/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** * @file saveload.cpp * All actions handling saving and loading goes on in this file. The general actions * are as follows for saving a game (loading is analogous): *
    *
  1. initialize the writer by creating a temporary memory-buffer for it *
  2. go through all to-be saved elements, each 'chunk' (#ChunkHandler) prefixed by a label *
  3. use their description array (#SaveLoad) to know what elements to save and in what version * of the game it was active (used when loading) *
  4. write all data byte-by-byte to the temporary buffer so it is endian-safe *
  5. when the buffer is full; flush it to the output (eg save to file) (_sl.buf, _sl.bufp, _sl.bufe) *
  6. repeat this until everything is done, and flush any remaining output to file *
*/ #include "../stdafx.h" #include "../debug.h" #include "../station_base.h" #include "../thread.h" #include "../town.h" #include "../network/network.h" #include "../window_func.h" #include "../strings_func.h" #include "../core/endian_func.hpp" #include "../vehicle_base.h" #include "../company_func.h" #include "../date_func.h" #include "../autoreplace_base.h" #include "../roadstop_base.h" #include "../linkgraph/linkgraph.h" #include "../linkgraph/linkgraphjob.h" #include "../statusbar_gui.h" #include "../fileio_func.h" #include "../gamelog.h" #include "../string_func.h" #include "../string_func_extra.h" #include "../fios.h" #include "../error.h" #include "../scope.h" #include #include #ifdef __EMSCRIPTEN__ # include #endif #include "../tbtr_template_vehicle.h" #include "table/strings.h" #include "saveload_internal.h" #include "saveload_filter.h" #include "saveload_buffer.h" #include "extended_ver_sl.h" #include #include #include "../thread.h" #include #include #if defined(__MINGW32__) #include "../3rdparty/mingw-std-threads/mingw.mutex.h" #include "../3rdparty/mingw-std-threads/mingw.condition_variable.h" #endif #include "../safeguards.h" extern const SaveLoadVersion SAVEGAME_VERSION = (SaveLoadVersion)(SL_MAX_VERSION - 1); ///< Current savegame version of OpenTTD. const SaveLoadVersion SAVEGAME_VERSION_EXT = (SaveLoadVersion)(0x8000); ///< Savegame extension indicator mask SavegameType _savegame_type; ///< type of savegame we are loading FileToSaveLoad _file_to_saveload; ///< File to save or load in the openttd loop. uint32 _ttdp_version; ///< version of TTDP savegame (if applicable) SaveLoadVersion _sl_version; ///< the major savegame version identifier byte _sl_minor_version; ///< the minor savegame version, DO NOT USE! char _savegame_format[8]; ///< how to compress savegames bool _do_autosave; ///< are we doing an autosave at the moment? extern bool _sl_is_ext_version; extern bool _sl_maybe_springpp; extern bool _sl_maybe_chillpp; /** What are we currently doing? */ enum SaveLoadAction { SLA_LOAD, ///< loading SLA_SAVE, ///< saving SLA_PTRS, ///< fixing pointers SLA_NULL, ///< null all pointers (on loading error) SLA_LOAD_CHECK, ///< partial loading into #_load_check_data }; enum NeedLength { NL_NONE = 0, ///< not working in NeedLength mode NL_WANTLENGTH = 1, ///< writing length and data }; void ReadBuffer::SkipBytesSlowPath(size_t bytes) { bytes -= (this->bufe - this->bufp); while (true) { size_t len = this->reader->Read(this->buf, lengthof(this->buf)); if (len == 0) SlErrorCorrupt("Unexpected end of chunk"); this->read += len; if (len >= bytes) { this->bufp = this->buf + bytes; this->bufe = this->buf + len; return; } else { bytes -= len; } } } void ReadBuffer::AcquireBytes() { size_t remainder = this->bufe - this->bufp; if (remainder) { memmove(this->buf, this->bufp, remainder); } size_t len = this->reader->Read(this->buf + remainder, lengthof(this->buf) - remainder); if (len == 0) SlErrorCorrupt("Unexpected end of chunk"); this->read += len; this->bufp = this->buf; this->bufe = this->buf + remainder + len; } void MemoryDumper::FinaliseBlock() { assert(this->saved_buf == nullptr); if (!this->blocks.empty()) { size_t s = MEMORY_CHUNK_SIZE - (this->bufe - this->buf); this->blocks.back().size = s; this->completed_block_bytes += s; } this->buf = this->bufe = nullptr; } void MemoryDumper::AllocateBuffer() { if (this->saved_buf) { const size_t offset = this->buf - this->autolen_buf; const size_t size = (this->autolen_buf_end - this->autolen_buf) * 2; this->autolen_buf = ReallocT(this->autolen_buf, size); this->autolen_buf_end = this->autolen_buf + size; this->buf = this->autolen_buf + offset; this->bufe = this->autolen_buf_end; return; } this->FinaliseBlock(); this->buf = MallocT(MEMORY_CHUNK_SIZE); this->blocks.emplace_back(this->buf); this->bufe = this->buf + MEMORY_CHUNK_SIZE; } /** * Flush this dumper into a writer. * @param writer The filter we want to use. */ void MemoryDumper::Flush(SaveFilter *writer) { this->FinaliseBlock(); uint block_count = this->blocks.size(); for (uint i = 0; i < block_count; i++) { writer->Write(this->blocks[i].data, this->blocks[i].size); } writer->Finish(); } void MemoryDumper::StartAutoLength() { assert(this->saved_buf == nullptr); this->saved_buf = this->buf; this->saved_bufe = this->bufe; this->buf = this->autolen_buf; this->bufe = this->autolen_buf_end; } std::pair MemoryDumper::StopAutoLength() { assert(this->saved_buf != nullptr); auto res = std::make_pair(this->autolen_buf, this->buf - this->autolen_buf); this->buf = this->saved_buf; this->bufe = this->saved_bufe; this->saved_buf = this->saved_bufe = nullptr; return res; } /** * Get the size of the memory dump made so far. * @return The size. */ size_t MemoryDumper::GetSize() const { assert(this->saved_buf == nullptr); return this->completed_block_bytes + (this->bufe ? (MEMORY_CHUNK_SIZE - (this->bufe - this->buf)) : 0); } /** The saveload struct, containing reader-writer functions, buffer, version, etc. */ struct SaveLoadParams { SaveLoadAction action; ///< are we doing a save or a load atm. NeedLength need_length; ///< working in NeedLength (Autolength) mode? byte block_mode; ///< ??? bool error; ///< did an error occur or not size_t obj_len; ///< the length of the current object we are busy with int array_index, last_array_index; ///< in the case of an array, the current and last positions MemoryDumper *dumper; ///< Memory dumper to write the savegame to. SaveFilter *sf; ///< Filter to write the savegame to. ReadBuffer *reader; ///< Savegame reading buffer. LoadFilter *lf; ///< Filter to read the savegame from. StringID error_str; ///< the translatable error message to show char *extra_msg; ///< the error message uint16 game_speed; ///< The game speed when saving started. bool saveinprogress; ///< Whether there is currently a save in progress. bool networkserversave; ///< Whether this save is being sent to a network client }; static SaveLoadParams _sl; ///< Parameters used for/at saveload. ReadBuffer *ReadBuffer::GetCurrent() { return _sl.reader; } MemoryDumper *MemoryDumper::GetCurrent() { return _sl.dumper; } /* these define the chunks */ extern const ChunkHandler _version_ext_chunk_handlers[]; extern const ChunkHandler _gamelog_chunk_handlers[]; extern const ChunkHandler _map_chunk_handlers[]; extern const ChunkHandler _misc_chunk_handlers[]; extern const ChunkHandler _name_chunk_handlers[]; extern const ChunkHandler _cheat_chunk_handlers[] ; extern const ChunkHandler _setting_chunk_handlers[]; extern const ChunkHandler _company_chunk_handlers[]; extern const ChunkHandler _engine_chunk_handlers[]; extern const ChunkHandler _veh_chunk_handlers[]; extern const ChunkHandler _waypoint_chunk_handlers[]; extern const ChunkHandler _depot_chunk_handlers[]; extern const ChunkHandler _order_chunk_handlers[]; extern const ChunkHandler _town_chunk_handlers[]; extern const ChunkHandler _sign_chunk_handlers[]; extern const ChunkHandler _station_chunk_handlers[]; extern const ChunkHandler _industry_chunk_handlers[]; extern const ChunkHandler _economy_chunk_handlers[]; extern const ChunkHandler _subsidy_chunk_handlers[]; extern const ChunkHandler _cargomonitor_chunk_handlers[]; extern const ChunkHandler _goal_chunk_handlers[]; extern const ChunkHandler _story_page_chunk_handlers[]; extern const ChunkHandler _ai_chunk_handlers[]; extern const ChunkHandler _game_chunk_handlers[]; extern const ChunkHandler _animated_tile_chunk_handlers[]; extern const ChunkHandler _newgrf_chunk_handlers[]; extern const ChunkHandler _group_chunk_handlers[]; extern const ChunkHandler _cargopacket_chunk_handlers[]; extern const ChunkHandler _autoreplace_chunk_handlers[]; extern const ChunkHandler _labelmaps_chunk_handlers[]; extern const ChunkHandler _linkgraph_chunk_handlers[]; extern const ChunkHandler _airport_chunk_handlers[]; extern const ChunkHandler _object_chunk_handlers[]; extern const ChunkHandler _persistent_storage_chunk_handlers[]; extern const ChunkHandler _trace_restrict_chunk_handlers[]; extern const ChunkHandler _signal_chunk_handlers[]; extern const ChunkHandler _plan_chunk_handlers[]; extern const ChunkHandler _template_replacement_chunk_handlers[]; extern const ChunkHandler _template_vehicle_chunk_handlers[]; extern const ChunkHandler _bridge_signal_chunk_handlers[]; extern const ChunkHandler _tunnel_chunk_handlers[]; extern const ChunkHandler _debug_chunk_handlers[]; /** Array of all chunks in a savegame, \c nullptr terminated. */ static const ChunkHandler * const _chunk_handlers[] = { _version_ext_chunk_handlers, // this should be first, such that it is saved first, as when loading it affects the loading of subsequent chunks _gamelog_chunk_handlers, _map_chunk_handlers, _misc_chunk_handlers, _name_chunk_handlers, _cheat_chunk_handlers, _setting_chunk_handlers, _veh_chunk_handlers, _waypoint_chunk_handlers, _depot_chunk_handlers, _order_chunk_handlers, _industry_chunk_handlers, _economy_chunk_handlers, _subsidy_chunk_handlers, _cargomonitor_chunk_handlers, _goal_chunk_handlers, _story_page_chunk_handlers, _engine_chunk_handlers, _town_chunk_handlers, _sign_chunk_handlers, _station_chunk_handlers, _company_chunk_handlers, _ai_chunk_handlers, _game_chunk_handlers, _animated_tile_chunk_handlers, _newgrf_chunk_handlers, _group_chunk_handlers, _cargopacket_chunk_handlers, _autoreplace_chunk_handlers, _labelmaps_chunk_handlers, _linkgraph_chunk_handlers, _airport_chunk_handlers, _object_chunk_handlers, _persistent_storage_chunk_handlers, _trace_restrict_chunk_handlers, _signal_chunk_handlers, _plan_chunk_handlers, _template_replacement_chunk_handlers, _template_vehicle_chunk_handlers, _bridge_signal_chunk_handlers, _tunnel_chunk_handlers, _debug_chunk_handlers, nullptr, }; /** * Iterate over all chunk handlers. * @param ch the chunk handler iterator */ #define FOR_ALL_CHUNK_HANDLERS(ch) \ for (const ChunkHandler * const *chsc = _chunk_handlers; *chsc != nullptr; chsc++) \ for (const ChunkHandler *ch = *chsc; ch != nullptr; ch = (ch->flags & CH_LAST) ? nullptr : ch + 1) /** Null all pointers (convert index -> nullptr) */ static void SlNullPointers() { _sl.action = SLA_NULL; /* We don't want any savegame conversion code to run * during NULLing; especially those that try to get * pointers from other pools. */ _sl_version = SAVEGAME_VERSION; SlXvSetCurrentState(); FOR_ALL_CHUNK_HANDLERS(ch) { if (ch->ptrs_proc != nullptr) { DEBUG(sl, 3, "Nulling pointers for %c%c%c%c", ch->id >> 24, ch->id >> 16, ch->id >> 8, ch->id); ch->ptrs_proc(); } } assert(_sl.action == SLA_NULL); } struct ThreadSlErrorException { StringID string; const char *extra_msg; }; /** * Error handler. Sets everything up to show an error message and to clean * up the mess of a partial savegame load. * @param string The translatable error message to show. * @param extra_msg An extra error message coming from one of the APIs. * @note This function does never return as it throws an exception to * break out of all the saveload code. */ void NORETURN SlError(StringID string, const char *extra_msg, bool already_malloced) { char *str = nullptr; if (extra_msg != nullptr) { str = already_malloced ? const_cast(extra_msg) : stredup(extra_msg); } if (IsNonMainThread()) { throw ThreadSlErrorException{ string, extra_msg }; } /* Distinguish between loading into _load_check_data vs. normal save/load. */ if (_sl.action == SLA_LOAD_CHECK) { _load_check_data.error = string; free(_load_check_data.error_data); _load_check_data.error_data = str; } else { _sl.error_str = string; free(_sl.extra_msg); _sl.extra_msg = str; } /* We have to nullptr all pointers here; we might be in a state where * the pointers are actually filled with indices, which means that * when we access them during cleaning the pool dereferences of * those indices will be made with segmentation faults as result. */ if (_sl.action == SLA_LOAD || _sl.action == SLA_PTRS) SlNullPointers(); /* Logging could be active. */ GamelogStopAnyAction(); throw std::exception(); } /** * As SlError, except that it takes a format string and additional parameters */ void NORETURN CDECL SlErrorFmt(StringID string, const char *msg, ...) { va_list va; va_start(va, msg); char *str = str_vfmt(msg, va); va_end(va); SlError(string, str, true); } /** * Error handler for corrupt savegames. Sets everything up to show the * error message and to clean up the mess of a partial savegame load. * @param msg Location the corruption has been spotted. * @note This function does never return as it throws an exception to * break out of all the saveload code. */ void NORETURN SlErrorCorrupt(const char *msg, bool already_malloced) { SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_SAVEGAME, msg, already_malloced); } /** * Issue an SlErrorCorrupt with a format string. * @param format format string * @param ... arguments to format string * @note This function does never return as it throws an exception to * break out of all the saveload code. */ void NORETURN CDECL SlErrorCorruptFmt(const char *format, ...) { va_list va; va_start(va, format); char *str = str_vfmt(format, va); va_end(va); SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_SAVEGAME, str, true); } typedef void (*AsyncSaveFinishProc)(); ///< Callback for when the savegame loading is finished. static std::atomic _async_save_finish; ///< Callback to call when the savegame loading is finished. static std::thread _save_thread; ///< The thread we're using to compress and write a savegame /** * Called by save thread to tell we finished saving. * @param proc The callback to call when saving is done. */ static void SetAsyncSaveFinish(AsyncSaveFinishProc proc) { if (_exit_game) return; while (_async_save_finish.load(std::memory_order_acquire) != nullptr) CSleep(10); _async_save_finish.store(proc, std::memory_order_release); } /** * Handle async save finishes. */ void ProcessAsyncSaveFinish() { AsyncSaveFinishProc proc = _async_save_finish.exchange(nullptr, std::memory_order_acq_rel); if (proc == nullptr) return; proc(); if (_save_thread.joinable()) { _save_thread.join(); } } /** * Wrapper for reading a byte from the buffer. * @return The read byte. */ byte SlReadByte() { return _sl.reader->ReadByte(); } /** * Read in bytes from the file/data structure but don't do * anything with them, discarding them in effect * @param length The amount of bytes that is being treated this way */ void SlSkipBytes(size_t length) { return _sl.reader->SkipBytes(length); } int SlReadUint16() { _sl.reader->CheckBytes(2); return _sl.reader->RawReadUint16(); } uint32 SlReadUint32() { _sl.reader->CheckBytes(4); return _sl.reader->RawReadUint32(); } uint64 SlReadUint64() { _sl.reader->CheckBytes(8); return _sl.reader->RawReadUint64(); } /** * Wrapper for writing a byte to the dumper. * @param b The byte to write. */ void SlWriteByte(byte b) { _sl.dumper->WriteByte(b); } void SlWriteUint16(uint16 v) { _sl.dumper->CheckBytes(2); _sl.dumper->RawWriteUint16(v); } void SlWriteUint32(uint32 v) { _sl.dumper->CheckBytes(4); _sl.dumper->RawWriteUint32(v); } void SlWriteUint64(uint64 v) { _sl.dumper->CheckBytes(8); _sl.dumper->RawWriteUint64(v); } /** * Returns number of bytes read so far * May only be called during a load/load check action */ size_t SlGetBytesRead() { assert(_sl.action == SLA_LOAD || _sl.action == SLA_LOAD_CHECK); return _sl.reader->GetSize(); } /** * Returns number of bytes written so far * May only be called during a save action */ size_t SlGetBytesWritten() { assert(_sl.action == SLA_SAVE); return _sl.dumper->GetSize(); } /** * Read in the header descriptor of an object or an array. * If the highest bit is set (7), then the index is bigger than 127 * elements, so use the next byte to read in the real value. * The actual value is then both bytes added with the first shifted * 8 bits to the left, and dropping the highest bit (which only indicated a big index). * x = ((x & 0x7F) << 8) + SlReadByte(); * @return Return the value of the index */ static uint SlReadSimpleGamma() { uint i = SlReadByte(); if (HasBit(i, 7)) { i &= ~0x80; if (HasBit(i, 6)) { i &= ~0x40; if (HasBit(i, 5)) { i &= ~0x20; if (HasBit(i, 4)) { i &= ~0x10; if (HasBit(i, 3)) { SlErrorCorrupt("Unsupported gamma"); } i = SlReadByte(); // 32 bits only. } i = (i << 8) | SlReadByte(); } i = (i << 8) | SlReadByte(); } i = (i << 8) | SlReadByte(); } return i; } /** * Write the header descriptor of an object or an array. * If the element is bigger than 127, use 2 bytes for saving * and use the highest byte of the first written one as a notice * that the length consists of 2 bytes, etc.. like this: * 0xxxxxxx * 10xxxxxx xxxxxxxx * 110xxxxx xxxxxxxx xxxxxxxx * 1110xxxx xxxxxxxx xxxxxxxx xxxxxxxx * 11110--- xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx * We could extend the scheme ad infinum to support arbitrarily * large chunks, but as sizeof(size_t) == 4 is still very common * we don't support anything above 32 bits. That's why in the last * case the 3 most significant bits are unused. * @param i Index being written */ static void SlWriteSimpleGamma(size_t i) { if (i >= (1 << 7)) { if (i >= (1 << 14)) { if (i >= (1 << 21)) { if (i >= (1 << 28)) { assert(i <= UINT32_MAX); // We can only support 32 bits for now. SlWriteByte((byte)(0xF0)); SlWriteByte((byte)(i >> 24)); } else { SlWriteByte((byte)(0xE0 | (i >> 24))); } SlWriteByte((byte)(i >> 16)); } else { SlWriteByte((byte)(0xC0 | (i >> 16))); } SlWriteByte((byte)(i >> 8)); } else { SlWriteByte((byte)(0x80 | (i >> 8))); } } SlWriteByte((byte)i); } /** Return how many bytes used to encode a gamma value */ static inline uint SlGetGammaLength(size_t i) { return 1 + (i >= (1 << 7)) + (i >= (1 << 14)) + (i >= (1 << 21)) + (i >= (1 << 28)); } static inline uint SlReadSparseIndex() { return SlReadSimpleGamma(); } static inline void SlWriteSparseIndex(uint index) { SlWriteSimpleGamma(index); } static inline uint SlReadArrayLength() { return SlReadSimpleGamma(); } static inline void SlWriteArrayLength(size_t length) { SlWriteSimpleGamma(length); } static inline uint SlGetArrayLength(size_t length) { return SlGetGammaLength(length); } /** * Return the size in bytes of a certain type of normal/atomic variable * as it appears in memory. See VarTypes * @param conv VarType type of variable that is used for calculating the size * @return Return the size of this type in bytes */ static inline uint SlCalcConvMemLen(VarType conv) { static const byte conv_mem_size[] = {1, 1, 1, 2, 2, 4, 4, 8, 8, 0}; byte length = GB(conv, 4, 4); switch (length << 4) { case SLE_VAR_STRB: case SLE_VAR_STRBQ: case SLE_VAR_STR: case SLE_VAR_STRQ: return SlReadArrayLength(); default: assert(length < lengthof(conv_mem_size)); return conv_mem_size[length]; } } /** * Return the size in bytes of a certain type of normal/atomic variable * as it appears in a saved game. See VarTypes * @param conv VarType type of variable that is used for calculating the size * @return Return the size of this type in bytes */ static inline byte SlCalcConvFileLen(VarType conv) { byte length = GB(conv, 0, 4); if (length == SLE_FILE_VEHORDERID) return SlXvIsFeaturePresent(XSLFI_MORE_VEHICLE_ORDERS) ? 2 : 1; static const byte conv_file_size[] = {1, 1, 2, 2, 4, 4, 8, 8, 2}; assert(length < lengthof(conv_file_size)); return conv_file_size[length]; } /** Return the size in bytes of a reference (pointer) */ static inline size_t SlCalcRefLen() { return IsSavegameVersionBefore(SLV_69) ? 2 : 4; } void SlSetArrayIndex(uint index) { _sl.need_length = NL_WANTLENGTH; _sl.array_index = index; } static size_t _next_offs; /** * Iterate through the elements of an array and read the whole thing * @return The index of the object, or -1 if we have reached the end of current block */ int SlIterateArray() { int index; /* After reading in the whole array inside the loop * we must have read in all the data, so we must be at end of current block. */ if (_next_offs != 0 && _sl.reader->GetSize() != _next_offs) { DEBUG(sl, 1, "Invalid chunk size: " PRINTF_SIZE " != " PRINTF_SIZE, _sl.reader->GetSize(), _next_offs); SlErrorCorrupt("Invalid chunk size"); } for (;;) { uint length = SlReadArrayLength(); if (length == 0) { _next_offs = 0; return -1; } _sl.obj_len = --length; _next_offs = _sl.reader->GetSize() + length; switch (_sl.block_mode) { case CH_SPARSE_ARRAY: index = (int)SlReadSparseIndex(); break; case CH_ARRAY: index = _sl.array_index++; break; default: DEBUG(sl, 0, "SlIterateArray error"); return -1; // error } if (length != 0) return index; } } /** * Skip an array or sparse array */ void SlSkipArray() { while (SlIterateArray() != -1) { SlSkipBytes(_next_offs - _sl.reader->GetSize()); } } /** * Sets the length of either a RIFF object or the number of items in an array. * This lets us load an object or an array of arbitrary size * @param length The length of the sought object/array */ void SlSetLength(size_t length) { assert(_sl.action == SLA_SAVE); switch (_sl.need_length) { case NL_WANTLENGTH: _sl.need_length = NL_NONE; switch (_sl.block_mode) { case CH_RIFF: /* Ugly encoding of >16M RIFF chunks * The lower 24 bits are normal * The uppermost 4 bits are bits 24:27 * * If we have more than 28 bits, use an extra uint32 and * signal this using the extended chunk header */ assert(length < (1LL << 32)); if (length >= (1 << 28)) { /* write out extended chunk header */ SlWriteByte(CH_EXT_HDR); SlWriteUint32(static_cast(SLCEHF_BIG_RIFF)); } SlWriteUint32((uint32)((length & 0xFFFFFF) | ((length >> 24) << 28))); if (length >= (1 << 28)) { SlWriteUint32(length >> 28); } break; case CH_ARRAY: assert(_sl.last_array_index <= _sl.array_index); while (++_sl.last_array_index <= _sl.array_index) { SlWriteArrayLength(1); } SlWriteArrayLength(length + 1); break; case CH_SPARSE_ARRAY: SlWriteArrayLength(length + 1 + SlGetArrayLength(_sl.array_index)); // Also include length of sparse index. SlWriteSparseIndex(_sl.array_index); break; default: NOT_REACHED(); } break; default: NOT_REACHED(); } } /** * Save/Load bytes. These do not need to be converted to Little/Big Endian * so directly write them or read them to/from file * @param ptr The source or destination of the object being manipulated * @param length number of bytes this fast CopyBytes lasts */ static void SlCopyBytes(void *ptr, size_t length) { byte *p = (byte *)ptr; switch (_sl.action) { case SLA_LOAD_CHECK: case SLA_LOAD: _sl.reader->CopyBytes(p, length); break; case SLA_SAVE: _sl.dumper->CopyBytes(p, length); break; default: NOT_REACHED(); } } /** Get the length of the current object */ size_t SlGetFieldLength() { return _sl.obj_len; } /** * Return a signed-long version of the value of a setting * @param ptr pointer to the variable * @param conv type of variable, can be a non-clean * type, eg one with other flags because it is parsed * @return returns the value of the pointer-setting */ int64 ReadValue(const void *ptr, VarType conv) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: return (*(const bool *)ptr != 0); case SLE_VAR_I8: return *(const int8 *)ptr; case SLE_VAR_U8: return *(const byte *)ptr; case SLE_VAR_I16: return *(const int16 *)ptr; case SLE_VAR_U16: return *(const uint16*)ptr; case SLE_VAR_I32: return *(const int32 *)ptr; case SLE_VAR_U32: return *(const uint32*)ptr; case SLE_VAR_I64: return *(const int64 *)ptr; case SLE_VAR_U64: return *(const uint64*)ptr; case SLE_VAR_NULL:return 0; default: NOT_REACHED(); } } /** * Write the value of a setting * @param ptr pointer to the variable * @param conv type of variable, can be a non-clean type, eg * with other flags. It is parsed upon read * @param val the new value being given to the variable */ void WriteValue(void *ptr, VarType conv, int64 val) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: *(bool *)ptr = (val != 0); break; case SLE_VAR_I8: *(int8 *)ptr = val; break; case SLE_VAR_U8: *(byte *)ptr = val; break; case SLE_VAR_I16: *(int16 *)ptr = val; break; case SLE_VAR_U16: *(uint16*)ptr = val; break; case SLE_VAR_I32: *(int32 *)ptr = val; break; case SLE_VAR_U32: *(uint32*)ptr = val; break; case SLE_VAR_I64: *(int64 *)ptr = val; break; case SLE_VAR_U64: *(uint64*)ptr = val; break; case SLE_VAR_NAME: *reinterpret_cast(ptr) = CopyFromOldName(val); break; case SLE_VAR_CNAME: *(TinyString*)ptr = CopyFromOldName(val); break; case SLE_VAR_NULL: break; default: NOT_REACHED(); } } /** * Handle all conversion and typechecking of variables here. * In the case of saving, read in the actual value from the struct * and then write them to file, endian safely. Loading a value * goes exactly the opposite way * @param ptr The object being filled/read * @param conv VarType type of the current element of the struct */ template static void SlSaveLoadConvGeneric(void *ptr, VarType conv) { switch (action) { case SLA_SAVE: { int64 x = ReadValue(ptr, conv); /* Write the value to the file and check if its value is in the desired range */ switch (GetVarFileType(conv)) { case SLE_FILE_I8: assert(x >= -128 && x <= 127); SlWriteByte(x);break; case SLE_FILE_U8: assert(x >= 0 && x <= 255); SlWriteByte(x);break; case SLE_FILE_I16:assert(x >= -32768 && x <= 32767); SlWriteUint16(x);break; case SLE_FILE_STRINGID: case SLE_FILE_VEHORDERID: case SLE_FILE_U16:assert(x >= 0 && x <= 65535); SlWriteUint16(x);break; case SLE_FILE_I32: case SLE_FILE_U32: SlWriteUint32((uint32)x);break; case SLE_FILE_I64: case SLE_FILE_U64: SlWriteUint64(x);break; default: NOT_REACHED(); } break; } case SLA_LOAD_CHECK: case SLA_LOAD: { int64 x; /* Read a value from the file */ switch (GetVarFileType(conv)) { case SLE_FILE_I8: x = (int8 )SlReadByte(); break; case SLE_FILE_U8: x = (byte )SlReadByte(); break; case SLE_FILE_I16: x = (int16 )SlReadUint16(); break; case SLE_FILE_U16: x = (uint16)SlReadUint16(); break; case SLE_FILE_I32: x = (int32 )SlReadUint32(); break; case SLE_FILE_U32: x = (uint32)SlReadUint32(); break; case SLE_FILE_I64: x = (int64 )SlReadUint64(); break; case SLE_FILE_U64: x = (uint64)SlReadUint64(); break; case SLE_FILE_STRINGID: x = RemapOldStringID((uint16)SlReadUint16()); break; case SLE_FILE_VEHORDERID: if (SlXvIsFeaturePresent(XSLFI_MORE_VEHICLE_ORDERS)) { x = (uint16)SlReadUint16(); } else { VehicleOrderID id = (byte)SlReadByte(); x = (id == 0xFF) ? INVALID_VEH_ORDER_ID : id; } break; default: NOT_REACHED(); } /* Write The value to the struct. These ARE endian safe. */ WriteValue(ptr, conv, x); break; } case SLA_PTRS: break; case SLA_NULL: break; default: NOT_REACHED(); } } void SlSaveLoadConv(void *ptr, VarType conv) { switch (_sl.action) { case SLA_SAVE: SlSaveLoadConvGeneric(ptr, conv); return; case SLA_LOAD_CHECK: case SLA_LOAD: SlSaveLoadConvGeneric(ptr, conv); return; case SLA_PTRS: case SLA_NULL: return; default: NOT_REACHED(); } } /** * Calculate the net length of a string. This is in almost all cases * just strlen(), but if the string is not properly terminated, we'll * resort to the maximum length of the buffer. * @param ptr pointer to the stringbuffer * @param length maximum length of the string (buffer). If -1 we don't care * about a maximum length, but take string length as it is. * @return return the net length of the string */ static inline size_t SlCalcNetStringLen(const char *ptr, size_t length) { if (ptr == nullptr) return 0; return std::min(strlen(ptr), length - 1); } /** * Calculate the gross length of the std::string that it * will occupy in the savegame. This includes the real length, * and the length that the index will occupy. * @param str reference to the std::string * @return return the gross length of the string */ static inline size_t SlCalcStdStrLen(const std::string &str) { return str.size() + SlGetArrayLength(str.size()); // also include the length of the index } /** * Calculate the gross length of the string that it * will occupy in the savegame. This includes the real length, returned * by SlCalcNetStringLen and the length that the index will occupy. * @param ptr pointer to the stringbuffer * @param length maximum length of the string (buffer size, etc.) * @param conv type of data been used * @return return the gross length of the string */ static inline size_t SlCalcStringLen(const void *ptr, size_t length, VarType conv) { size_t len; const char *str; switch (GetVarMemType(conv)) { default: NOT_REACHED(); case SLE_VAR_STR: case SLE_VAR_STRQ: str = *(const char * const *)ptr; len = SIZE_MAX; break; case SLE_VAR_STRB: case SLE_VAR_STRBQ: str = (const char *)ptr; len = length; break; } len = SlCalcNetStringLen(str, len); return len + SlGetArrayLength(len); // also include the length of the index } /** * Save/Load a string. * @param ptr the string being manipulated * @param length of the string (full length) * @param conv must be SLE_FILE_STRING */ static void SlString(void *ptr, size_t length, VarType conv) { switch (_sl.action) { case SLA_SAVE: { size_t len; switch (GetVarMemType(conv)) { default: NOT_REACHED(); case SLE_VAR_STRB: case SLE_VAR_STRBQ: len = SlCalcNetStringLen((char *)ptr, length); break; case SLE_VAR_STR: case SLE_VAR_STRQ: ptr = *(char **)ptr; len = SlCalcNetStringLen((char *)ptr, SIZE_MAX); break; } SlWriteArrayLength(len); SlCopyBytes(ptr, len); break; } case SLA_LOAD_CHECK: case SLA_LOAD: { size_t len = SlReadArrayLength(); switch (GetVarMemType(conv)) { default: NOT_REACHED(); case SLE_VAR_STRB: case SLE_VAR_STRBQ: if (len >= length) { DEBUG(sl, 1, "String length in savegame is bigger than buffer, truncating"); SlCopyBytes(ptr, length); SlSkipBytes(len - length); len = length - 1; } else { SlCopyBytes(ptr, len); } break; case SLE_VAR_STR: case SLE_VAR_STRQ: // Malloc'd string, free previous incarnation, and allocate free(*(char **)ptr); if (len == 0) { *(char **)ptr = nullptr; return; } else { *(char **)ptr = MallocT(len + 1); // terminating '\0' ptr = *(char **)ptr; SlCopyBytes(ptr, len); } break; } ((char *)ptr)[len] = '\0'; // properly terminate the string StringValidationSettings settings = SVS_REPLACE_WITH_QUESTION_MARK; if ((conv & SLF_ALLOW_CONTROL) != 0) { settings = settings | SVS_ALLOW_CONTROL_CODE; if (IsSavegameVersionBefore(SLV_169)) { str_fix_scc_encoded((char *)ptr, (char *)ptr + len); } } if ((conv & SLF_ALLOW_NEWLINE) != 0) { settings = settings | SVS_ALLOW_NEWLINE; } str_validate((char *)ptr, (char *)ptr + len, settings); break; } case SLA_PTRS: break; case SLA_NULL: break; default: NOT_REACHED(); } } /** * Save/Load a \c std::string. * @param ptr the string being manipulated * @param conv must be SLE_FILE_STRING */ static void SlStdString(std::string &str, VarType conv) { switch (_sl.action) { case SLA_SAVE: { SlWriteArrayLength(str.size()); SlCopyBytes(const_cast(str.data()), str.size()); break; } case SLA_LOAD_CHECK: case SLA_LOAD: { size_t len = SlReadArrayLength(); str.resize(len); SlCopyBytes(const_cast(str.c_str()), len); StringValidationSettings settings = SVS_REPLACE_WITH_QUESTION_MARK; if ((conv & SLF_ALLOW_CONTROL) != 0) { settings = settings | SVS_ALLOW_CONTROL_CODE; if (IsSavegameVersionBefore(SLV_169)) { char *buf = const_cast(str.c_str()); str.resize(str_fix_scc_encoded(buf, buf + str.size()) - buf); } } if ((conv & SLF_ALLOW_NEWLINE) != 0) { settings = settings | SVS_ALLOW_NEWLINE; } str_validate_inplace(str, settings); break; } case SLA_PTRS: break; case SLA_NULL: break; default: NOT_REACHED(); } } /** * Return the size in bytes of a certain type of atomic array * @param length The length of the array counted in elements * @param conv VarType type of the variable that is used in calculating the size */ static inline size_t SlCalcArrayLen(size_t length, VarType conv) { return SlCalcConvFileLen(conv) * length; } /** * Save/Load an array. * @param array The array being manipulated * @param length The length of the array in elements * @param conv VarType type of the atomic array (int, byte, uint64, etc.) */ void SlArray(void *array, size_t length, VarType conv) { if (_sl.action == SLA_PTRS || _sl.action == SLA_NULL) return; /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcArrayLen(length, conv)); } /* NOTICE - handle some buggy stuff, in really old versions everything was saved * as a byte-type. So detect this, and adjust array size accordingly */ if (_sl.action != SLA_SAVE && _sl_version == 0) { /* all arrays except difficulty settings */ if (conv == SLE_INT16 || conv == SLE_UINT16 || conv == SLE_STRINGID || conv == SLE_INT32 || conv == SLE_UINT32) { SlCopyBytes(array, length * SlCalcConvFileLen(conv)); return; } /* used for conversion of Money 32bit->64bit */ if (conv == (SLE_FILE_I32 | SLE_VAR_I64)) { for (uint i = 0; i < length; i++) { ((int64*)array)[i] = (int32)BSWAP32(SlReadUint32()); } return; } } /* If the size of elements is 1 byte both in file and memory, no special * conversion is needed, use specialized copy-copy function to speed up things */ if (conv == SLE_INT8 || conv == SLE_UINT8) { SlCopyBytes(array, length); } else { byte *a = (byte*)array; byte mem_size = SlCalcConvMemLen(conv); for (; length != 0; length --) { SlSaveLoadConv(a, conv); a += mem_size; // get size } } } /** * Pointers cannot be saved to a savegame, so this functions gets * the index of the item, and if not available, it hussles with * pointers (looks really bad :() * Remember that a nullptr item has value 0, and all * indices have +1, so vehicle 0 is saved as index 1. * @param obj The object that we want to get the index of * @param rt SLRefType type of the object the index is being sought of * @return Return the pointer converted to an index of the type pointed to */ static size_t ReferenceToInt(const void *obj, SLRefType rt) { assert(_sl.action == SLA_SAVE); if (obj == nullptr) return 0; switch (rt) { case REF_VEHICLE_OLD: // Old vehicles we save as new ones case REF_VEHICLE: return ((const Vehicle*)obj)->index + 1; case REF_TEMPLATE_VEHICLE: return ((const TemplateVehicle*)obj)->index + 1; case REF_STATION: return ((const Station*)obj)->index + 1; case REF_TOWN: return ((const Town*)obj)->index + 1; case REF_ORDER: return ((const Order*)obj)->index + 1; case REF_ROADSTOPS: return ((const RoadStop*)obj)->index + 1; case REF_ENGINE_RENEWS: return ((const EngineRenew*)obj)->index + 1; case REF_CARGO_PACKET: return ((const CargoPacket*)obj)->index + 1; case REF_ORDERLIST: return ((const OrderList*)obj)->index + 1; case REF_STORAGE: return ((const PersistentStorage*)obj)->index + 1; case REF_LINK_GRAPH: return ((const LinkGraph*)obj)->index + 1; case REF_LINK_GRAPH_JOB: return ((const LinkGraphJob*)obj)->index + 1; default: NOT_REACHED(); } } /** * Pointers cannot be loaded from a savegame, so this function * gets the index from the savegame and returns the appropriate * pointer from the already loaded base. * Remember that an index of 0 is a nullptr pointer so all indices * are +1 so vehicle 0 is saved as 1. * @param index The index that is being converted to a pointer * @param rt SLRefType type of the object the pointer is sought of * @return Return the index converted to a pointer of any type */ static void *IntToReference(size_t index, SLRefType rt) { static_assert(sizeof(size_t) <= sizeof(void *)); assert(_sl.action == SLA_PTRS); /* After version 4.3 REF_VEHICLE_OLD is saved as REF_VEHICLE, * and should be loaded like that */ if (rt == REF_VEHICLE_OLD && !IsSavegameVersionBefore(SLV_4, 4)) { rt = REF_VEHICLE; } /* No need to look up nullptr pointers, just return immediately */ if (index == (rt == REF_VEHICLE_OLD ? 0xFFFF : 0)) return nullptr; /* Correct index. Old vehicles were saved differently: * invalid vehicle was 0xFFFF, now we use 0x0000 for everything invalid. */ if (rt != REF_VEHICLE_OLD) index--; switch (rt) { case REF_ORDERLIST: if (OrderList::IsValidID(index)) return OrderList::Get(index); SlErrorCorrupt("Referencing invalid OrderList"); case REF_ORDER: if (Order::IsValidID(index)) return Order::Get(index); /* in old versions, invalid order was used to mark end of order list */ if (IsSavegameVersionBefore(SLV_5, 2)) return nullptr; SlErrorCorrupt("Referencing invalid Order"); case REF_VEHICLE_OLD: case REF_VEHICLE: if (Vehicle::IsValidID(index)) return Vehicle::Get(index); SlErrorCorrupt("Referencing invalid Vehicle"); case REF_TEMPLATE_VEHICLE: if (TemplateVehicle::IsValidID(index)) return TemplateVehicle::Get(index); SlErrorCorrupt("Referencing invalid TemplateVehicle"); case REF_STATION: if (Station::IsValidID(index)) return Station::Get(index); SlErrorCorrupt("Referencing invalid Station"); case REF_TOWN: if (Town::IsValidID(index)) return Town::Get(index); SlErrorCorrupt("Referencing invalid Town"); case REF_ROADSTOPS: if (RoadStop::IsValidID(index)) return RoadStop::Get(index); SlErrorCorrupt("Referencing invalid RoadStop"); case REF_ENGINE_RENEWS: if (EngineRenew::IsValidID(index)) return EngineRenew::Get(index); SlErrorCorrupt("Referencing invalid EngineRenew"); case REF_CARGO_PACKET: if (CargoPacket::IsValidID(index)) return CargoPacket::Get(index); SlErrorCorrupt("Referencing invalid CargoPacket"); case REF_STORAGE: if (PersistentStorage::IsValidID(index)) return PersistentStorage::Get(index); SlErrorCorrupt("Referencing invalid PersistentStorage"); case REF_LINK_GRAPH: if (LinkGraph::IsValidID(index)) return LinkGraph::Get(index); SlErrorCorrupt("Referencing invalid LinkGraph"); case REF_LINK_GRAPH_JOB: if (LinkGraphJob::IsValidID(index)) return LinkGraphJob::Get(index); SlErrorCorrupt("Referencing invalid LinkGraphJob"); default: NOT_REACHED(); } } /** * Return the size in bytes of a list * @param list The std::list to find the size of */ template static inline size_t SlCalcListLen(const void *list) { const PtrList *l = (const PtrList *) list; int type_size = IsSavegameVersionBefore(SLV_69) ? 2 : 4; /* Each entry is saved as type_size bytes, plus type_size bytes are used for the length * of the list */ return l->size() * type_size + type_size; } /** * Return the size in bytes of a list * @param list The std::list to find the size of */ template static inline size_t SlCalcVarListLen(const void *list, size_t item_size) { const PtrList *l = (const PtrList *) list; /* Each entry is saved as item_size bytes, plus 4 bytes are used for the length * of the list */ return l->size() * item_size + 4; } /** * Save/Load a list. * @param list The list being manipulated * @param conv SLRefType type of the list (Vehicle *, Station *, etc) */ template static void SlList(void *list, SLRefType conv) { /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcListLen(list)); } PtrList *l = (PtrList *)list; switch (_sl.action) { case SLA_SAVE: { SlWriteUint32((uint32)l->size()); typename PtrList::iterator iter; for (iter = l->begin(); iter != l->end(); ++iter) { void *ptr = *iter; SlWriteUint32((uint32)ReferenceToInt(ptr, conv)); } break; } case SLA_LOAD_CHECK: case SLA_LOAD: { size_t length = IsSavegameVersionBefore(SLV_69) ? SlReadUint16() : SlReadUint32(); /* Load each reference and push to the end of the list */ for (size_t i = 0; i < length; i++) { size_t data = IsSavegameVersionBefore(SLV_69) ? SlReadUint16() : SlReadUint32(); l->push_back((void *)data); } break; } case SLA_PTRS: { PtrList temp = *l; l->clear(); typename PtrList::iterator iter; for (iter = temp.begin(); iter != temp.end(); ++iter) { void *ptr = IntToReference((size_t)*iter, conv); l->push_back(ptr); } break; } case SLA_NULL: l->clear(); break; default: NOT_REACHED(); } } /** * Save/Load a list. * @param list The list being manipulated * @param conv VarType type of the list */ template static void SlVarList(void *list, VarType conv) { const size_t size_len = SlCalcConvMemLen(conv); /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcVarListLen(list, size_len)); } PtrList *l = (PtrList *)list; switch (_sl.action) { case SLA_SAVE: { SlWriteUint32((uint32)l->size()); typename PtrList::iterator iter; for (iter = l->begin(); iter != l->end(); ++iter) { SlSaveLoadConv(&(*iter), conv); } break; } case SLA_LOAD_CHECK: case SLA_LOAD: { size_t length = SlReadUint32(); l->resize(length); typename PtrList::iterator iter; iter = l->begin(); for (size_t i = 0; i < length; i++) { SlSaveLoadConv(&(*iter), conv); ++iter; } break; } case SLA_PTRS: break; case SLA_NULL: l->clear(); break; default: NOT_REACHED(); } } /** * Template class to help with std::deque. */ template class SlDequeHelper { typedef std::deque SlDequeT; public: /** * Internal templated helper to return the size in bytes of a std::deque. * @param deque The std::deque to find the size of * @param conv VarType type of variable that is used for calculating the size */ static size_t SlCalcDequeLen(const void *deque, VarType conv) { const SlDequeT *l = (const SlDequeT *)deque; int type_size = 4; /* Each entry is saved as type_size bytes, plus type_size bytes are used for the length * of the list */ return l->size() * SlCalcConvFileLen(conv) + type_size; } /** * Internal templated helper to save/load a std::deque. * @param deque The std::deque being manipulated * @param conv VarType type of variable that is used for calculating the size */ static void SlDeque(void *deque, VarType conv) { SlDequeT *l = (SlDequeT *)deque; switch (_sl.action) { case SLA_SAVE: { SlWriteUint32((uint32)l->size()); typename SlDequeT::iterator iter; for (iter = l->begin(); iter != l->end(); ++iter) { SlSaveLoadConv(&(*iter), conv); } break; } case SLA_LOAD_CHECK: case SLA_LOAD: { size_t length = SlReadUint32(); /* Load each value and push to the end of the deque */ for (size_t i = 0; i < length; i++) { T data; SlSaveLoadConv(&data, conv); l->push_back(data); } break; } case SLA_PTRS: break; case SLA_NULL: l->clear(); break; default: NOT_REACHED(); } } }; /** * Return the size in bytes of a std::deque. * @param deque The std::deque to find the size of * @param conv VarType type of variable that is used for calculating the size */ static inline size_t SlCalcDequeLen(const void *deque, VarType conv) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: return SlDequeHelper::SlCalcDequeLen(deque, conv); case SLE_VAR_I8: case SLE_VAR_U8: return SlDequeHelper::SlCalcDequeLen(deque, conv); case SLE_VAR_I16: case SLE_VAR_U16: return SlDequeHelper::SlCalcDequeLen(deque, conv); case SLE_VAR_I32: case SLE_VAR_U32: return SlDequeHelper::SlCalcDequeLen(deque, conv); case SLE_VAR_I64: case SLE_VAR_U64: return SlDequeHelper::SlCalcDequeLen(deque, conv); default: NOT_REACHED(); } } /** * Save/load a std::deque. * @param deque The std::deque being manipulated * @param conv VarType type of variable that is used for calculating the size */ static void SlDeque(void *deque, VarType conv) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: SlDequeHelper::SlDeque(deque, conv); break; case SLE_VAR_I8: case SLE_VAR_U8: SlDequeHelper::SlDeque(deque, conv); break; case SLE_VAR_I16: case SLE_VAR_U16: SlDequeHelper::SlDeque(deque, conv); break; case SLE_VAR_I32: case SLE_VAR_U32: SlDequeHelper::SlDeque(deque, conv); break; case SLE_VAR_I64: case SLE_VAR_U64: SlDequeHelper::SlDeque(deque, conv); break; default: NOT_REACHED(); } } /** Are we going to save this object or not? */ static inline bool SlIsObjectValidInSavegame(const SaveLoad *sld) { if (!sld->ext_feature_test.IsFeaturePresent(_sl_version, sld->version_from, sld->version_to)) return false; if (sld->conv & SLF_NOT_IN_SAVE) return false; return true; } /** * Are we going to load this variable when loading a savegame or not? * @note If the variable is skipped it is skipped in the savegame * bytestream itself as well, so there is no need to skip it somewhere else */ static inline bool SlSkipVariableOnLoad(const SaveLoad *sld) { if ((sld->conv & SLF_NO_NETWORK_SYNC) && _sl.action != SLA_SAVE && _networking && !_network_server) { SlSkipBytes(SlCalcConvMemLen(sld->conv) * sld->length); return true; } return false; } /** * Calculate the size of an object. * @param object to be measured * @param sld The SaveLoad description of the object so we know how to manipulate it * @return size of given object */ size_t SlCalcObjLength(const void *object, const SaveLoad *sld) { size_t length = 0; /* Need to determine the length and write a length tag. */ for (; sld->cmd != SL_END; sld++) { length += SlCalcObjMemberLength(object, sld); } return length; } size_t SlCalcObjMemberLength(const void *object, const SaveLoad *sld) { assert(_sl.action == SLA_SAVE); switch (sld->cmd) { case SL_VAR: case SL_REF: case SL_ARR: case SL_STR: case SL_LST: case SL_PTRDEQ: case SL_VEC: case SL_DEQUE: case SL_STDSTR: case SL_VARVEC: /* CONDITIONAL saveload types depend on the savegame version */ if (!SlIsObjectValidInSavegame(sld)) break; switch (sld->cmd) { case SL_VAR: return SlCalcConvFileLen(sld->conv); case SL_REF: return SlCalcRefLen(); case SL_ARR: return SlCalcArrayLen(sld->length, sld->conv); case SL_STR: return SlCalcStringLen(GetVariableAddress(object, sld), sld->length, sld->conv); case SL_LST: return SlCalcListLen>(GetVariableAddress(object, sld)); case SL_PTRDEQ: return SlCalcListLen>(GetVariableAddress(object, sld)); case SL_VEC: return SlCalcListLen>(GetVariableAddress(object, sld)); case SL_DEQUE: return SlCalcDequeLen(GetVariableAddress(object, sld), sld->conv); case SL_VARVEC: { const size_t size_len = SlCalcConvMemLen(sld->conv); switch (size_len) { case 1: return SlCalcVarListLen>(GetVariableAddress(object, sld), 1); case 2: return SlCalcVarListLen>(GetVariableAddress(object, sld), 2); case 4: return SlCalcVarListLen>(GetVariableAddress(object, sld), 4); case 8: return SlCalcVarListLen>(GetVariableAddress(object, sld), 8); default: NOT_REACHED(); } } case SL_STDSTR: return SlCalcStdStrLen(*static_cast(GetVariableAddress(object, sld))); default: NOT_REACHED(); } break; case SL_WRITEBYTE: return 1; // a byte is logically of size 1 case SL_VEH_INCLUDE: return SlCalcObjLength(object, GetVehicleDescription(VEH_END)); case SL_ST_INCLUDE: return SlCalcObjLength(object, GetBaseStationDescription()); default: NOT_REACHED(); } return 0; } #ifdef OTTD_ASSERT /** * Check whether the variable size of the variable in the saveload configuration * matches with the actual variable size. * @param sld The saveload configuration to test. */ static bool IsVariableSizeRight(const SaveLoad *sld) { switch (sld->cmd) { case SL_VAR: switch (GetVarMemType(sld->conv)) { case SLE_VAR_BL: return sld->size == sizeof(bool); case SLE_VAR_I8: case SLE_VAR_U8: return sld->size == sizeof(int8); case SLE_VAR_I16: case SLE_VAR_U16: return sld->size == sizeof(int16); case SLE_VAR_I32: case SLE_VAR_U32: return sld->size == sizeof(int32); case SLE_VAR_I64: case SLE_VAR_U64: return sld->size == sizeof(int64); case SLE_VAR_NAME: return sld->size == sizeof(std::string); default: return sld->size == sizeof(void *); } case SL_REF: /* These should all be pointer sized. */ return sld->size == sizeof(void *); case SL_STR: /* These should be pointer sized, or fixed array. */ return sld->size == sizeof(void *) || sld->size == sld->length; case SL_STDSTR: /* These should be all pointers to std::string. */ return sld->size == sizeof(std::string); default: return true; } } #endif /* OTTD_ASSERT */ void SlFilterObject(const SaveLoad *sld, std::vector &save); static void SlFilterObjectMember(const SaveLoad *sld, std::vector &save) { #ifdef OTTD_ASSERT assert(IsVariableSizeRight(sld)); #endif switch (sld->cmd) { case SL_VAR: case SL_REF: case SL_ARR: case SL_STR: case SL_LST: case SL_PTRDEQ: case SL_VEC: case SL_DEQUE: case SL_STDSTR: case SL_VARVEC: /* CONDITIONAL saveload types depend on the savegame version */ if (!SlIsObjectValidInSavegame(sld)) return; if (SlSkipVariableOnLoad(sld)) return; switch (_sl.action) { case SLA_SAVE: case SLA_LOAD_CHECK: case SLA_LOAD: break; case SLA_PTRS: case SLA_NULL: switch (sld->cmd) { case SL_REF: case SL_LST: case SL_PTRDEQ: case SL_VEC: break; /* non-ptr types do not require SLA_PTRS or SLA_NULL actions */ default: return; } break; default: NOT_REACHED(); } save.push_back(*sld); break; /* SL_WRITEBYTE writes a value to the savegame to identify the type of an object. * When loading, the value is read explictly with SlReadByte() to determine which * object description to use. */ case SL_WRITEBYTE: if (_sl.action == SLA_SAVE) save.push_back(*sld); break; /* SL_VEH_INCLUDE loads common code for vehicles */ case SL_VEH_INCLUDE: SlFilterObject(GetVehicleDescription(VEH_END), save); break; case SL_ST_INCLUDE: SlFilterObject(GetBaseStationDescription(), save); break; default: NOT_REACHED(); } } void SlFilterObject(const SaveLoad *sld, std::vector &save) { for (; sld->cmd != SL_END; sld++) { SlFilterObjectMember(sld, save); } } std::vector SlFilterObject(const SaveLoad *sld) { std::vector save; SlFilterObject(sld, save); save.push_back(SLE_END()); return save; } template bool SlObjectMemberGeneric(void *ptr, const SaveLoad *sld) { #ifdef OTTD_ASSERT if (check_version) assert(IsVariableSizeRight(sld)); #endif VarType conv = GB(sld->conv, 0, 8); switch (sld->cmd) { case SL_VAR: case SL_REF: case SL_ARR: case SL_STR: case SL_LST: case SL_PTRDEQ: case SL_VEC: case SL_DEQUE: case SL_STDSTR: case SL_VARVEC: /* CONDITIONAL saveload types depend on the savegame version */ if (check_version) { if (!SlIsObjectValidInSavegame(sld)) return false; if (SlSkipVariableOnLoad(sld)) return false; } switch (sld->cmd) { case SL_VAR: SlSaveLoadConvGeneric(ptr, conv); break; case SL_REF: // Reference variable, translate switch (action) { case SLA_SAVE: SlWriteUint32((uint32)ReferenceToInt(*(void **)ptr, (SLRefType)conv)); break; case SLA_LOAD_CHECK: case SLA_LOAD: *(size_t *)ptr = IsSavegameVersionBefore(SLV_69) ? SlReadUint16() : SlReadUint32(); break; case SLA_PTRS: *(void **)ptr = IntToReference(*(size_t *)ptr, (SLRefType)conv); break; case SLA_NULL: *(void **)ptr = nullptr; break; default: NOT_REACHED(); } break; case SL_ARR: SlArray(ptr, sld->length, conv); break; case SL_STR: SlString(ptr, sld->length, sld->conv); break; case SL_LST: SlList>(ptr, (SLRefType)conv); break; case SL_PTRDEQ: SlList>(ptr, (SLRefType)conv); break; case SL_VEC: SlList>(ptr, (SLRefType)conv); break; case SL_DEQUE: SlDeque(ptr, conv); break; case SL_VARVEC: { const size_t size_len = SlCalcConvMemLen(sld->conv); switch (size_len) { case 1: SlVarList>(ptr, conv); break; case 2: SlVarList>(ptr, conv); break; case 4: SlVarList>(ptr, conv); break; case 8: SlVarList>(ptr, conv); break; default: NOT_REACHED(); } break; } case SL_STDSTR: SlStdString(*static_cast(ptr), sld->conv); break; default: NOT_REACHED(); } break; /* SL_WRITEBYTE writes a value to the savegame to identify the type of an object. * When loading, the value is read explicitly with SlReadByte() to determine which * object description to use. */ case SL_WRITEBYTE: switch (action) { case SLA_SAVE: SlWriteByte(*(uint8 *)ptr); break; case SLA_LOAD_CHECK: case SLA_LOAD: case SLA_PTRS: case SLA_NULL: break; default: NOT_REACHED(); } break; /* SL_VEH_INCLUDE loads common code for vehicles */ case SL_VEH_INCLUDE: SlObject(ptr, GetVehicleDescription(VEH_END)); break; case SL_ST_INCLUDE: SlObject(ptr, GetBaseStationDescription()); break; default: NOT_REACHED(); } return true; } bool SlObjectMember(void *ptr, const SaveLoad *sld) { switch (_sl.action) { case SLA_SAVE: return SlObjectMemberGeneric(ptr, sld); case SLA_LOAD_CHECK: case SLA_LOAD: return SlObjectMemberGeneric(ptr, sld); case SLA_PTRS: return SlObjectMemberGeneric(ptr, sld); case SLA_NULL: return SlObjectMemberGeneric(ptr, sld); default: NOT_REACHED(); } } /** * Main SaveLoad function. * @param object The object that is being saved or loaded * @param sld The SaveLoad description of the object so we know how to manipulate it */ void SlObject(void *object, const SaveLoad *sld) { /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcObjLength(object, sld)); } for (; sld->cmd != SL_END; sld++) { void *ptr = GetVariableAddress(object, sld); SlObjectMember(ptr, sld); } } template void SlObjectIterateBase(void *object, const SaveLoad *sld) { for (; sld->cmd != SL_END; sld++) { void *ptr = sld->global ? sld->address : GetVariableAddress(object, sld); SlObjectMemberGeneric(ptr, sld); } } void SlObjectSaveFiltered(void *object, const SaveLoad *sld) { if (_sl.need_length != NL_NONE) { _sl.need_length = NL_NONE; _sl.dumper->StartAutoLength(); SlObjectIterateBase(object, sld); auto result = _sl.dumper->StopAutoLength(); _sl.need_length = NL_WANTLENGTH; SlSetLength(result.second); _sl.dumper->CopyBytes(result.first, result.second); } else { SlObjectIterateBase(object, sld); } } void SlObjectLoadFiltered(void *object, const SaveLoad *sld) { SlObjectIterateBase(object, sld); } void SlObjectPtrOrNullFiltered(void *object, const SaveLoad *sld) { switch (_sl.action) { case SLA_PTRS: SlObjectIterateBase(object, sld); return; case SLA_NULL: SlObjectIterateBase(object, sld); return; default: NOT_REACHED(); } } /** * Save or Load (a list of) global variables * @param sldg The global variable that is being loaded or saved */ void SlGlobList(const SaveLoadGlobVarList *sldg) { SlObject(nullptr, (const SaveLoad*)sldg); } /** * Do something of which I have no idea what it is :P * @param proc The callback procedure that is called * @param arg The variable that will be used for the callback procedure */ void SlAutolength(AutolengthProc *proc, void *arg) { assert(_sl.action == SLA_SAVE); assert(_sl.need_length == NL_WANTLENGTH); _sl.need_length = NL_NONE; _sl.dumper->StartAutoLength(); proc(arg); auto result = _sl.dumper->StopAutoLength(); /* Setup length */ _sl.need_length = NL_WANTLENGTH; SlSetLength(result.second); _sl.dumper->CopyBytes(result.first, result.second); } /* * Notes on extended chunk header: * * If the chunk type is CH_EXT_HDR (15), then a u32 flags field follows. * This flag field may define additional fields which follow the flags field in future. * The standard chunk header follows, though it my be modified by the flags field. * At present SLCEHF_BIG_RIFF increases the RIFF size limit to a theoretical 60 bits, * by adding a further u32 field for the high bits after the existing RIFF size field. */ inline void SlRIFFSpringPPCheck(size_t len) { if (_sl_maybe_springpp) { _sl_maybe_springpp = false; if (len == 0) { extern void SlXvSpringPPSpecialSavegameVersions(); SlXvSpringPPSpecialSavegameVersions(); } else if (_sl_version > SAVEGAME_VERSION) { SlError(STR_GAME_SAVELOAD_ERROR_TOO_NEW_SAVEGAME); } else if (_sl_version >= SLV_START_PATCHPACKS && _sl_version <= SLV_END_PATCHPACKS) { SlError(STR_GAME_SAVELOAD_ERROR_PATCHPACK); } } } /** * Load a chunk of data (eg vehicles, stations, etc.) * @param ch The chunkhandler that will be used for the operation */ static void SlLoadChunk(const ChunkHandler *ch) { byte m = SlReadByte(); size_t len; size_t endoffs; _sl.block_mode = m; _sl.obj_len = 0; SaveLoadChunkExtHeaderFlags ext_flags = static_cast(0); if ((m & 0xF) == CH_EXT_HDR) { ext_flags = static_cast(SlReadUint32()); /* read in real header */ m = SlReadByte(); _sl.block_mode = m; } switch (m) { case CH_ARRAY: _sl.array_index = 0; ch->load_proc(); if (_next_offs != 0) SlErrorCorrupt("Invalid array length"); break; case CH_SPARSE_ARRAY: ch->load_proc(); if (_next_offs != 0) SlErrorCorrupt("Invalid array length"); break; default: if ((m & 0xF) == CH_RIFF) { /* Read length */ len = (SlReadByte() << 16) | ((m >> 4) << 24); len += SlReadUint16(); SlRIFFSpringPPCheck(len); if (SlXvIsFeaturePresent(XSLFI_RIFF_HEADER_60_BIT)) { if (len != 0) { SlErrorCorrupt("RIFF chunk too large"); } len = SlReadUint32(); } if (ext_flags & SLCEHF_BIG_RIFF) { len |= SlReadUint32() << 28; } _sl.obj_len = len; endoffs = _sl.reader->GetSize() + len; ch->load_proc(); if (_sl.reader->GetSize() != endoffs) { DEBUG(sl, 1, "Invalid chunk size: " PRINTF_SIZE " != " PRINTF_SIZE ", (" PRINTF_SIZE ")", _sl.reader->GetSize(), endoffs, len); SlErrorCorrupt("Invalid chunk size"); } } else { SlErrorCorrupt("Invalid chunk type"); } break; } } /** * Load a chunk of data for checking savegames. * If the chunkhandler is nullptr, the chunk is skipped. * @param ch The chunkhandler that will be used for the operation, this may be nullptr */ static void SlLoadCheckChunk(const ChunkHandler *ch) { byte m = SlReadByte(); size_t len; size_t endoffs; _sl.block_mode = m; _sl.obj_len = 0; SaveLoadChunkExtHeaderFlags ext_flags = static_cast(0); if ((m & 0xF) == CH_EXT_HDR) { ext_flags = static_cast(SlReadUint32()); /* read in real header */ m = SlReadByte(); _sl.block_mode = m; } switch (m) { case CH_ARRAY: _sl.array_index = 0; if (ext_flags) { SlErrorCorruptFmt("CH_ARRAY does not take chunk header extension flags: 0x%X", ext_flags); } if (ch && ch->load_check_proc) { ch->load_check_proc(); } else { SlSkipArray(); } break; case CH_SPARSE_ARRAY: if (ext_flags) { SlErrorCorruptFmt("CH_SPARSE_ARRAY does not take chunk header extension flags: 0x%X", ext_flags); } if (ch && ch->load_check_proc) { ch->load_check_proc(); } else { SlSkipArray(); } break; default: if ((m & 0xF) == CH_RIFF) { if (ext_flags != (ext_flags & SLCEHF_BIG_RIFF)) { SlErrorCorruptFmt("Unknown chunk header extension flags for CH_RIFF: 0x%X", ext_flags); } /* Read length */ len = (SlReadByte() << 16) | ((m >> 4) << 24); len += SlReadUint16(); SlRIFFSpringPPCheck(len); if (SlXvIsFeaturePresent(XSLFI_RIFF_HEADER_60_BIT)) { if (len != 0) { SlErrorCorrupt("RIFF chunk too large"); } len = SlReadUint32(); if (ext_flags & SLCEHF_BIG_RIFF) SlErrorCorrupt("XSLFI_RIFF_HEADER_60_BIT and SLCEHF_BIG_RIFF both present"); } if (ext_flags & SLCEHF_BIG_RIFF) { uint64 full_len = len | (static_cast(SlReadUint32()) << 28); if (full_len >= (1LL << 32)) { SlErrorCorrupt("Chunk size too large: " OTTD_PRINTFHEX64, full_len); } len = static_cast(full_len); } _sl.obj_len = len; endoffs = _sl.reader->GetSize() + len; if (ch && ch->load_check_proc) { ch->load_check_proc(); } else { SlSkipBytes(len); } if (_sl.reader->GetSize() != endoffs) { DEBUG(sl, 1, "Invalid chunk size: " PRINTF_SIZE " != " PRINTF_SIZE ", (" PRINTF_SIZE ")", _sl.reader->GetSize(), endoffs, len); SlErrorCorrupt("Invalid chunk size"); } } else { SlErrorCorrupt("Invalid chunk type"); } break; } } /** * Save a chunk of data (eg. vehicles, stations, etc.). Each chunk is * prefixed by an ID identifying it, followed by data, and terminator where appropriate * @param ch The chunkhandler that will be used for the operation */ static void SlSaveChunk(const ChunkHandler *ch) { ChunkSaveLoadProc *proc = ch->save_proc; /* Don't save any chunk information if there is no save handler. */ if (proc == nullptr) return; SlWriteUint32(ch->id); DEBUG(sl, 2, "Saving chunk %c%c%c%c", ch->id >> 24, ch->id >> 16, ch->id >> 8, ch->id); size_t written = 0; if (_debug_sl_level >= 3) written = SlGetBytesWritten(); _sl.block_mode = ch->flags & CH_TYPE_MASK; switch (ch->flags & CH_TYPE_MASK) { case CH_RIFF: _sl.need_length = NL_WANTLENGTH; proc(); break; case CH_ARRAY: _sl.last_array_index = 0; SlWriteByte(CH_ARRAY); proc(); SlWriteArrayLength(0); // Terminate arrays break; case CH_SPARSE_ARRAY: SlWriteByte(CH_SPARSE_ARRAY); proc(); SlWriteArrayLength(0); // Terminate arrays break; default: NOT_REACHED(); } DEBUG(sl, 3, "Saved chunk %c%c%c%c (" PRINTF_SIZE " bytes)", ch->id >> 24, ch->id >> 16, ch->id >> 8, ch->id, SlGetBytesWritten() - written); } /** Save all chunks */ static void SlSaveChunks() { FOR_ALL_CHUNK_HANDLERS(ch) { SlSaveChunk(ch); } /* Terminator */ SlWriteUint32(0); } /** * Find the ChunkHandler that will be used for processing the found * chunk in the savegame or in memory * @param id the chunk in question * @return returns the appropriate chunkhandler */ static const ChunkHandler *SlFindChunkHandler(uint32 id) { FOR_ALL_CHUNK_HANDLERS(ch) if (ch->id == id) return ch; return nullptr; } /** Load all chunks */ static void SlLoadChunks() { for (uint32 id = SlReadUint32(); id != 0; id = SlReadUint32()) { DEBUG(sl, 2, "Loading chunk %c%c%c%c", id >> 24, id >> 16, id >> 8, id); size_t read = 0; if (_debug_sl_level >= 3) read = SlGetBytesRead(); if (SlXvIsChunkDiscardable(id)) { DEBUG(sl, 1, "Discarding chunk %c%c%c%c", id >> 24, id >> 16, id >> 8, id); SlLoadCheckChunk(nullptr); } else { const ChunkHandler *ch = SlFindChunkHandler(id); if (ch == nullptr) { SlErrorCorrupt("Unknown chunk type"); } else { SlLoadChunk(ch); } } DEBUG(sl, 3, "Loaded chunk %c%c%c%c (" PRINTF_SIZE " bytes)", id >> 24, id >> 16, id >> 8, id, SlGetBytesRead() - read); } } /** Load all chunks for savegame checking */ static void SlLoadCheckChunks() { uint32 id; const ChunkHandler *ch; for (id = SlReadUint32(); id != 0; id = SlReadUint32()) { DEBUG(sl, 2, "Loading chunk %c%c%c%c", id >> 24, id >> 16, id >> 8, id); size_t read = 0; if (_debug_sl_level >= 3) read = SlGetBytesRead(); if (SlXvIsChunkDiscardable(id)) { ch = nullptr; } else { ch = SlFindChunkHandler(id); if (ch == nullptr) SlErrorCorrupt("Unknown chunk type"); } SlLoadCheckChunk(ch); DEBUG(sl, 3, "Loaded chunk %c%c%c%c (" PRINTF_SIZE " bytes)", id >> 24, id >> 16, id >> 8, id, SlGetBytesRead() - read); } } /** Fix all pointers (convert index -> pointer) */ static void SlFixPointers() { _sl.action = SLA_PTRS; FOR_ALL_CHUNK_HANDLERS(ch) { if (ch->ptrs_proc != nullptr) { DEBUG(sl, 3, "Fixing pointers for %c%c%c%c", ch->id >> 24, ch->id >> 16, ch->id >> 8, ch->id); ch->ptrs_proc(); } } assert(_sl.action == SLA_PTRS); } /** Yes, simply reading from a file. */ struct FileReader : LoadFilter { FILE *file; ///< The file to read from. long begin; ///< The begin of the file. /** * Create the file reader, so it reads from a specific file. * @param file The file to read from. */ FileReader(FILE *file) : LoadFilter(nullptr), file(file), begin(ftell(file)) { } /** Make sure everything is cleaned up. */ ~FileReader() { if (this->file != nullptr) fclose(this->file); this->file = nullptr; /* Make sure we don't double free. */ _sl.sf = nullptr; } size_t Read(byte *buf, size_t size) override { /* We're in the process of shutting down, i.e. in "failure" mode. */ if (this->file == nullptr) return 0; return fread(buf, 1, size, this->file); } void Reset() override { clearerr(this->file); if (fseek(this->file, this->begin, SEEK_SET)) { DEBUG(sl, 1, "Could not reset the file reading"); } } }; /** Yes, simply writing to a file. */ struct FileWriter : SaveFilter { FILE *file; ///< The file to write to. /** * Create the file writer, so it writes to a specific file. * @param file The file to write to. */ FileWriter(FILE *file) : SaveFilter(nullptr), file(file) { } /** Make sure everything is cleaned up. */ ~FileWriter() { this->Finish(); /* Make sure we don't double free. */ _sl.sf = nullptr; } void Write(byte *buf, size_t size) override { /* We're in the process of shutting down, i.e. in "failure" mode. */ if (this->file == nullptr) return; if (fwrite(buf, 1, size, this->file) != size) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_WRITEABLE); } void Finish() override { if (this->file != nullptr) fclose(this->file); this->file = nullptr; } }; /******************************************* ********** START OF LZO CODE ************** *******************************************/ #ifdef WITH_LZO #include /** Buffer size for the LZO compressor */ static const uint LZO_BUFFER_SIZE = 8192; /** Filter using LZO compression. */ struct LZOLoadFilter : LoadFilter { /** * Initialise this filter. * @param chain The next filter in this chain. */ LZOLoadFilter(LoadFilter *chain) : LoadFilter(chain) { if (lzo_init() != LZO_E_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize decompressor"); } size_t Read(byte *buf, size_t ssize) override { assert(ssize >= LZO_BUFFER_SIZE); /* Buffer size is from the LZO docs plus the chunk header size. */ byte out[LZO_BUFFER_SIZE + LZO_BUFFER_SIZE / 16 + 64 + 3 + sizeof(uint32) * 2]; uint32 tmp[2]; uint32 size; lzo_uint len = ssize; /* Read header*/ if (this->chain->Read((byte*)tmp, sizeof(tmp)) != sizeof(tmp)) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE, "File read failed"); /* Check if size is bad */ ((uint32*)out)[0] = size = tmp[1]; if (_sl_version != SL_MIN_VERSION) { tmp[0] = TO_BE32(tmp[0]); size = TO_BE32(size); } if (size >= sizeof(out)) SlErrorCorrupt("Inconsistent size"); /* Read block */ if (this->chain->Read(out + sizeof(uint32), size) != size) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE); /* Verify checksum */ if (tmp[0] != lzo_adler32(0, out, size + sizeof(uint32))) SlErrorCorrupt("Bad checksum"); /* Decompress */ int ret = lzo1x_decompress_safe(out + sizeof(uint32) * 1, size, buf, &len, nullptr); if (ret != LZO_E_OK) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE); return len; } }; /** Filter using LZO compression. */ struct LZOSaveFilter : SaveFilter { /** * Initialise this filter. * @param chain The next filter in this chain. * @param compression_level The requested level of compression. */ LZOSaveFilter(SaveFilter *chain, byte compression_level) : SaveFilter(chain) { if (lzo_init() != LZO_E_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize compressor"); } void Write(byte *buf, size_t size) override { const lzo_bytep in = buf; /* Buffer size is from the LZO docs plus the chunk header size. */ byte out[LZO_BUFFER_SIZE + LZO_BUFFER_SIZE / 16 + 64 + 3 + sizeof(uint32) * 2]; byte wrkmem[LZO1X_1_MEM_COMPRESS]; lzo_uint outlen; do { /* Compress up to LZO_BUFFER_SIZE bytes at once. */ lzo_uint len = size > LZO_BUFFER_SIZE ? LZO_BUFFER_SIZE : (lzo_uint)size; lzo1x_1_compress(in, len, out + sizeof(uint32) * 2, &outlen, wrkmem); ((uint32*)out)[1] = TO_BE32((uint32)outlen); ((uint32*)out)[0] = TO_BE32(lzo_adler32(0, out + sizeof(uint32), outlen + sizeof(uint32))); this->chain->Write(out, outlen + sizeof(uint32) * 2); /* Move to next data chunk. */ size -= len; in += len; } while (size > 0); } }; #endif /* WITH_LZO */ /********************************************* ******** START OF NOCOMP CODE (uncompressed)* *********************************************/ /** Filter without any compression. */ struct NoCompLoadFilter : LoadFilter { /** * Initialise this filter. * @param chain The next filter in this chain. */ NoCompLoadFilter(LoadFilter *chain) : LoadFilter(chain) { } size_t Read(byte *buf, size_t size) override { return this->chain->Read(buf, size); } }; /** Filter without any compression. */ struct NoCompSaveFilter : SaveFilter { /** * Initialise this filter. * @param chain The next filter in this chain. * @param compression_level The requested level of compression. */ NoCompSaveFilter(SaveFilter *chain, byte compression_level) : SaveFilter(chain) { } void Write(byte *buf, size_t size) override { this->chain->Write(buf, size); } }; /******************************************** ********** START OF ZLIB CODE ************** ********************************************/ #if defined(WITH_ZLIB) #include /** Filter using Zlib compression. */ struct ZlibLoadFilter : LoadFilter { z_stream z; ///< Stream state we are reading from. byte fread_buf[MEMORY_CHUNK_SIZE]; ///< Buffer for reading from the file. /** * Initialise this filter. * @param chain The next filter in this chain. */ ZlibLoadFilter(LoadFilter *chain) : LoadFilter(chain) { memset(&this->z, 0, sizeof(this->z)); if (inflateInit(&this->z) != Z_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize decompressor"); } /** Clean everything up. */ ~ZlibLoadFilter() { inflateEnd(&this->z); } size_t Read(byte *buf, size_t size) override { this->z.next_out = buf; this->z.avail_out = (uint)size; do { /* read more bytes from the file? */ if (this->z.avail_in == 0) { this->z.next_in = this->fread_buf; this->z.avail_in = (uint)this->chain->Read(this->fread_buf, sizeof(this->fread_buf)); } /* inflate the data */ int r = inflate(&this->z, 0); if (r == Z_STREAM_END) break; if (r != Z_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "inflate() failed"); } while (this->z.avail_out != 0); return size - this->z.avail_out; } }; /** Filter using Zlib compression. */ struct ZlibSaveFilter : SaveFilter { z_stream z; ///< Stream state we are writing to. /** * Initialise this filter. * @param chain The next filter in this chain. * @param compression_level The requested level of compression. */ ZlibSaveFilter(SaveFilter *chain, byte compression_level) : SaveFilter(chain) { memset(&this->z, 0, sizeof(this->z)); if (deflateInit(&this->z, compression_level) != Z_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize compressor"); } /** Clean up what we allocated. */ ~ZlibSaveFilter() { deflateEnd(&this->z); } /** * Helper loop for writing the data. * @param p The bytes to write. * @param len Amount of bytes to write. * @param mode Mode for deflate. */ void WriteLoop(byte *p, size_t len, int mode) { byte buf[MEMORY_CHUNK_SIZE]; // output buffer uint n; this->z.next_in = p; this->z.avail_in = (uInt)len; do { this->z.next_out = buf; this->z.avail_out = sizeof(buf); /** * For the poor next soul who sees many valgrind warnings of the * "Conditional jump or move depends on uninitialised value(s)" kind: * According to the author of zlib it is not a bug and it won't be fixed. * http://groups.google.com/group/comp.compression/browse_thread/thread/b154b8def8c2a3ef/cdf9b8729ce17ee2 * [Mark Adler, Feb 24 2004, 'zlib-1.2.1 valgrind warnings' in the newsgroup comp.compression] */ int r = deflate(&this->z, mode); /* bytes were emitted? */ if ((n = sizeof(buf) - this->z.avail_out) != 0) { this->chain->Write(buf, n); } if (r == Z_STREAM_END) break; if (r != Z_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "zlib returned error code"); } while (this->z.avail_in || !this->z.avail_out); } void Write(byte *buf, size_t size) override { this->WriteLoop(buf, size, 0); } void Finish() override { this->WriteLoop(nullptr, 0, Z_FINISH); this->chain->Finish(); } }; #endif /* WITH_ZLIB */ /******************************************** ********** START OF LZMA CODE ************** ********************************************/ #if defined(WITH_LIBLZMA) #include /** * Have a copy of an initialised LZMA stream. We need this as it's * impossible to "re"-assign LZMA_STREAM_INIT to a variable in some * compilers, i.e. LZMA_STREAM_INIT can't be used to set something. * This var has to be used instead. */ static const lzma_stream _lzma_init = LZMA_STREAM_INIT; /** Filter without any compression. */ struct LZMALoadFilter : LoadFilter { lzma_stream lzma; ///< Stream state that we are reading from. byte fread_buf[MEMORY_CHUNK_SIZE]; ///< Buffer for reading from the file. /** * Initialise this filter. * @param chain The next filter in this chain. */ LZMALoadFilter(LoadFilter *chain) : LoadFilter(chain), lzma(_lzma_init) { /* Allow saves up to 256 MB uncompressed */ if (lzma_auto_decoder(&this->lzma, 1 << 28, 0) != LZMA_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize decompressor"); } /** Clean everything up. */ ~LZMALoadFilter() { lzma_end(&this->lzma); } size_t Read(byte *buf, size_t size) override { this->lzma.next_out = buf; this->lzma.avail_out = size; do { /* read more bytes from the file? */ if (this->lzma.avail_in == 0) { this->lzma.next_in = this->fread_buf; this->lzma.avail_in = this->chain->Read(this->fread_buf, sizeof(this->fread_buf)); } /* inflate the data */ lzma_ret r = lzma_code(&this->lzma, LZMA_RUN); if (r == LZMA_STREAM_END) break; if (r != LZMA_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "liblzma returned error code"); } while (this->lzma.avail_out != 0); return size - this->lzma.avail_out; } }; /** Filter using LZMA compression. */ struct LZMASaveFilter : SaveFilter { lzma_stream lzma; ///< Stream state that we are writing to. /** * Initialise this filter. * @param chain The next filter in this chain. * @param compression_level The requested level of compression. */ LZMASaveFilter(SaveFilter *chain, byte compression_level) : SaveFilter(chain), lzma(_lzma_init) { if (lzma_easy_encoder(&this->lzma, compression_level, LZMA_CHECK_CRC32) != LZMA_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize compressor"); } /** Clean up what we allocated. */ ~LZMASaveFilter() { lzma_end(&this->lzma); } /** * Helper loop for writing the data. * @param p The bytes to write. * @param len Amount of bytes to write. * @param action Action for lzma_code. */ void WriteLoop(byte *p, size_t len, lzma_action action) { byte buf[MEMORY_CHUNK_SIZE]; // output buffer size_t n; this->lzma.next_in = p; this->lzma.avail_in = len; do { this->lzma.next_out = buf; this->lzma.avail_out = sizeof(buf); lzma_ret r = lzma_code(&this->lzma, action); /* bytes were emitted? */ if ((n = sizeof(buf) - this->lzma.avail_out) != 0) { this->chain->Write(buf, n); } if (r == LZMA_STREAM_END) break; if (r != LZMA_OK) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "liblzma returned error code"); } while (this->lzma.avail_in || !this->lzma.avail_out); } void Write(byte *buf, size_t size) override { this->WriteLoop(buf, size, LZMA_RUN); } void Finish() override { this->WriteLoop(nullptr, 0, LZMA_FINISH); this->chain->Finish(); } }; #endif /* WITH_LIBLZMA */ /******************************************** ********** START OF ZSTD CODE ************** ********************************************/ #if defined(WITH_ZSTD) #include /** Filter using ZSTD compression. */ struct ZSTDLoadFilter : LoadFilter { ZSTD_DCtx *zstd; ///< ZSTD decompression context byte fread_buf[MEMORY_CHUNK_SIZE]; ///< Buffer for reading from the file ZSTD_inBuffer input; ///< ZSTD input buffer for fread_buf /** * Initialise this filter. * @param chain The next filter in this chain. */ ZSTDLoadFilter(LoadFilter *chain) : LoadFilter(chain) { this->zstd = ZSTD_createDCtx(); if (!this->zstd) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize compressor"); this->input = {this->fread_buf, 0, 0}; } /** Clean everything up. */ ~ZSTDLoadFilter() { ZSTD_freeDCtx(this->zstd); } size_t Read(byte *buf, size_t size) override { ZSTD_outBuffer output{buf, size, 0}; do { /* read more bytes from the file? */ if (this->input.pos == this->input.size) { this->input.size = this->chain->Read(this->fread_buf, sizeof(this->fread_buf)); this->input.pos = 0; } size_t ret = ZSTD_decompressStream(this->zstd, &output, &this->input); if (ZSTD_isError(ret)) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "libzstd returned error code"); if (ret == 0) break; } while (output.pos < output.size); return output.pos; } }; /** Filter using ZSTD compression. */ struct ZSTDSaveFilter : SaveFilter { ZSTD_CCtx *zstd; ///< ZSTD compression context /** * Initialise this filter. * @param chain The next filter in this chain. * @param compression_level The requested level of compression. */ ZSTDSaveFilter(SaveFilter *chain, byte compression_level) : SaveFilter(chain) { this->zstd = ZSTD_createCCtx(); if (!this->zstd) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "cannot initialize compressor"); if (ZSTD_isError(ZSTD_CCtx_setParameter(this->zstd, ZSTD_c_compressionLevel, (int)compression_level - 100))) { ZSTD_freeCCtx(this->zstd); SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "invalid compresison level"); } } /** Clean up what we allocated. */ ~ZSTDSaveFilter() { ZSTD_freeCCtx(this->zstd); } /** * Helper loop for writing the data. * @param p The bytes to write. * @param len Amount of bytes to write. * @param mode Mode for ZSTD_compressStream2. */ void WriteLoop(byte *p, size_t len, ZSTD_EndDirective mode) { byte buf[MEMORY_CHUNK_SIZE]; // output buffer ZSTD_inBuffer input{p, len, 0}; bool finished; do { ZSTD_outBuffer output{buf, sizeof(buf), 0}; size_t remaining = ZSTD_compressStream2(this->zstd, &output, &input, mode); if (ZSTD_isError(remaining)) SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, "libzstd returned error code"); if (output.pos != 0) this->chain->Write(buf, output.pos); finished = (mode == ZSTD_e_end ? (remaining == 0) : (input.pos == input.size)); } while (!finished); } void Write(byte *buf, size_t size) override { this->WriteLoop(buf, size, ZSTD_e_continue); } void Finish() override { this->WriteLoop(nullptr, 0, ZSTD_e_end); this->chain->Finish(); } }; #endif /* WITH_LIBZSTD */ /******************************************* ************* END OF CODE ***************** *******************************************/ /** The format for a reader/writer type of a savegame */ struct SaveLoadFormat { const char *name; ///< name of the compressor/decompressor (debug-only) uint32 tag; ///< the 4-letter tag by which it is identified in the savegame LoadFilter *(*init_load)(LoadFilter *chain); ///< Constructor for the load filter. SaveFilter *(*init_write)(SaveFilter *chain, byte compression); ///< Constructor for the save filter. byte min_compression; ///< the minimum compression level of this format byte default_compression; ///< the default compression level of this format byte max_compression; ///< the maximum compression level of this format bool no_threaded_load; ///< unsuitable for threaded loading }; /** The different saveload formats known/understood by OpenTTD. */ static const SaveLoadFormat _saveload_formats[] = { #if defined(WITH_LZO) /* Roughly 75% larger than zlib level 6 at only ~7% of the CPU usage. */ {"lzo", TO_BE32X('OTTD'), CreateLoadFilter, CreateSaveFilter, 0, 0, 0, true}, #else {"lzo", TO_BE32X('OTTD'), nullptr, nullptr, 0, 0, 0, false}, #endif /* Roughly 5 times larger at only 1% of the CPU usage over zlib level 6. */ {"none", TO_BE32X('OTTN'), CreateLoadFilter, CreateSaveFilter, 0, 0, 0, false}, #if defined(WITH_ZLIB) /* After level 6 the speed reduction is significant (1.5x to 2.5x slower per level), but the reduction in filesize is * fairly insignificant (~1% for each step). Lower levels become ~5-10% bigger by each level than level 6 while level * 1 is "only" 3 times as fast. Level 0 results in uncompressed savegames at about 8 times the cost of "none". */ {"zlib", TO_BE32X('OTTZ'), CreateLoadFilter, CreateSaveFilter, 0, 6, 9, false}, #else {"zlib", TO_BE32X('OTTZ'), nullptr, nullptr, 0, 0, 0, false}, #endif #if defined(WITH_ZSTD) /* Zstd provides a decent compression rate at a very high compression/decompression speed. Compared to lzma level 2 * zstd saves are about 40% larger (on level 1) but it has about 30x faster compression and 5x decompression making it * a good choice for multiplayer servers. And zstd level 1 seems to be the optimal one for client connection speed * (compress + 10 MB/s download + decompress time), about 3x faster than lzma:2 and 1.5x than zlib:2 and lzo. * As zstd has negative compression levels the values were increased by 100 moving zstd level range -100..22 into * openttd 0..122. Also note that value 100 mathes zstd level 0 which is a special value for default level 3 (openttd 103) */ {"zstd", TO_BE32X('OTTS'), CreateLoadFilter, CreateSaveFilter, 0, 101, 122, false}, #else {"zstd", TO_BE32X('OTTS'), nullptr, nullptr, 0, 0, 0, false}, #endif #if defined(WITH_LIBLZMA) /* Level 2 compression is speed wise as fast as zlib level 6 compression (old default), but results in ~10% smaller saves. * Higher compression levels are possible, and might improve savegame size by up to 25%, but are also up to 10 times slower. * The next significant reduction in file size is at level 4, but that is already 4 times slower. Level 3 is primarily 50% * slower while not improving the filesize, while level 0 and 1 are faster, but don't reduce savegame size much. * It's OTTX and not e.g. OTTL because liblzma is part of xz-utils and .tar.xz is preferred over .tar.lzma. */ {"lzma", TO_BE32X('OTTX'), CreateLoadFilter, CreateSaveFilter, 0, 2, 9, false}, #else {"lzma", TO_BE32X('OTTX'), nullptr, nullptr, 0, 0, 0, false}, #endif }; /** * Return the savegameformat of the game. Whether it was created with ZLIB compression * uncompressed, or another type * @param s Name of the savegame format. If nullptr it picks the first available one * @param compression_level Output for telling what compression level we want. * @return Pointer to SaveLoadFormat struct giving all characteristics of this type of savegame */ static const SaveLoadFormat *GetSavegameFormat(char *s, byte *compression_level) { const SaveLoadFormat *def = lastof(_saveload_formats); /* find default savegame format, the highest one with which files can be written */ while (!def->init_write) def--; if (!StrEmpty(s)) { /* Get the ":..." of the compression level out of the way */ char *complevel = strrchr(s, ':'); if (complevel != nullptr) *complevel = '\0'; for (const SaveLoadFormat *slf = &_saveload_formats[0]; slf != endof(_saveload_formats); slf++) { if (slf->init_write != nullptr && strcmp(s, slf->name) == 0) { *compression_level = slf->default_compression; if (complevel != nullptr) { /* There is a compression level in the string. * First restore the : we removed to do proper name matching, * then move the the begin of the actual version. */ *complevel = ':'; complevel++; /* Get the version and determine whether all went fine. */ char *end; long level = strtol(complevel, &end, 10); if (end == complevel || level != Clamp(level, slf->min_compression, slf->max_compression)) { SetDParamStr(0, complevel); ShowErrorMessage(STR_CONFIG_ERROR, STR_CONFIG_ERROR_INVALID_SAVEGAME_COMPRESSION_LEVEL, WL_CRITICAL); } else { *compression_level = level; } } return slf; } } SetDParamStr(0, s); SetDParamStr(1, def->name); ShowErrorMessage(STR_CONFIG_ERROR, STR_CONFIG_ERROR_INVALID_SAVEGAME_COMPRESSION_ALGORITHM, WL_CRITICAL); /* Restore the string by adding the : back */ if (complevel != nullptr) *complevel = ':'; } *compression_level = def->default_compression; return def; } /* actual loader/saver function */ void InitializeGame(uint size_x, uint size_y, bool reset_date, bool reset_settings); extern bool AfterLoadGame(); extern bool LoadOldSaveGame(const std::string &file); /** * Clear temporary data that is passed between various saveload phases. */ static void ResetSaveloadData() { ResetTempEngineData(); ResetLabelMaps(); ResetOldWaypoints(); } /** * Clear/free saveload state. */ static inline void ClearSaveLoadState() { delete _sl.dumper; _sl.dumper = nullptr; delete _sl.sf; _sl.sf = nullptr; delete _sl.reader; _sl.reader = nullptr; delete _sl.lf; _sl.lf = nullptr; _sl.networkserversave = false; GamelogStopAnyAction(); } /** * Update the gui accordingly when starting saving * and set locks on saveload. Also turn off fast-forward cause with that * saving takes Aaaaages */ static void SaveFileStart() { _sl.game_speed = _game_speed; _game_speed = 100; SetMouseCursorBusy(true); InvalidateWindowData(WC_STATUS_BAR, 0, SBI_SAVELOAD_START); _sl.saveinprogress = true; } /** Update the gui accordingly when saving is done and release locks on saveload. */ static void SaveFileDone() { if (_game_mode != GM_MENU) _game_speed = _sl.game_speed; SetMouseCursorBusy(false); InvalidateWindowData(WC_STATUS_BAR, 0, SBI_SAVELOAD_FINISH); _sl.saveinprogress = false; #ifdef __EMSCRIPTEN__ EM_ASM(if (window["openttd_syncfs"]) openttd_syncfs()); #endif } /** Set the error message from outside of the actual loading/saving of the game (AfterLoadGame and friends) */ void SetSaveLoadError(StringID str) { _sl.error_str = str; } /** Get the string representation of the error message */ const char *GetSaveLoadErrorString() { SetDParam(0, _sl.error_str); SetDParamStr(1, _sl.extra_msg); static char err_str[512]; GetString(err_str, _sl.action == SLA_SAVE ? STR_ERROR_GAME_SAVE_FAILED : STR_ERROR_GAME_LOAD_FAILED, lastof(err_str)); return err_str; } /** Show a gui message when saving has failed */ static void SaveFileError() { SetDParamStr(0, GetSaveLoadErrorString()); ShowErrorMessage(STR_JUST_RAW_STRING, INVALID_STRING_ID, WL_ERROR); SaveFileDone(); } /** * We have written the whole game into memory, _memory_savegame, now find * and appropriate compressor and start writing to file. */ static SaveOrLoadResult SaveFileToDisk(bool threaded) { try { byte compression; const SaveLoadFormat *fmt = GetSavegameFormat(_savegame_format, &compression); /* We have written our stuff to memory, now write it to file! */ uint32 hdr[2] = { fmt->tag, TO_BE32((uint32) (SAVEGAME_VERSION | SAVEGAME_VERSION_EXT) << 16) }; _sl.sf->Write((byte*)hdr, sizeof(hdr)); _sl.sf = fmt->init_write(_sl.sf, compression); _sl.dumper->Flush(_sl.sf); ClearSaveLoadState(); if (threaded) SetAsyncSaveFinish(SaveFileDone); return SL_OK; } catch (...) { ClearSaveLoadState(); AsyncSaveFinishProc asfp = SaveFileDone; /* We don't want to shout when saving is just * cancelled due to a client disconnecting. */ if (_sl.error_str != STR_NETWORK_ERROR_LOSTCONNECTION) { /* Skip the "colour" character */ DEBUG(sl, 0, "%s", GetSaveLoadErrorString() + 3); asfp = SaveFileError; } if (threaded) { SetAsyncSaveFinish(asfp); } else { asfp(); } return SL_ERROR; } } void WaitTillSaved() { if (!_save_thread.joinable()) return; _save_thread.join(); /* Make sure every other state is handled properly as well. */ ProcessAsyncSaveFinish(); } /** * Actually perform the saving of the savegame. * General tactics is to first save the game to memory, then write it to file * using the writer, either in threaded mode if possible, or single-threaded. * @param writer The filter to write the savegame to. * @param threaded Whether to try to perform the saving asynchronously. * @return Return the result of the action. #SL_OK or #SL_ERROR */ static SaveOrLoadResult DoSave(SaveFilter *writer, bool threaded) { assert(!_sl.saveinprogress); _sl.dumper = new MemoryDumper(); _sl.sf = writer; _sl_version = SAVEGAME_VERSION; SlXvSetCurrentState(); SaveViewportBeforeSaveGame(); SlSaveChunks(); SaveFileStart(); if (!threaded || !StartNewThread(&_save_thread, "ottd:savegame", &SaveFileToDisk, true)) { if (threaded) DEBUG(sl, 1, "Cannot create savegame thread, reverting to single-threaded mode..."); SaveOrLoadResult result = SaveFileToDisk(false); SaveFileDone(); return result; } return SL_OK; } /** * Save the game using a (writer) filter. * @param writer The filter to write the savegame to. * @param threaded Whether to try to perform the saving asynchronously. * @param networkserversave Whether this is a network server save. * @return Return the result of the action. #SL_OK or #SL_ERROR */ SaveOrLoadResult SaveWithFilter(SaveFilter *writer, bool threaded, bool networkserversave) { try { _sl.action = SLA_SAVE; _sl.networkserversave = networkserversave; return DoSave(writer, threaded); } catch (...) { ClearSaveLoadState(); return SL_ERROR; } } bool IsNetworkServerSave() { return _sl.networkserversave; } struct ThreadedLoadFilter : LoadFilter { static const size_t BUFFER_COUNT = 4; std::mutex mutex; std::condition_variable full_cv; std::condition_variable empty_cv; uint first_ready = 0; uint count_ready = 0; size_t read_offsets[BUFFER_COUNT]; size_t read_counts[BUFFER_COUNT]; byte read_buf[MEMORY_CHUNK_SIZE * BUFFER_COUNT]; ///< Buffers for reading from source. bool no_thread = false; bool have_exception = false; ThreadSlErrorException caught_exception; std::thread read_thread; /** * Initialise this filter. * @param chain The next filter in this chain. */ ThreadedLoadFilter(LoadFilter *chain) : LoadFilter(chain) { std::unique_lock lk(this->mutex); if (!StartNewThread(&this->read_thread, "ottd:loadgame", &ThreadedLoadFilter::RunThread, this)) { DEBUG(sl, 1, "Failed to start load read thread, reading non-threaded"); this->no_thread = true; } else { DEBUG(sl, 2, "Started load read thread"); } } /** Clean everything up. */ ~ThreadedLoadFilter() { std::unique_lock lk(this->mutex); this->no_thread = true; lk.unlock(); this->empty_cv.notify_all(); this->full_cv.notify_all(); if (this->read_thread.joinable()) { this->read_thread.join(); DEBUG(sl, 2, "Joined load read thread"); } } static void RunThread(ThreadedLoadFilter *self) { try { std::unique_lock lk(self->mutex); while (!self->no_thread) { if (self->count_ready == BUFFER_COUNT) { self->full_cv.wait(lk); continue; } uint buf = (self->first_ready + self->count_ready) % BUFFER_COUNT; lk.unlock(); size_t read = self->chain->Read(self->read_buf + (buf * MEMORY_CHUNK_SIZE), MEMORY_CHUNK_SIZE); lk.lock(); self->read_offsets[buf] = 0; self->read_counts[buf] = read; self->count_ready++; if (self->count_ready == 1) self->empty_cv.notify_one(); } } catch (const ThreadSlErrorException &ex) { std::unique_lock lk(self->mutex); self->caught_exception = ex; self->have_exception = true; self->empty_cv.notify_one(); } } size_t Read(byte *buf, size_t size) override { if (this->no_thread) return this->chain->Read(buf, size); size_t read = 0; std::unique_lock lk(this->mutex); while (read < size || this->have_exception) { if (this->have_exception) { this->have_exception = false; SlError(this->caught_exception.string, this->caught_exception.extra_msg); } if (this->count_ready == 0) { this->empty_cv.wait(lk); continue; } size_t to_read = std::min(size - read, read_counts[this->first_ready]); if (to_read == 0) break; memcpy(buf + read, this->read_buf + (this->first_ready * MEMORY_CHUNK_SIZE) + read_offsets[this->first_ready], to_read); read += to_read; read_offsets[this->first_ready] += to_read; read_counts[this->first_ready] -= to_read; if (read_counts[this->first_ready] == 0) { this->first_ready = (this->first_ready + 1) % BUFFER_COUNT; this->count_ready--; if (this->count_ready == BUFFER_COUNT - 1) this->full_cv.notify_one(); } } return read; } }; /** * Actually perform the loading of a "non-old" savegame. * @param reader The filter to read the savegame from. * @param load_check Whether to perform the checking ("preview") or actually load the game. * @return Return the result of the action. #SL_OK or #SL_REINIT ("unload" the game) */ static SaveOrLoadResult DoLoad(LoadFilter *reader, bool load_check) { _sl.lf = reader; if (load_check) { /* Clear previous check data */ _load_check_data.Clear(); /* Mark SL_LOAD_CHECK as supported for this savegame. */ _load_check_data.checkable = true; } SlXvResetState(); SlResetVENC(); auto guard = scope_guard([&]() { SlResetVENC(); }); uint32 hdr[2]; if (_sl.lf->Read((byte*)hdr, sizeof(hdr)) != sizeof(hdr)) SlError(STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE); /* see if we have any loader for this type. */ const SaveLoadFormat *fmt = _saveload_formats; for (;;) { /* No loader found, treat as version 0 and use LZO format */ if (fmt == endof(_saveload_formats)) { DEBUG(sl, 0, "Unknown savegame type, trying to load it as the buggy format"); _sl.lf->Reset(); _sl_version = SL_MIN_VERSION; _sl_minor_version = 0; SlXvResetState(); /* Try to find the LZO savegame format; it uses 'OTTD' as tag. */ fmt = _saveload_formats; for (;;) { if (fmt == endof(_saveload_formats)) { /* Who removed LZO support? Bad bad boy! */ NOT_REACHED(); } if (fmt->tag == TO_BE32X('OTTD')) break; fmt++; } break; } if (fmt->tag == hdr[0]) { /* check version number */ _sl_version = (SaveLoadVersion)(TO_BE32(hdr[1]) >> 16); /* Minor is not used anymore from version 18.0, but it is still needed * in versions before that (4 cases) which can't be removed easy. * Therefore it is loaded, but never saved (or, it saves a 0 in any scenario). */ _sl_minor_version = (TO_BE32(hdr[1]) >> 8) & 0xFF; bool special_version = false; if (_sl_version & SAVEGAME_VERSION_EXT) { _sl_version = (SaveLoadVersion)(_sl_version & ~SAVEGAME_VERSION_EXT); _sl_is_ext_version = true; } else { special_version = SlXvCheckSpecialSavegameVersions(); } DEBUG(sl, 1, "Loading savegame version %d%s%s%s", _sl_version, _sl_is_ext_version ? " (extended)" : "", _sl_maybe_springpp ? " which might be SpringPP" : "", _sl_maybe_chillpp ? " which might be ChillPP" : ""); /* Is the version higher than the current? */ if (_sl_version > SAVEGAME_VERSION && !special_version) SlError(STR_GAME_SAVELOAD_ERROR_TOO_NEW_SAVEGAME); if (_sl_version >= SLV_START_PATCHPACKS && _sl_version <= SLV_END_PATCHPACKS && !special_version) SlError(STR_GAME_SAVELOAD_ERROR_PATCHPACK); break; } fmt++; } /* loader for this savegame type is not implemented? */ if (fmt->init_load == nullptr) { char err_str[64]; seprintf(err_str, lastof(err_str), "Loader for '%s' is not available.", fmt->name); SlError(STR_GAME_SAVELOAD_ERROR_BROKEN_INTERNAL_ERROR, err_str); } _sl.lf = fmt->init_load(_sl.lf); if (!fmt->no_threaded_load) { _sl.lf = new ThreadedLoadFilter(_sl.lf); } _sl.reader = new ReadBuffer(_sl.lf); _next_offs = 0; if (!load_check) { ResetSaveloadData(); /* Old maps were hardcoded to 256x256 and thus did not contain * any mapsize information. Pre-initialize to 256x256 to not to * confuse old games */ InitializeGame(256, 256, true, true); GamelogReset(); if (IsSavegameVersionBefore(SLV_4)) { /* * NewGRFs were introduced between 0.3,4 and 0.3.5, which both * shared savegame version 4. Anything before that 'obviously' * does not have any NewGRFs. Between the introduction and * savegame version 41 (just before 0.5) the NewGRF settings * were not stored in the savegame and they were loaded by * using the settings from the main menu. * So, to recap: * - savegame version < 4: do not load any NewGRFs. * - savegame version >= 41: load NewGRFs from savegame, which is * already done at this stage by * overwriting the main menu settings. * - other savegame versions: use main menu settings. * * This means that users *can* crash savegame version 4..40 * savegames if they set incompatible NewGRFs in the main menu, * but can't crash anymore for savegame version < 4 savegames. * * Note: this is done here because AfterLoadGame is also called * for TTO/TTD/TTDP savegames which have their own NewGRF logic. */ ClearGRFConfigList(&_grfconfig); } } if (load_check) { /* Load chunks into _load_check_data. * No pools are loaded. References are not possible, and thus do not need resolving. */ SlLoadCheckChunks(); } else { /* Load chunks and resolve references */ SlLoadChunks(); SlFixPointers(); } ClearSaveLoadState(); _savegame_type = SGT_OTTD; if (load_check) { /* The only part from AfterLoadGame() we need */ if (_load_check_data.want_grf_compatibility) _load_check_data.grf_compatibility = IsGoodGRFConfigList(_load_check_data.grfconfig); } else { GamelogStartAction(GLAT_LOAD); /* After loading fix up savegame for any internal changes that * might have occurred since then. If it fails, load back the old game. */ if (!AfterLoadGame()) { GamelogStopAction(); return SL_REINIT; } GamelogStopAction(); SlXvSetCurrentState(); } return SL_OK; } /** * Load the game using a (reader) filter. * @param reader The filter to read the savegame from. * @return Return the result of the action. #SL_OK or #SL_REINIT ("unload" the game) */ SaveOrLoadResult LoadWithFilter(LoadFilter *reader) { try { _sl.action = SLA_LOAD; return DoLoad(reader, false); } catch (...) { ClearSaveLoadState(); return SL_REINIT; } } /** * Main Save or Load function where the high-level saveload functions are * handled. It opens the savegame, selects format and checks versions * @param filename The name of the savegame being created/loaded * @param fop Save or load mode. Load can also be a TTD(Patch) game. * @param sb The sub directory to save the savegame in * @param threaded True when threaded saving is allowed * @return Return the result of the action. #SL_OK, #SL_ERROR, or #SL_REINIT ("unload" the game) */ SaveOrLoadResult SaveOrLoad(const std::string &filename, SaveLoadOperation fop, DetailedFileType dft, Subdirectory sb, bool threaded) { /* An instance of saving is already active, so don't go saving again */ if (_sl.saveinprogress && fop == SLO_SAVE && dft == DFT_GAME_FILE && threaded) { /* if not an autosave, but a user action, show error message */ if (!_do_autosave) ShowErrorMessage(STR_ERROR_SAVE_STILL_IN_PROGRESS, INVALID_STRING_ID, WL_ERROR); return SL_OK; } WaitTillSaved(); try { /* Load a TTDLX or TTDPatch game */ if (fop == SLO_LOAD && dft == DFT_OLD_GAME_FILE) { ResetSaveloadData(); InitializeGame(256, 256, true, true); // set a mapsize of 256x256 for TTDPatch games or it might get confused /* TTD/TTO savegames have no NewGRFs, TTDP savegame have them * and if so a new NewGRF list will be made in LoadOldSaveGame. * Note: this is done here because AfterLoadGame is also called * for OTTD savegames which have their own NewGRF logic. */ ClearGRFConfigList(&_grfconfig); GamelogReset(); if (!LoadOldSaveGame(filename)) return SL_REINIT; _sl_version = SL_MIN_VERSION; _sl_minor_version = 0; SlXvResetState(); GamelogStartAction(GLAT_LOAD); if (!AfterLoadGame()) { GamelogStopAction(); return SL_REINIT; } GamelogStopAction(); SlXvSetCurrentState(); return SL_OK; } assert(dft == DFT_GAME_FILE); switch (fop) { case SLO_CHECK: _sl.action = SLA_LOAD_CHECK; break; case SLO_LOAD: _sl.action = SLA_LOAD; break; case SLO_SAVE: _sl.action = SLA_SAVE; break; default: NOT_REACHED(); } _sl.networkserversave = false; FILE *fh = (fop == SLO_SAVE) ? FioFOpenFile(filename, "wb", sb) : FioFOpenFile(filename, "rb", sb); /* Make it a little easier to load savegames from the console */ if (fh == nullptr && fop != SLO_SAVE) fh = FioFOpenFile(filename, "rb", SAVE_DIR); if (fh == nullptr && fop != SLO_SAVE) fh = FioFOpenFile(filename, "rb", BASE_DIR); if (fh == nullptr && fop != SLO_SAVE) fh = FioFOpenFile(filename, "rb", SCENARIO_DIR); if (fh == nullptr) { SlError(fop == SLO_SAVE ? STR_GAME_SAVELOAD_ERROR_FILE_NOT_WRITEABLE : STR_GAME_SAVELOAD_ERROR_FILE_NOT_READABLE); } if (fop == SLO_SAVE) { // SAVE game DEBUG(desync, 1, "save: date{%08x; %02x; %02x}; %s", _date, _date_fract, _tick_skip_counter, filename.c_str()); if (_network_server || !_settings_client.gui.threaded_saves) threaded = false; return DoSave(new FileWriter(fh), threaded); } /* LOAD game */ assert(fop == SLO_LOAD || fop == SLO_CHECK); DEBUG(desync, 1, "load: %s", filename.c_str()); return DoLoad(new FileReader(fh), fop == SLO_CHECK); } catch (...) { /* This code may be executed both for old and new save games. */ ClearSaveLoadState(); /* Skip the "colour" character */ if (fop != SLO_CHECK) DEBUG(sl, 0, "%s", GetSaveLoadErrorString() + 3); /* A saver/loader exception!! reinitialize all variables to prevent crash! */ return (fop == SLO_LOAD) ? SL_REINIT : SL_ERROR; } } /** Do a save when exiting the game (_settings_client.gui.autosave_on_exit) */ void DoExitSave() { SaveOrLoad("exit.sav", SLO_SAVE, DFT_GAME_FILE, AUTOSAVE_DIR); } /** * Fill the buffer with the default name for a savegame *or* screenshot. * @param buf the buffer to write to. * @param last the last element in the buffer. */ void GenerateDefaultSaveName(char *buf, const char *last) { /* Check if we have a name for this map, which is the name of the first * available company. When there's no company available we'll use * 'Spectator' as "company" name. */ CompanyID cid = _local_company; if (!Company::IsValidID(cid)) { for (const Company *c : Company::Iterate()) { cid = c->index; break; } } SetDParam(0, cid); /* Insert current date */ switch (_settings_client.gui.date_format_in_default_names) { case 0: SetDParam(1, STR_JUST_DATE_LONG); break; case 1: SetDParam(1, STR_JUST_DATE_TINY); break; case 2: SetDParam(1, STR_JUST_DATE_ISO); break; default: NOT_REACHED(); } SetDParam(2, _date); /* Get the correct string (special string for when there's not company) */ GetString(buf, !Company::IsValidID(cid) ? STR_SAVEGAME_NAME_SPECTATOR : STR_SAVEGAME_NAME_DEFAULT, last); SanitizeFilename(buf); } /** * Set the mode and file type of the file to save or load based on the type of file entry at the file system. * @param ft Type of file entry of the file system. */ void FileToSaveLoad::SetMode(FiosType ft) { this->SetMode(SLO_LOAD, GetAbstractFileType(ft), GetDetailedFileType(ft)); } /** * Set the mode and file type of the file to save or load. * @param fop File operation being performed. * @param aft Abstract file type. * @param dft Detailed file type. */ void FileToSaveLoad::SetMode(SaveLoadOperation fop, AbstractFileType aft, DetailedFileType dft) { if (aft == FT_INVALID || aft == FT_NONE) { this->file_op = SLO_INVALID; this->detail_ftype = DFT_INVALID; this->abstract_ftype = FT_INVALID; return; } this->file_op = fop; this->detail_ftype = dft; this->abstract_ftype = aft; } /** * Set the name of the file. * @param name Name of the file. */ void FileToSaveLoad::SetName(const char *name) { this->name = name; } /** * Set the title of the file. * @param title Title of the file. */ void FileToSaveLoad::SetTitle(const char *title) { strecpy(this->title, title, lastof(this->title)); }