/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file newgrf_spritegroup.cpp Handling of primarily NewGRF action 2. */ #include "stdafx.h" #include "debug.h" #include "newgrf_spritegroup.h" #include "newgrf_profiling.h" #include "core/pool_func.hpp" #include "vehicle_type.h" #include "newgrf_cache_check.h" #include "string_func.h" #include "newgrf_extension.h" #include "safeguards.h" SpriteGroupPool _spritegroup_pool("SpriteGroup"); INSTANTIATE_POOL_METHODS(SpriteGroup) TemporaryStorageArray _temp_store; /** * ResolverObject (re)entry point. * This cannot be made a call to a virtual function because virtual functions * do not like nullptr and checking for nullptr *everywhere* is more cumbersome than * this little helper function. * @param group the group to resolve for * @param object information needed to resolve the group * @param top_level true if this is a top-level SpriteGroup, false if used nested in another SpriteGroup. * @return the resolved group */ /* static */ const SpriteGroup *SpriteGroup::Resolve(const SpriteGroup *group, ResolverObject &object, bool top_level) { if (group == nullptr) return nullptr; const GRFFile *grf = object.grffile; auto profiler = std::find_if(_newgrf_profilers.begin(), _newgrf_profilers.end(), [&](const NewGRFProfiler &pr) { return pr.grffile == grf; }); if (profiler == _newgrf_profilers.end() || !profiler->active) { if (top_level) _temp_store.ClearChanges(); return group->Resolve(object); } else if (top_level) { profiler->BeginResolve(object); _temp_store.ClearChanges(); const SpriteGroup *result = group->Resolve(object); profiler->EndResolve(result); return result; } else { profiler->RecursiveResolve(); return group->Resolve(object); } } static inline uint32 GetVariable(const ResolverObject &object, ScopeResolver *scope, uint16 variable, uint32 parameter, GetVariableExtra *extra) { uint32 value; switch (variable) { case 0x0C: return object.callback; case 0x10: return object.callback_param1; case 0x18: return object.callback_param2; case 0x1C: return object.last_value; case 0x5F: return (scope->GetRandomBits() << 8) | scope->GetTriggers(); case 0x7D: return _temp_store.GetValue(parameter); case 0x7F: if (object.grffile == nullptr) return 0; return object.grffile->GetParam(parameter); default: /* First handle variables common with Action7/9/D */ if (variable < 0x40 && GetGlobalVariable(variable, &value, object.grffile)) return value; /* Not a common variable, so evaluate the feature specific variables */ return scope->GetVariable(variable, parameter, extra); } } /** * Get a few random bits. Default implementation has no random bits. * @return Random bits. */ /* virtual */ uint32 ScopeResolver::GetRandomBits() const { return 0; } /** * Get the triggers. Base class returns \c 0 to prevent trouble. * @return The triggers. */ /* virtual */ uint32 ScopeResolver::GetTriggers() const { return 0; } /** * Get a variable value. Default implementation has no available variables. * @param variable Variable to read * @param parameter Parameter for 60+x variables * @param[out] available Set to false, in case the variable does not exist. * @return Value */ /* virtual */ uint32 ScopeResolver::GetVariable(uint16 variable, uint32 parameter, GetVariableExtra *extra) const { DEBUG(grf, 1, "Unhandled scope variable 0x%X", variable); extra->available = false; return UINT_MAX; } /** * Store a value into the persistent storage area (PSA). Default implementation does nothing (for newgrf classes without storage). * @param reg Position to store into. * @param value Value to store. */ /* virtual */ void ScopeResolver::StorePSA(uint reg, int32 value) {} /** * Get the real sprites of the grf. * @param group Group to get. * @return The available sprite group. */ /* virtual */ const SpriteGroup *ResolverObject::ResolveReal(const RealSpriteGroup *group) const { if (!group->loaded.empty()) return group->loaded[0]; if (!group->loading.empty()) return group->loading[0]; return nullptr; } /** * Get a resolver for the \a scope. * @param scope Scope to return. * @param relative Additional parameter for #VSG_SCOPE_RELATIVE. * @return The resolver for the requested scope. */ /* virtual */ ScopeResolver *ResolverObject::GetScope(VarSpriteGroupScope scope, byte relative) { return &this->default_scope; } /* Evaluate an adjustment for a variable of the given size. * U is the unsigned type and S is the signed type to use. */ template static U EvalAdjustT(const DeterministicSpriteGroupAdjust &adjust, ScopeResolver *scope, U last_value, uint32 value) { value >>= adjust.shift_num; value &= adjust.and_mask; switch (adjust.type) { case DSGA_TYPE_DIV: value = ((S)value + (S)adjust.add_val) / (S)adjust.divmod_val; break; case DSGA_TYPE_MOD: value = ((S)value + (S)adjust.add_val) % (S)adjust.divmod_val; break; case DSGA_TYPE_NONE: break; } switch (adjust.operation) { case DSGA_OP_ADD: return last_value + value; case DSGA_OP_SUB: return last_value - value; case DSGA_OP_SMIN: return std::min(last_value, value); case DSGA_OP_SMAX: return std::max(last_value, value); case DSGA_OP_UMIN: return std::min(last_value, value); case DSGA_OP_UMAX: return std::max(last_value, value); case DSGA_OP_SDIV: return value == 0 ? (S)last_value : (S)last_value / (S)value; case DSGA_OP_SMOD: return value == 0 ? (S)last_value : (S)last_value % (S)value; case DSGA_OP_UDIV: return value == 0 ? (U)last_value : (U)last_value / (U)value; case DSGA_OP_UMOD: return value == 0 ? (U)last_value : (U)last_value % (U)value; case DSGA_OP_MUL: return last_value * value; case DSGA_OP_AND: return last_value & value; case DSGA_OP_OR: return last_value | value; case DSGA_OP_XOR: return last_value ^ value; case DSGA_OP_STO: _temp_store.StoreValue((U)value, (S)last_value); return last_value; case DSGA_OP_RST: return value; case DSGA_OP_STOP: scope->StorePSA((U)value, (S)last_value); return last_value; case DSGA_OP_ROR: return ROR((U)last_value, (U)value & 0x1F); // mask 'value' to 5 bits, which should behave the same on all architectures. case DSGA_OP_SCMP: return ((S)last_value == (S)value) ? 1 : ((S)last_value < (S)value ? 0 : 2); case DSGA_OP_UCMP: return ((U)last_value == (U)value) ? 1 : ((U)last_value < (U)value ? 0 : 2); case DSGA_OP_SHL: return (uint32)(U)last_value << ((U)value & 0x1F); // Same behaviour as in ParamSet, mask 'value' to 5 bits, which should behave the same on all architectures. case DSGA_OP_SHR: return (uint32)(U)last_value >> ((U)value & 0x1F); case DSGA_OP_SAR: return (int32)(S)last_value >> ((U)value & 0x1F); case DSGA_OP_TERNARY: return (last_value != 0) ? value : adjust.add_val; case DSGA_OP_EQ: return (last_value == value) ? 1 : 0; case DSGA_OP_SLT: return ((S)last_value < (S)value) ? 1 : 0; case DSGA_OP_SGE: return ((S)last_value >= (S)value) ? 1 : 0; case DSGA_OP_SLE: return ((S)last_value <= (S)value) ? 1 : 0; case DSGA_OP_SGT: return ((S)last_value > (S)value) ? 1 : 0; case DSGA_OP_RSUB: return value - last_value; default: return value; } } uint32 EvaluateDeterministicSpriteGroupAdjust(DeterministicSpriteGroupSize size, const DeterministicSpriteGroupAdjust &adjust, ScopeResolver *scope, uint32 last_value, uint32 value) { switch (size) { case DSG_SIZE_BYTE: return EvalAdjustT (adjust, scope, last_value, value); break; case DSG_SIZE_WORD: return EvalAdjustT(adjust, scope, last_value, value); break; case DSG_SIZE_DWORD: return EvalAdjustT(adjust, scope, last_value, value); break; default: NOT_REACHED(); } } static bool RangeHighComparator(const DeterministicSpriteGroupRange& range, uint32 value) { return range.high < value; } const SpriteGroup *DeterministicSpriteGroup::Resolve(ResolverObject &object) const { uint32 last_value = 0; uint32 value = 0; ScopeResolver *scope = object.GetScope(this->var_scope); for (const auto &adjust : this->adjusts) { /* Try to get the variable. We shall assume it is available, unless told otherwise. */ GetVariableExtra extra(adjust.and_mask << adjust.shift_num); if (adjust.variable == 0x7E) { const SpriteGroup *subgroup = SpriteGroup::Resolve(adjust.subroutine, object, false); if (subgroup == nullptr) { value = CALLBACK_FAILED; } else { value = subgroup->GetCallbackResult(); } /* Note: 'last_value' and 'reseed' are shared between the main chain and the procedure */ } else if (adjust.variable == 0x7B) { _sprite_group_resolve_check_veh_check = false; value = GetVariable(object, scope, adjust.parameter, last_value, &extra); } else { value = GetVariable(object, scope, adjust.variable, adjust.parameter, &extra); } if (!extra.available) { /* Unsupported variable: skip further processing and return either * the group from the first range or the default group. */ return SpriteGroup::Resolve(this->error_group, object, false); } switch (this->size) { case DSG_SIZE_BYTE: value = EvalAdjustT (adjust, scope, last_value, value); break; case DSG_SIZE_WORD: value = EvalAdjustT(adjust, scope, last_value, value); break; case DSG_SIZE_DWORD: value = EvalAdjustT(adjust, scope, last_value, value); break; default: NOT_REACHED(); } last_value = value; } object.last_value = last_value; if (this->calculated_result) { /* nvar == 0 is a special case -- we turn our value into a callback result */ if (value != CALLBACK_FAILED) value = GB(value, 0, 15); static CallbackResultSpriteGroup nvarzero(0, true); nvarzero.result = value; return &nvarzero; } if (this->ranges.size() > 4) { const auto &lower = std::lower_bound(this->ranges.begin(), this->ranges.end(), value, RangeHighComparator); if (lower != this->ranges.end() && lower->low <= value) { assert(lower->low <= value && value <= lower->high); return SpriteGroup::Resolve(lower->group, object, false); } } else { for (const auto &range : this->ranges) { if (range.low <= value && value <= range.high) { return SpriteGroup::Resolve(range.group, object, false); } } } return SpriteGroup::Resolve(this->default_group, object, false); } void DeterministicSpriteGroup::AnalyseCallbacks(AnalyseCallbackOperation &op) const { auto res = op.seen.insert(this); if (!res.second) { /* Already seen this group */ return; } auto check_1A_range = [&]() -> bool { if (this->adjusts.size() == 1 && this->adjusts[0].variable == 0x1A) { /* Not clear why some GRFs do this, perhaps a way of commenting out a branch */ uint32 value = EvaluateDeterministicSpriteGroupAdjust(this->size, this->adjusts[0], nullptr, 0, UINT_MAX); for (const auto &range : this->ranges) { if (range.low <= value && value <= range.high) { if (range.group != nullptr) range.group->AnalyseCallbacks(op); return true; } } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); return true; } return false; }; if (op.mode == ACOM_FIND_CB_RESULT) { if (this->calculated_result) { op.cb_result_found = true; return; } else if (!op.cb_result_found) { if (check_1A_range()) return; if (this->adjusts.size() == 1 && this->adjusts[0].variable == 0xC) { const auto &adjust = this->adjusts[0]; if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) { for (const auto &range : this->ranges) { if (range.low == range.high && range.low == 0xC) { if (range.group != nullptr) range.group->AnalyseCallbacks(op); return; } } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); return; } } for (const auto &range : this->ranges) { if (range.group != nullptr) range.group->AnalyseCallbacks(op); } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); } return; } if (check_1A_range()) return; auto find_cb_result = [&]() -> bool { if (this->calculated_result) return true; AnalyseCallbackOperation cbr_op; cbr_op.mode = ACOM_FIND_CB_RESULT; for (const auto &range : this->ranges) { if (range.group != nullptr) range.group->AnalyseCallbacks(cbr_op); } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(cbr_op); return cbr_op.cb_result_found; }; if (this->adjusts.size() == 1 && !this->calculated_result) { const auto &adjust = this->adjusts[0]; if (op.mode == ACOM_CB_VAR && adjust.variable == 0xC) { if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) { for (const auto &range : this->ranges) { if (range.low == range.high) { switch (range.low) { case CBID_VEHICLE_32DAY_CALLBACK: op.callbacks_used |= SGCU_VEHICLE_32DAY_CALLBACK; break; case CBID_VEHICLE_REFIT_COST: op.callbacks_used |= SGCU_VEHICLE_REFIT_COST; break; case CBID_RANDOM_TRIGGER: op.callbacks_used |= SGCU_RANDOM_TRIGGER; break; case CBID_VEHICLE_MODIFY_PROPERTY: if (range.group != nullptr) { AnalyseCallbackOperation cb36_op; cb36_op.mode = ACOM_CB36_PROP; range.group->AnalyseCallbacks(cb36_op); op.properties_used |= cb36_op.properties_used; op.callbacks_used |= cb36_op.callbacks_used; } break; } } else { if (range.group != nullptr) range.group->AnalyseCallbacks(op); } } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); return; } } if (op.mode == ACOM_CB36_PROP && adjust.variable == 0x10) { if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) { for (const auto &range : this->ranges) { if (range.low == range.high) { if (range.low < 64) { if (find_cb_result()) { SetBit(op.properties_used, range.low); if (range.low == 0x9) { /* Speed */ if (range.group != nullptr) { AnalyseCallbackOperation cb36_speed; cb36_speed.mode = ACOM_CB36_SPEED; range.group->AnalyseCallbacks(cb36_speed); op.callbacks_used |= cb36_speed.callbacks_used; } } } } } else { if (range.group != nullptr) range.group->AnalyseCallbacks(op); } } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); return; } } if (op.mode == ACOM_CB36_PROP && adjust.variable == 0xC) { if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) { for (const auto &range : this->ranges) { if (range.low <= CBID_VEHICLE_MODIFY_PROPERTY && CBID_VEHICLE_MODIFY_PROPERTY <= range.high) { if (range.group != nullptr) range.group->AnalyseCallbacks(op); return; } } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); return; } } if (op.mode == ACOM_CB36_SPEED && adjust.variable == 0x4A) { op.callbacks_used |= SGCU_CB36_SPEED_RAILTYPE; return; } } for (const auto &adjust : this->adjusts) { if (op.mode == ACOM_CB_VAR && adjust.variable == 0xC) { op.callbacks_used |= SGCU_ALL; } if (op.mode == ACOM_CB36_PROP && adjust.variable == 0x10) { if (find_cb_result()) { op.properties_used |= UINT64_MAX; } } if (adjust.variable == 0x7E && adjust.subroutine != nullptr) { adjust.subroutine->AnalyseCallbacks(op); } } if (!this->calculated_result) { for (const auto &range : this->ranges) { if (range.group != nullptr) range.group->AnalyseCallbacks(op); } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); } } void CallbackResultSpriteGroup::AnalyseCallbacks(AnalyseCallbackOperation &op) const { if (op.mode == ACOM_FIND_CB_RESULT) op.cb_result_found = true; } const SpriteGroup *RandomizedSpriteGroup::Resolve(ResolverObject &object) const { ScopeResolver *scope = object.GetScope(this->var_scope, this->count); if (object.callback == CBID_RANDOM_TRIGGER) { /* Handle triggers */ byte match = this->triggers & object.waiting_triggers; bool res = (this->cmp_mode == RSG_CMP_ANY) ? (match != 0) : (match == this->triggers); if (res) { object.used_triggers |= match; object.reseed[this->var_scope] |= (this->groups.size() - 1) << this->lowest_randbit; } } uint32 mask = ((uint)this->groups.size() - 1) << this->lowest_randbit; byte index = (scope->GetRandomBits() & mask) >> this->lowest_randbit; return SpriteGroup::Resolve(this->groups[index], object, false); } void RandomizedSpriteGroup::AnalyseCallbacks(AnalyseCallbackOperation &op) const { if (op.mode == ACOM_CB_VAR) op.callbacks_used |= SGCU_RANDOM_TRIGGER; } const SpriteGroup *RealSpriteGroup::Resolve(ResolverObject &object) const { return object.ResolveReal(this); } /** * Process registers and the construction stage into the sprite layout. * The passed construction stage might get reset to zero, if it gets incorporated into the layout * during the preprocessing. * @param[in,out] stage Construction stage (0-3), or nullptr if not applicable. * @return sprite layout to draw. */ const DrawTileSprites *TileLayoutSpriteGroup::ProcessRegisters(uint8 *stage) const { if (!this->dts.NeedsPreprocessing()) { if (stage != nullptr && this->dts.consistent_max_offset > 0) *stage = GetConstructionStageOffset(*stage, this->dts.consistent_max_offset); return &this->dts; } static DrawTileSprites result; uint8 actual_stage = stage != nullptr ? *stage : 0; this->dts.PrepareLayout(0, 0, 0, actual_stage, false); this->dts.ProcessRegisters(0, 0, false); result.seq = this->dts.GetLayout(&result.ground); /* Stage has been processed by PrepareLayout(), set it to zero. */ if (stage != nullptr) *stage = 0; return &result; } struct SpriteGroupDumper { private: char buffer[1024]; std::function print_fn; const SpriteGroup *top_default_group = nullptr; btree::btree_set seen_dsgs; void print() { this->print_fn(this->buffer); } enum SpriteGroupDumperFlags { SGDF_DEFAULT = 1 << 0, }; public: SpriteGroupDumper(std::function print) : print_fn(print) {} void DumpSpriteGroup(const SpriteGroup *sg, int padding, uint flags); }; static const char *_dsg_op_names[] { "ADD", "SUB", "SMIN", "SMAX", "UMIN", "UMAX", "SDIV", "SMOD", "UDIV", "UMOD", "MUL", "AND", "OR", "XOR", "STO", "RST", "STOP", "ROR", "SCMP", "UCMP", "SHL", "SHR", "SAR", }; static_assert(lengthof(_dsg_op_names) == DSGA_OP_END); static const char *_dsg_op_special_names[] { "TERNARY", "EQ", "SLT", "SGE", "SLE", "SGT", "RSUB", }; static_assert(lengthof(_dsg_op_special_names) == DSGA_OP_SPECIAL_END - DSGA_OP_TERNARY); static const char *_sg_scope_names[] { "SELF", "PARENT", "RELATIVE", }; static_assert(lengthof(_sg_scope_names) == VSG_END); static const char *_sg_size_names[] { "BYTE", "WORD", "DWORD", }; static const char *GetAdjustOperationName(DeterministicSpriteGroupAdjustOperation operation) { if (operation < DSGA_OP_END) return _dsg_op_names[operation]; if (operation >= DSGA_OP_TERNARY && operation < DSGA_OP_SPECIAL_END) return _dsg_op_special_names[operation - DSGA_OP_TERNARY]; return "???"; } void SpriteGroupDumper::DumpSpriteGroup(const SpriteGroup *sg, int padding, uint flags) { if (sg == nullptr) { seprintf(this->buffer, lastof(this->buffer), "%*sNULL GROUP", padding, ""); this->print(); return; } switch (sg->type) { case SGT_REAL: { const RealSpriteGroup *rsg = (const RealSpriteGroup*)sg; seprintf(this->buffer, lastof(this->buffer), "%*sReal (loaded: %u, loading: %u) [%u]", padding, "", (uint)rsg->loaded.size(), (uint)rsg->loading.size(), sg->nfo_line); this->print(); for (size_t i = 0; i < rsg->loaded.size(); i++) { seprintf(this->buffer, lastof(this->buffer), "%*sLoaded %u", padding + 2, "", (uint)i); this->print(); this->DumpSpriteGroup(rsg->loaded[i], padding + 4, 0); } for (size_t i = 0; i < rsg->loading.size(); i++) { seprintf(this->buffer, lastof(this->buffer), "%*sLoading %u", padding + 2, "", (uint)i); this->print(); this->DumpSpriteGroup(rsg->loading[i], padding + 4, 0); } break; } case SGT_DETERMINISTIC: { const DeterministicSpriteGroup *dsg = (const DeterministicSpriteGroup*)sg; if (padding == 0 && !dsg->calculated_result && dsg->default_group != nullptr) { this->top_default_group = dsg->default_group; } if (dsg == this->top_default_group && !(padding == 4 && (flags & SGDF_DEFAULT))) { seprintf(this->buffer, lastof(this->buffer), "%*sTOP LEVEL DEFAULT GROUP: Deterministic (%s, %s), [%u]", padding, "", _sg_scope_names[dsg->var_scope], _sg_size_names[dsg->size], dsg->nfo_line); this->print(); return; } auto res = this->seen_dsgs.insert(dsg); if (!res.second) { seprintf(this->buffer, lastof(this->buffer), "%*sGROUP SEEN ABOVE: Deterministic (%s, %s), [%u]", padding, "", _sg_scope_names[dsg->var_scope], _sg_size_names[dsg->size], dsg->nfo_line); this->print(); return; } seprintf(this->buffer, lastof(this->buffer), "%*sDeterministic (%s, %s), [%u]", padding, "", _sg_scope_names[dsg->var_scope], _sg_size_names[dsg->size], dsg->nfo_line); this->print(); padding += 2; for (const auto &adjust : dsg->adjusts) { char *p = this->buffer; if (adjust.operation == DSGA_OP_TERNARY) { p += seprintf(p, lastof(this->buffer), "%*sTERNARY: true: %X, false: %X", padding, "", adjust.and_mask, adjust.add_val); this->print(); continue; } p += seprintf(p, lastof(this->buffer), "%*svar: %X", padding, "", adjust.variable); if (adjust.variable == A2VRI_VEHICLE_CURRENT_SPEED_SCALED) { p += seprintf(p, lastof(this->buffer), " (current_speed_scaled)"); } else if (adjust.variable >= 0x100) { extern const GRFVariableMapDefinition _grf_action2_remappable_variables[]; for (const GRFVariableMapDefinition *info = _grf_action2_remappable_variables; info->name != nullptr; info++) { if (adjust.variable == info->id) { p += seprintf(p, lastof(this->buffer), " (%s)", info->name); break; } } } if ((adjust.variable >= 0x60 && adjust.variable <= 0x7F && adjust.variable != 0x7E) || adjust.parameter != 0) p += seprintf(p, lastof(this->buffer), " (parameter: %X)", adjust.parameter); p += seprintf(p, lastof(this->buffer), ", shift: %X, and: %X", adjust.shift_num, adjust.and_mask); switch (adjust.type) { case DSGA_TYPE_DIV: p += seprintf(p, lastof(this->buffer), ", add: %X, div: %X", adjust.add_val, adjust.divmod_val); break; case DSGA_TYPE_MOD: p += seprintf(p, lastof(this->buffer), ", add: %X, mod: %X", adjust.add_val, adjust.divmod_val); break; case DSGA_TYPE_NONE: break; } p += seprintf(p, lastof(this->buffer), ", op: %X (%s)", adjust.operation, GetAdjustOperationName(adjust.operation)); this->print(); if (adjust.variable == 0x7E && adjust.subroutine != nullptr) { this->DumpSpriteGroup(adjust.subroutine, padding + 5, 0); } } if (dsg->calculated_result) { seprintf(this->buffer, lastof(this->buffer), "%*scalculated_result", padding, ""); this->print(); } else { for (const auto &range : dsg->ranges) { seprintf(this->buffer, lastof(this->buffer), "%*srange: %X -> %X", padding, "", range.low, range.high); this->print(); this->DumpSpriteGroup(range.group, padding + 2, 0); } if (dsg->default_group != nullptr) { seprintf(this->buffer, lastof(this->buffer), "%*sdefault", padding, ""); this->print(); this->DumpSpriteGroup(dsg->default_group, padding + 2, SGDF_DEFAULT); } } break; } case SGT_RANDOMIZED: { const RandomizedSpriteGroup *rsg = (const RandomizedSpriteGroup*)sg; seprintf(this->buffer, lastof(this->buffer), "%*sRandom (%s, %s, triggers: %X, count: %X, lowest_randbit: %X, groups: %u) [%u]", padding, "", _sg_scope_names[rsg->var_scope], rsg->cmp_mode == RSG_CMP_ANY ? "ANY" : "ALL", rsg->triggers, rsg->count, rsg->lowest_randbit, (uint)rsg->groups.size(), rsg->nfo_line); this->print(); for (const auto &group : rsg->groups) { this->DumpSpriteGroup(group, padding + 2, 0); } break; } case SGT_CALLBACK: seprintf(this->buffer, lastof(this->buffer), "%*sCallback Result: %X", padding, "", ((const CallbackResultSpriteGroup *) sg)->result); this->print(); break; case SGT_RESULT: seprintf(this->buffer, lastof(this->buffer), "%*sSprite Result: SpriteID: %u, num: %u", padding, "", ((const ResultSpriteGroup *) sg)->sprite, ((const ResultSpriteGroup *) sg)->num_sprites); this->print(); break; case SGT_TILELAYOUT: { const TileLayoutSpriteGroup *tlsg = (const TileLayoutSpriteGroup*)sg; seprintf(this->buffer, lastof(this->buffer), "%*sTile Layout [%u]", padding, "", sg->nfo_line); this->print(); padding += 2; if (tlsg->dts.registers != nullptr) { const TileLayoutRegisters *registers = tlsg->dts.registers; size_t count = 1; // 1 for the ground sprite const DrawTileSeqStruct *element; foreach_draw_tile_seq(element, tlsg->dts.seq) count++; for (size_t i = 0; i < count; i ++) { const TileLayoutRegisters *reg = registers + i; seprintf(this->buffer, lastof(this->buffer), "%*ssection: %X, register flags: %X", padding, "", (uint)i, reg->flags); this->print(); if (reg->flags & TLF_DODRAW) { seprintf(this->buffer, lastof(this->buffer), "%*sTLF_DODRAW reg: %X", padding + 2, "", reg->dodraw); this->print(); } if (reg->flags & TLF_SPRITE) { seprintf(this->buffer, lastof(this->buffer), "%*sTLF_SPRITE reg: %X", padding + 2, "", reg->sprite); this->print(); } if (reg->flags & TLF_PALETTE) { seprintf(this->buffer, lastof(this->buffer), "%*sTLF_PALETTE reg: %X", padding + 2, "", reg->palette); this->print(); } if (reg->flags & TLF_BB_XY_OFFSET) { seprintf(this->buffer, lastof(this->buffer), "%*sTLF_BB_XY_OFFSET reg: %X, %X", padding + 2, "", reg->delta.parent[0], reg->delta.parent[1]); this->print(); } if (reg->flags & TLF_BB_Z_OFFSET) { seprintf(this->buffer, lastof(this->buffer), "%*sTLF_BB_Z_OFFSET reg: %X", padding + 2, "", reg->delta.parent[2]); this->print(); } if (reg->flags & TLF_CHILD_X_OFFSET) { seprintf(this->buffer, lastof(this->buffer), "%*sTLF_CHILD_X_OFFSET reg: %X", padding + 2, "", reg->delta.child[0]); this->print(); } if (reg->flags & TLF_CHILD_Y_OFFSET) { seprintf(this->buffer, lastof(this->buffer), "%*sTLF_CHILD_Y_OFFSET reg: %X", padding + 2, "", reg->delta.child[1]); this->print(); } if (reg->flags & TLF_SPRITE_VAR10) { seprintf(this->buffer, lastof(this->buffer), "%*sTLF_SPRITE_VAR10 value: %X", padding + 2, "", reg->sprite_var10); this->print(); } if (reg->flags & TLF_PALETTE_VAR10) { seprintf(this->buffer, lastof(this->buffer), "%*sTLF_PALETTE_VAR10 value: %X", padding + 2, "", reg->palette_var10); this->print(); } } } break; } case SGT_INDUSTRY_PRODUCTION: seprintf(this->buffer, lastof(this->buffer), "%*sIndustry Production [%u]", padding, "", sg->nfo_line); this->print(); break; } } void DumpSpriteGroup(const SpriteGroup *sg, std::function print) { SpriteGroupDumper dumper(std::move(print)); dumper.DumpSpriteGroup(sg, 0, 0); }