path) { network->towns.push_back(start_town); if (network->failures_to_connect > 0) { network->failures_to_connect--; } town_to_network_map[start_town] = network; } else { network->failures_to_connect++; } return found_path; }; vector>::iterator networks_end; if (networks.size() > 5) { networks_end = networks.begin() + 5; } else { networks_end = networks.end(); } vector> sampled_networks; std::copy(networks.begin(), networks_end, std::back_inserter(sampled_networks)); sort(sampled_networks.begin(), sampled_networks.end(), [&](const std::shared_ptr &a, const std::shared_ptr &b) { return a->failures_to_connect < b->failures_to_connect; }); if (!any_of(sampled_networks.begin(), sampled_networks.end(), can_reach)) { // We failed so many networks, we are a separate network. Let future towns try to connect to us. auto new_network = make_shared(); new_network->towns.push_back(start_town); new_network->failures_to_connect = 0; // We basically failed to connect to this many towns. int towns_already_in_networks = std::accumulate(networks.begin(), networks.end(), 0, [&](int accumulator, const std::shared_ptr &network) { return accumulator + static_cast(network->towns.size()); }); new_network->failures_to_connect += towns_already_in_networks; town_to_network_map[start_town] = new_network; networks.push_back(new_network); for (const TileIndex visited_town : _towns_visited_along_the_way) { town_to_network_map[visited_town] = new_network; } } } IncreaseGeneratingWorldProgress(GWP_PUBLIC_ROADS); } } /* ========================================================================= */ /* END PUBLIC ROADS */ /* ========================================================================= */