/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** * @file saveload.cpp * All actions handling saving and loading goes on in this file. The general actions * are as follows for saving a game (loading is analogous): *
    *
  1. initialize the writer by creating a temporary memory-buffer for it *
  2. go through all to-be saved elements, each 'chunk' (#ChunkHandler) prefixed by a label *
  3. use their description array (#SaveLoad) to know what elements to save and in what version * of the game it was active (used when loading) *
  4. write all data byte-by-byte to the temporary buffer so it is endian-safe *
  5. when the buffer is full; flush it to the output (eg save to file) (_sl.buf, _sl.bufp, _sl.bufe) *
  6. repeat this until everything is done, and flush any remaining output to file *
*/ #include "../stdafx.h" #include "saveload.h" #include "../debug.h" #include "../string_func.h" #include "../string_func_extra.h" #include "../strings_func.h" #include "../core/bitmath_func.hpp" #include "../vehicle_base.h" #include "../station_base.h" #include "../linkgraph/linkgraph.h" #include "../linkgraph/linkgraphjob.h" #include "../town.h" #include "../roadstop_base.h" #include "../autoreplace_base.h" #include "../core/ring_buffer.hpp" #include #include #include #include #include #include "../safeguards.h" StringID RemapOldStringID(StringID s); std::string CopyFromOldName(StringID id); extern uint8_t SlSaveToTempBufferSetup(); extern std::span SlSaveToTempBufferRestore(uint8_t state); extern void SlCopyBytesRead(void *ptr, size_t length); extern void SlCopyBytesWrite(void *ptr, size_t length); namespace upstream_sl { /** What are we currently doing? */ enum SaveLoadAction { SLA_LOAD, ///< loading SLA_SAVE, ///< saving SLA_PTRS, ///< fixing pointers SLA_NULL, ///< null all pointers (on loading error) SLA_LOAD_CHECK, ///< partial loading into #_load_check_data }; enum NeedLength { NL_NONE = 0, ///< not working in NeedLength mode NL_WANTLENGTH = 1, ///< writing length and data NL_CALCLENGTH = 2, ///< need to calculate the length }; /** The saveload struct, containing reader-writer functions, buffer, version, etc. */ struct SaveLoadParams { SaveLoadAction action; ///< are we doing a save or a load atm. NeedLength need_length; ///< working in NeedLength (Autolength) mode? byte block_mode; ///< ??? size_t obj_len; ///< the length of the current object we are busy with int array_index, last_array_index; ///< in the case of an array, the current and last positions bool expect_table_header; ///< In the case of a table, if the header is saved/loaded. }; static SaveLoadParams _sl; ///< Parameters used for/at saveload. static const std::vector &ChunkHandlers() { /* These define the chunks */ extern const ChunkHandlerTable _gamelog_chunk_handlers; extern const ChunkHandlerTable _map_chunk_handlers; extern const ChunkHandlerTable _misc_chunk_handlers; //extern const ChunkHandlerTable _name_chunk_handlers; extern const ChunkHandlerTable _cheat_chunk_handlers; extern const ChunkHandlerTable _setting_chunk_handlers; extern const ChunkHandlerTable _company_chunk_handlers; extern const ChunkHandlerTable _engine_chunk_handlers; extern const ChunkHandlerTable _veh_chunk_handlers; //extern const ChunkHandlerTable _waypoint_chunk_handlers; extern const ChunkHandlerTable _depot_chunk_handlers; extern const ChunkHandlerTable _order_chunk_handlers; extern const ChunkHandlerTable _town_chunk_handlers; extern const ChunkHandlerTable _sign_chunk_handlers; extern const ChunkHandlerTable _station_chunk_handlers; extern const ChunkHandlerTable _industry_chunk_handlers; extern const ChunkHandlerTable _economy_chunk_handlers; extern const ChunkHandlerTable _subsidy_chunk_handlers; extern const ChunkHandlerTable _cargomonitor_chunk_handlers; extern const ChunkHandlerTable _goal_chunk_handlers; extern const ChunkHandlerTable _story_page_chunk_handlers; extern const ChunkHandlerTable _league_chunk_handlers; extern const ChunkHandlerTable _ai_chunk_handlers; extern const ChunkHandlerTable _game_chunk_handlers; extern const ChunkHandlerTable _animated_tile_chunk_handlers; extern const ChunkHandlerTable _newgrf_chunk_handlers; extern const ChunkHandlerTable _group_chunk_handlers; extern const ChunkHandlerTable _cargopacket_chunk_handlers; extern const ChunkHandlerTable _autoreplace_chunk_handlers; extern const ChunkHandlerTable _labelmaps_chunk_handlers; extern const ChunkHandlerTable _linkgraph_chunk_handlers; extern const ChunkHandlerTable _airport_chunk_handlers; extern const ChunkHandlerTable _object_chunk_handlers; extern const ChunkHandlerTable _persistent_storage_chunk_handlers; extern const ChunkHandlerTable _water_region_chunk_handlers; extern const ChunkHandlerTable _randomizer_chunk_handlers; /** List of all chunks in a savegame. */ static const ChunkHandlerTable _chunk_handler_tables[] = { _gamelog_chunk_handlers, _map_chunk_handlers, _misc_chunk_handlers, //_name_chunk_handlers, _cheat_chunk_handlers, _setting_chunk_handlers, _veh_chunk_handlers, //_waypoint_chunk_handlers, _depot_chunk_handlers, _order_chunk_handlers, _industry_chunk_handlers, _economy_chunk_handlers, _subsidy_chunk_handlers, _cargomonitor_chunk_handlers, _goal_chunk_handlers, _story_page_chunk_handlers, _league_chunk_handlers, _engine_chunk_handlers, _town_chunk_handlers, _sign_chunk_handlers, _station_chunk_handlers, _company_chunk_handlers, _ai_chunk_handlers, _game_chunk_handlers, _animated_tile_chunk_handlers, _newgrf_chunk_handlers, _group_chunk_handlers, _cargopacket_chunk_handlers, _autoreplace_chunk_handlers, _labelmaps_chunk_handlers, _linkgraph_chunk_handlers, _airport_chunk_handlers, _object_chunk_handlers, _persistent_storage_chunk_handlers, _water_region_chunk_handlers, _randomizer_chunk_handlers, }; static std::vector _chunk_handlers; if (_chunk_handlers.empty()) { for (auto &chunk_handler_table : _chunk_handler_tables) { for (auto &chunk_handler : chunk_handler_table) { _chunk_handlers.push_back(chunk_handler); } } } return _chunk_handlers; } /** Null all pointers (convert index -> nullptr) */ void SlNullPointers() { _sl.action = SLA_NULL; /* We don't want any savegame conversion code to run * during NULLing; especially those that try to get * pointers from other pools. */ _sl_version = SAVEGAME_VERSION; for (const ChunkHandler &ch : ChunkHandlers()) { DEBUG(sl, 3, "Nulling pointers for %c%c%c%c", ch.id >> 24, ch.id >> 16, ch.id >> 8, ch.id); ch.FixPointers(); } assert(_sl.action == SLA_NULL); } /** * Read in the header descriptor of an object or an array. * If the highest bit is set (7), then the index is bigger than 127 * elements, so use the next byte to read in the real value. * The actual value is then both bytes added with the first shifted * 8 bits to the left, and dropping the highest bit (which only indicated a big index). * x = ((x & 0x7F) << 8) + SlReadByte(); * @return Return the value of the index */ static uint SlReadSimpleGamma() { uint i = SlReadByte(); if (HasBit(i, 7)) { i &= ~0x80; if (HasBit(i, 6)) { i &= ~0x40; if (HasBit(i, 5)) { i &= ~0x20; if (HasBit(i, 4)) { i &= ~0x10; if (HasBit(i, 3)) { SlErrorCorrupt("Unsupported gamma"); } i = SlReadByte(); // 32 bits only. } i = (i << 8) | SlReadByte(); } i = (i << 8) | SlReadByte(); } i = (i << 8) | SlReadByte(); } return i; } /** * Write the header descriptor of an object or an array. * If the element is bigger than 127, use 2 bytes for saving * and use the highest byte of the first written one as a notice * that the length consists of 2 bytes, etc.. like this: * 0xxxxxxx * 10xxxxxx xxxxxxxx * 110xxxxx xxxxxxxx xxxxxxxx * 1110xxxx xxxxxxxx xxxxxxxx xxxxxxxx * 11110--- xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx * We could extend the scheme ad infinum to support arbitrarily * large chunks, but as sizeof(size_t) == 4 is still very common * we don't support anything above 32 bits. That's why in the last * case the 3 most significant bits are unused. * @param i Index being written */ static void SlWriteSimpleGamma(size_t i) { if (i >= (1 << 7)) { if (i >= (1 << 14)) { if (i >= (1 << 21)) { if (i >= (1 << 28)) { assert(i <= UINT32_MAX); // We can only support 32 bits for now. SlWriteByte((byte)(0xF0)); SlWriteByte((byte)(i >> 24)); } else { SlWriteByte((byte)(0xE0 | (i >> 24))); } SlWriteByte((byte)(i >> 16)); } else { SlWriteByte((byte)(0xC0 | (i >> 16))); } SlWriteByte((byte)(i >> 8)); } else { SlWriteByte((byte)(0x80 | (i >> 8))); } } SlWriteByte((byte)i); } /** Return how many bytes used to encode a gamma value */ static inline uint SlGetGammaLength(size_t i) { return 1 + (i >= (1 << 7)) + (i >= (1 << 14)) + (i >= (1 << 21)) + (i >= (1 << 28)); } static inline uint SlReadSparseIndex() { return SlReadSimpleGamma(); } static inline void SlWriteSparseIndex(uint index) { SlWriteSimpleGamma(index); } static inline uint SlReadArrayLength() { return SlReadSimpleGamma(); } static inline void SlWriteArrayLength(size_t length) { SlWriteSimpleGamma(length); } static inline uint SlGetArrayLength(size_t length) { return SlGetGammaLength(length); } /** * Return the type as saved/loaded inside the savegame. */ static uint8_t GetSavegameFileType(const SaveLoad &sld) { switch (sld.cmd) { case SL_VAR: return GetVarFileType(sld.conv); break; case SL_STR: case SL_STDSTR: case SL_ARR: case SL_VECTOR: case SL_RING: return GetVarFileType(sld.conv) | SLE_FILE_HAS_LENGTH_FIELD; break; case SL_REF: return IsSavegameVersionBefore(SLV_69) ? SLE_FILE_U16 : SLE_FILE_U32; case SL_REFLIST: case SL_REFRING: case SL_REFVEC: return (IsSavegameVersionBefore(SLV_69) ? SLE_FILE_U16 : SLE_FILE_U32) | SLE_FILE_HAS_LENGTH_FIELD; case SL_SAVEBYTE: return SLE_FILE_U8; case SL_STRUCT: case SL_STRUCTLIST: return SLE_FILE_STRUCT | SLE_FILE_HAS_LENGTH_FIELD; default: NOT_REACHED(); } } /** * Return the size in bytes of a certain type of normal/atomic variable * as it appears in memory. See VarTypes * @param conv VarType type of variable that is used for calculating the size * @return Return the size of this type in bytes */ static inline uint SlCalcConvMemLen(VarType conv) { static const byte conv_mem_size[] = {1, 1, 1, 2, 2, 4, 4, 8, 8, 0}; switch (GetVarMemType(conv)) { case SLE_VAR_STRB: case SLE_VAR_STR: case SLE_VAR_STRQ: return SlReadArrayLength(); default: uint8_t type = GetVarMemType(conv) >> 4; assert(type < lengthof(conv_mem_size)); return conv_mem_size[type]; } } /** * Return the size in bytes of a certain type of normal/atomic variable * as it appears in a saved game. See VarTypes * @param conv VarType type of variable that is used for calculating the size * @return Return the size of this type in bytes */ static inline byte SlCalcConvFileLen(VarType conv) { static const byte conv_file_size[] = {0, 1, 1, 2, 2, 4, 4, 8, 8, 2}; uint8_t type = GetVarFileType(conv); assert(type < lengthof(conv_file_size)); return conv_file_size[type]; } /** Return the size in bytes of a reference (pointer) */ static inline size_t SlCalcRefLen() { return IsSavegameVersionBefore(SLV_69) ? 2 : 4; } void SlSetArrayIndex(uint index) { _sl.need_length = NL_WANTLENGTH; _sl.array_index = index; } static size_t _next_offs; /** * Iterate through the elements of an array and read the whole thing * @return The index of the object, or -1 if we have reached the end of current block */ int SlIterateArray() { int index; /* After reading in the whole array inside the loop * we must have read in all the data, so we must be at end of current block. */ if (_next_offs != 0 && SlGetBytesRead() != _next_offs) SlErrorCorrupt("Invalid chunk size"); for (;;) { uint length = SlReadArrayLength(); if (length == 0) { assert(!_sl.expect_table_header); _next_offs = 0; return -1; } _sl.obj_len = --length; _next_offs = SlGetBytesRead() + length; if (_sl.expect_table_header) { _sl.expect_table_header = false; return INT32_MAX; } switch (_sl.block_mode) { case CH_SPARSE_TABLE: case CH_SPARSE_ARRAY: index = (int)SlReadSparseIndex(); break; case CH_TABLE: case CH_ARRAY: index = _sl.array_index++; break; default: DEBUG(sl, 0, "SlIterateArray error"); return -1; // error } if (length != 0) return index; } } /** * Skip an array or sparse array */ void SlSkipArray() { while (SlIterateArray() != -1) { SlSkipBytes(_next_offs - SlGetBytesRead()); } } /** * Sets the length of either a RIFF object or the number of items in an array. * This lets us load an object or an array of arbitrary size * @param length The length of the sought object/array */ void SlSetLength(size_t length) { assert(_sl.action == SLA_SAVE); switch (_sl.need_length) { case NL_WANTLENGTH: _sl.need_length = NL_NONE; if ((_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE) && _sl.expect_table_header) { _sl.expect_table_header = false; SlWriteArrayLength(length + 1); break; } switch (_sl.block_mode) { case CH_RIFF: /* Ugly encoding of >16M RIFF chunks * The lower 24 bits are normal * The uppermost 4 bits are bits 24:27 */ assert(length < (1 << 28)); SlWriteUint32((uint32_t)((length & 0xFFFFFF) | ((length >> 24) << 28))); break; case CH_TABLE: case CH_ARRAY: assert(_sl.last_array_index <= _sl.array_index); while (++_sl.last_array_index <= _sl.array_index) { SlWriteArrayLength(1); } SlWriteArrayLength(length + 1); break; case CH_SPARSE_TABLE: case CH_SPARSE_ARRAY: SlWriteArrayLength(length + 1 + SlGetArrayLength(_sl.array_index)); // Also include length of sparse index. SlWriteSparseIndex(_sl.array_index); break; default: NOT_REACHED(); } break; case NL_CALCLENGTH: _sl.obj_len += (int)length; break; default: NOT_REACHED(); } } /** * Save/Load bytes. These do not need to be converted to Little/Big Endian * so directly write them or read them to/from file * @param ptr The source or destination of the object being manipulated * @param length number of bytes this fast CopyBytes lasts */ static void SlCopyBytes(void *ptr, size_t length) { switch (_sl.action) { case SLA_LOAD_CHECK: case SLA_LOAD: SlCopyBytesRead(ptr, length); break; case SLA_SAVE: SlCopyBytesWrite(ptr, length); break; default: NOT_REACHED(); } } /** Get the length of the current object */ size_t SlGetFieldLength() { return _sl.obj_len; } /** * Return a signed-long version of the value of a setting * @param ptr pointer to the variable * @param conv type of variable, can be a non-clean * type, eg one with other flags because it is parsed * @return returns the value of the pointer-setting */ int64_t ReadValue(const void *ptr, VarType conv) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: return (*(const bool *)ptr != 0); case SLE_VAR_I8: return *(const int8_t *)ptr; case SLE_VAR_U8: return *(const byte *)ptr; case SLE_VAR_I16: return *(const int16_t *)ptr; case SLE_VAR_U16: return *(const uint16_t*)ptr; case SLE_VAR_I32: return *(const int32_t *)ptr; case SLE_VAR_U32: return *(const uint32_t*)ptr; case SLE_VAR_I64: return *(const int64_t *)ptr; case SLE_VAR_U64: return *(const uint64_t*)ptr; case SLE_VAR_NULL:return 0; default: NOT_REACHED(); } } /** * Write the value of a setting * @param ptr pointer to the variable * @param conv type of variable, can be a non-clean type, eg * with other flags. It is parsed upon read * @param val the new value being given to the variable */ void WriteValue(void *ptr, VarType conv, int64_t val) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: *(bool *)ptr = (val != 0); break; case SLE_VAR_I8: *(int8_t *)ptr = val; break; case SLE_VAR_U8: *(byte *)ptr = val; break; case SLE_VAR_I16: *(int16_t *)ptr = val; break; case SLE_VAR_U16: *(uint16_t*)ptr = val; break; case SLE_VAR_I32: *(int32_t *)ptr = val; break; case SLE_VAR_U32: *(uint32_t*)ptr = val; break; case SLE_VAR_I64: *(int64_t *)ptr = val; break; case SLE_VAR_U64: *(uint64_t*)ptr = val; break; case SLE_VAR_NAME: *reinterpret_cast(ptr) = CopyFromOldName(val); break; case SLE_VAR_NULL: break; default: NOT_REACHED(); } } /** * Handle all conversion and typechecking of variables here. * In the case of saving, read in the actual value from the struct * and then write them to file, endian safely. Loading a value * goes exactly the opposite way * @param ptr The object being filled/read * @param conv VarType type of the current element of the struct */ static void SlSaveLoadConv(void *ptr, VarType conv) { switch (_sl.action) { case SLA_SAVE: { int64_t x = ReadValue(ptr, conv); /* Write the value to the file and check if its value is in the desired range */ switch (GetVarFileType(conv)) { case SLE_FILE_I8: assert(x >= -128 && x <= 127); SlWriteByte(x);break; case SLE_FILE_U8: assert(x >= 0 && x <= 255); SlWriteByte(x);break; case SLE_FILE_I16:assert(x >= -32768 && x <= 32767); SlWriteUint16(x);break; case SLE_FILE_STRINGID: case SLE_FILE_U16:assert(x >= 0 && x <= 65535); SlWriteUint16(x);break; case SLE_FILE_I32: case SLE_FILE_U32: SlWriteUint32((uint32_t)x);break; case SLE_FILE_I64: case SLE_FILE_U64: SlWriteUint64(x);break; default: NOT_REACHED(); } break; } case SLA_LOAD_CHECK: case SLA_LOAD: { int64_t x; /* Read a value from the file */ switch (GetVarFileType(conv)) { case SLE_FILE_I8: x = (int8_t )SlReadByte(); break; case SLE_FILE_U8: x = (byte )SlReadByte(); break; case SLE_FILE_I16: x = (int16_t )SlReadUint16(); break; case SLE_FILE_U16: x = (uint16_t)SlReadUint16(); break; case SLE_FILE_I32: x = (int32_t )SlReadUint32(); break; case SLE_FILE_U32: x = (uint32_t)SlReadUint32(); break; case SLE_FILE_I64: x = (int64_t )SlReadUint64(); break; case SLE_FILE_U64: x = (uint64_t)SlReadUint64(); break; case SLE_FILE_STRINGID: x = RemapOldStringID((uint16_t)SlReadUint16()); break; default: NOT_REACHED(); } /* Write The value to the struct. These ARE endian safe. */ WriteValue(ptr, conv, x); break; } case SLA_PTRS: break; case SLA_NULL: break; default: NOT_REACHED(); } } /** * Calculate the net length of a string. This is in almost all cases * just strlen(), but if the string is not properly terminated, we'll * resort to the maximum length of the buffer. * @param ptr pointer to the stringbuffer * @param length maximum length of the string (buffer). If -1 we don't care * about a maximum length, but take string length as it is. * @return return the net length of the string */ static inline size_t SlCalcNetStringLen(const char *ptr, size_t length) { if (ptr == nullptr) return 0; return std::min(strlen(ptr), length - 1); } /** * Calculate the gross length of the string that it * will occupy in the savegame. This includes the real length, returned * by SlCalcNetStringLen and the length that the index will occupy. * @param ptr pointer to the stringbuffer * @param length maximum length of the string (buffer size, etc.) * @param conv type of data been used * @return return the gross length of the string */ static inline size_t SlCalcStringLen(const void *ptr, size_t length, VarType conv) { size_t len; const char *str; switch (GetVarMemType(conv)) { default: NOT_REACHED(); case SLE_VAR_STR: case SLE_VAR_STRQ: str = *(const char * const *)ptr; len = SIZE_MAX; break; case SLE_VAR_STRB: str = (const char *)ptr; len = length; break; } len = SlCalcNetStringLen(str, len); return len + SlGetArrayLength(len); // also include the length of the index } /** * Calculate the gross length of the string that it * will occupy in the savegame. This includes the real length, returned * by SlCalcNetStringLen and the length that the index will occupy. * @param ptr Pointer to the \c std::string. * @return The gross length of the string. */ static inline size_t SlCalcStdStringLen(const void *ptr) { const std::string *str = reinterpret_cast(ptr); size_t len = str->length(); return len + SlGetArrayLength(len); // also include the length of the index } /** * Save/Load a string. * @param ptr the string being manipulated * @param length of the string (full length) * @param conv must be SLE_FILE_STRING */ static void SlString(void *ptr, size_t length, VarType conv) { switch (_sl.action) { case SLA_SAVE: { size_t len; switch (GetVarMemType(conv)) { default: NOT_REACHED(); case SLE_VAR_STRB: len = SlCalcNetStringLen((char *)ptr, length); break; case SLE_VAR_STR: case SLE_VAR_STRQ: ptr = *(char **)ptr; len = SlCalcNetStringLen((char *)ptr, SIZE_MAX); break; } SlWriteArrayLength(len); SlCopyBytes(ptr, len); break; } case SLA_LOAD_CHECK: case SLA_LOAD: { size_t len = SlReadArrayLength(); switch (GetVarMemType(conv)) { default: NOT_REACHED(); case SLE_VAR_NULL: SlSkipBytes(len); return; case SLE_VAR_STRB: if (len >= length) { DEBUG(sl, 1, "String length in savegame is bigger than buffer, truncating"); SlCopyBytes(ptr, length); SlSkipBytes(len - length); len = length - 1; } else { SlCopyBytes(ptr, len); } break; case SLE_VAR_STR: case SLE_VAR_STRQ: // Malloc'd string, free previous incarnation, and allocate free(*(char **)ptr); if (len == 0) { *(char **)ptr = nullptr; return; } else { *(char **)ptr = MallocT(len + 1); // terminating '\0' ptr = *(char **)ptr; SlCopyBytes(ptr, len); } break; } ((char *)ptr)[len] = '\0'; // properly terminate the string StringValidationSettings settings = SVS_REPLACE_WITH_QUESTION_MARK; if ((conv & SLF_ALLOW_CONTROL) != 0) { settings = settings | SVS_ALLOW_CONTROL_CODE; if (IsSavegameVersionBefore(SLV_169)) { str_fix_scc_encoded((char *)ptr, (char *)ptr + len); } } if ((conv & SLF_ALLOW_NEWLINE) != 0) { settings = settings | SVS_ALLOW_NEWLINE; } StrMakeValidInPlace((char *)ptr, (char *)ptr + len, settings); break; } case SLA_PTRS: break; case SLA_NULL: break; default: NOT_REACHED(); } } /** * Save/Load a \c std::string. * @param ptr the string being manipulated * @param conv must be SLE_FILE_STRING */ static void SlStdString(void *ptr, VarType conv) { std::string *str = reinterpret_cast(ptr); switch (_sl.action) { case SLA_SAVE: { size_t len = str->length(); SlWriteArrayLength(len); SlCopyBytes(const_cast(static_cast(str->c_str())), len); break; } case SLA_LOAD_CHECK: case SLA_LOAD: { size_t len = SlReadArrayLength(); if (GetVarMemType(conv) == SLE_VAR_NULL) { SlSkipBytes(len); return; } str->resize(len); SlCopyBytes(str->data(), len); StringValidationSettings settings = SVS_REPLACE_WITH_QUESTION_MARK; if ((conv & SLF_ALLOW_CONTROL) != 0) { settings = settings | SVS_ALLOW_CONTROL_CODE; if (IsSavegameVersionBefore(SLV_169)) { char *buf = str->data(); str->resize(str_fix_scc_encoded(buf, buf + str->size()) - buf); } } if ((conv & SLF_ALLOW_NEWLINE) != 0) { settings = settings | SVS_ALLOW_NEWLINE; } StrMakeValidInPlace(*str, settings); } case SLA_PTRS: break; case SLA_NULL: break; default: NOT_REACHED(); } } /** * Internal function to save/Load a list of SL_VARs. * SlCopy() and SlArray() are very similar, with the exception of the header. * This function represents the common part. * @param object The object being manipulated. * @param length The length of the object in elements * @param conv VarType type of the items. */ static void SlCopyInternal(void *object, size_t length, VarType conv) { if (GetVarMemType(conv) == SLE_VAR_NULL) { assert(_sl.action != SLA_SAVE); // Use SL_NULL if you want to write null-bytes SlSkipBytes(length * SlCalcConvFileLen(conv)); return; } /* NOTICE - handle some buggy stuff, in really old versions everything was saved * as a byte-type. So detect this, and adjust object size accordingly */ if (_sl.action != SLA_SAVE && _sl_version == 0) { /* all objects except difficulty settings */ if (conv == SLE_INT16 || conv == SLE_UINT16 || conv == SLE_STRINGID || conv == SLE_INT32 || conv == SLE_UINT32) { SlCopyBytes(object, length * SlCalcConvFileLen(conv)); return; } /* used for conversion of Money 32bit->64bit */ if (conv == (SLE_FILE_I32 | SLE_VAR_I64)) { for (uint i = 0; i < length; i++) { ((int64_t*)object)[i] = (int32_t)BSWAP32(SlReadUint32()); } return; } } /* If the size of elements is 1 byte both in file and memory, no special * conversion is needed, use specialized copy-copy function to speed up things */ if (conv == SLE_INT8 || conv == SLE_UINT8) { SlCopyBytes(object, length); } else { byte *a = (byte*)object; byte mem_size = SlCalcConvMemLen(conv); for (; length != 0; length --) { SlSaveLoadConv(a, conv); a += mem_size; // get size } } } /** * Copy a list of SL_VARs to/from a savegame. * These entries are copied as-is, and you as caller have to make sure things * like length-fields are calculated correctly. * @param object The object being manipulated. * @param length The length of the object in elements * @param conv VarType type of the items. */ void SlCopy(void *object, size_t length, VarType conv) { if (_sl.action == SLA_PTRS || _sl.action == SLA_NULL) return; /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(length * SlCalcConvFileLen(conv)); /* Determine length only? */ if (_sl.need_length == NL_CALCLENGTH) return; } SlCopyInternal(object, length, conv); } /** * Return the size in bytes of a certain type of atomic array * @param length The length of the array counted in elements * @param conv VarType type of the variable that is used in calculating the size */ static inline size_t SlCalcArrayLen(size_t length, VarType conv) { return SlCalcConvFileLen(conv) * length + SlGetArrayLength(length); } /** * Save/Load the length of the array followed by the array of SL_VAR elements. * @param array The array being manipulated * @param length The length of the array in elements * @param conv VarType type of the atomic array (int, byte, uint64_t, etc.) */ static void SlArray(void *array, size_t length, VarType conv) { switch (_sl.action) { case SLA_SAVE: SlWriteArrayLength(length); SlCopyInternal(array, length, conv); return; case SLA_LOAD_CHECK: case SLA_LOAD: { if (!IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH)) { size_t sv_length = SlReadArrayLength(); if (GetVarMemType(conv) == SLE_VAR_NULL) { /* We don't know this field, so we assume the length in the savegame is correct. */ length = sv_length; } else if (sv_length != length) { /* If the SLE_ARR changes size, a savegame bump is required * and the developer should have written conversion lines. * Error out to make this more visible. */ SlErrorCorrupt("Fixed-length array is of wrong length"); } } SlCopyInternal(array, length, conv); return; } case SLA_PTRS: case SLA_NULL: return; default: NOT_REACHED(); } } /** * Pointers cannot be saved to a savegame, so this functions gets * the index of the item, and if not available, it hussles with * pointers (looks really bad :() * Remember that a nullptr item has value 0, and all * indices have +1, so vehicle 0 is saved as index 1. * @param obj The object that we want to get the index of * @param rt SLRefType type of the object the index is being sought of * @return Return the pointer converted to an index of the type pointed to */ static size_t ReferenceToInt(const void *obj, SLRefType rt) { assert(_sl.action == SLA_SAVE); if (obj == nullptr) return 0; switch (rt) { case REF_VEHICLE_OLD: // Old vehicles we save as new ones case REF_VEHICLE: return ((const Vehicle*)obj)->index + 1; case REF_STATION: return ((const Station*)obj)->index + 1; case REF_TOWN: return ((const Town*)obj)->index + 1; case REF_ORDER: return ((const Order*)obj)->index + 1; case REF_ROADSTOPS: return ((const RoadStop*)obj)->index + 1; case REF_ENGINE_RENEWS: return ((const EngineRenew*)obj)->index + 1; case REF_CARGO_PACKET: return ((const CargoPacket*)obj)->index + 1; case REF_ORDERLIST: return ((const OrderList*)obj)->index + 1; case REF_STORAGE: return ((const PersistentStorage*)obj)->index + 1; case REF_LINK_GRAPH: return ((const LinkGraph*)obj)->index + 1; case REF_LINK_GRAPH_JOB: return ((const LinkGraphJob*)obj)->index + 1; default: NOT_REACHED(); } } /** * Pointers cannot be loaded from a savegame, so this function * gets the index from the savegame and returns the appropriate * pointer from the already loaded base. * Remember that an index of 0 is a nullptr pointer so all indices * are +1 so vehicle 0 is saved as 1. * @param index The index that is being converted to a pointer * @param rt SLRefType type of the object the pointer is sought of * @return Return the index converted to a pointer of any type */ static void *IntToReference(size_t index, SLRefType rt) { static_assert(sizeof(size_t) <= sizeof(void *)); assert(_sl.action == SLA_PTRS); /* After version 4.3 REF_VEHICLE_OLD is saved as REF_VEHICLE, * and should be loaded like that */ if (rt == REF_VEHICLE_OLD && !IsSavegameVersionBefore(SLV_4, 4)) { rt = REF_VEHICLE; } /* No need to look up nullptr pointers, just return immediately */ if (index == (rt == REF_VEHICLE_OLD ? 0xFFFF : 0)) return nullptr; /* Correct index. Old vehicles were saved differently: * invalid vehicle was 0xFFFF, now we use 0x0000 for everything invalid. */ if (rt != REF_VEHICLE_OLD) index--; switch (rt) { case REF_ORDERLIST: if (OrderList::IsValidID(index)) return OrderList::Get(index); SlErrorCorrupt("Referencing invalid OrderList"); case REF_ORDER: if (Order::IsValidID(index)) return Order::Get(index); /* in old versions, invalid order was used to mark end of order list */ if (IsSavegameVersionBefore(SLV_5, 2)) return nullptr; SlErrorCorrupt("Referencing invalid Order"); case REF_VEHICLE_OLD: case REF_VEHICLE: if (Vehicle::IsValidID(index)) return Vehicle::Get(index); SlErrorCorrupt("Referencing invalid Vehicle"); case REF_STATION: if (Station::IsValidID(index)) return Station::Get(index); SlErrorCorrupt("Referencing invalid Station"); case REF_TOWN: if (Town::IsValidID(index)) return Town::Get(index); SlErrorCorrupt("Referencing invalid Town"); case REF_ROADSTOPS: if (RoadStop::IsValidID(index)) return RoadStop::Get(index); SlErrorCorrupt("Referencing invalid RoadStop"); case REF_ENGINE_RENEWS: if (EngineRenew::IsValidID(index)) return EngineRenew::Get(index); SlErrorCorrupt("Referencing invalid EngineRenew"); case REF_CARGO_PACKET: if (CargoPacket::IsValidID(index)) return CargoPacket::Get(index); SlErrorCorrupt("Referencing invalid CargoPacket"); case REF_STORAGE: if (PersistentStorage::IsValidID(index)) return PersistentStorage::Get(index); SlErrorCorrupt("Referencing invalid PersistentStorage"); case REF_LINK_GRAPH: if (LinkGraph::IsValidID(index)) return LinkGraph::Get(index); SlErrorCorrupt("Referencing invalid LinkGraph"); case REF_LINK_GRAPH_JOB: if (LinkGraphJob::IsValidID(index)) return LinkGraphJob::Get(index); SlErrorCorrupt("Referencing invalid LinkGraphJob"); default: NOT_REACHED(); } } /** * Handle conversion for references. * @param ptr The object being filled/read. * @param conv VarType type of the current element of the struct. */ void SlSaveLoadRef(void *ptr, VarType conv) { switch (_sl.action) { case SLA_SAVE: SlWriteUint32((uint32_t)ReferenceToInt(*(void **)ptr, (SLRefType)conv)); break; case SLA_LOAD_CHECK: case SLA_LOAD: *(size_t *)ptr = IsSavegameVersionBefore(SLV_69) ? SlReadUint16() : SlReadUint32(); break; case SLA_PTRS: *(void **)ptr = IntToReference(*(size_t *)ptr, (SLRefType)conv); break; case SLA_NULL: *(void **)ptr = nullptr; break; default: NOT_REACHED(); } } template using ring_buffer_sl = ring_buffer; /** * Template class to help with list-like types. */ template typename Tstorage, typename Tvar, typename Tallocator = std::allocator> class SlStorageHelper { typedef Tstorage SlStorageT; public: /** * Internal templated helper to return the size in bytes of a list-like type. * @param storage The storage to find the size of * @param conv VarType type of variable that is used for calculating the size * @param cmd The SaveLoadType ware are saving/loading. */ static size_t SlCalcLen(const void *storage, VarType conv, SaveLoadType cmd = SL_VAR) { assert(cmd == SL_VAR || cmd == SL_REF); const SlStorageT *list = static_cast(storage); int type_size = SlGetArrayLength(list->size()); int item_size = SlCalcConvFileLen(cmd == SL_VAR ? conv : (VarType)SLE_FILE_U32); return list->size() * item_size + type_size; } static void SlSaveLoadMember(SaveLoadType cmd, Tvar *item, VarType conv) { switch (cmd) { case SL_VAR: SlSaveLoadConv(item, conv); break; case SL_REF: SlSaveLoadRef(item, conv); break; default: NOT_REACHED(); } } /** * Internal templated helper to save/load a list-like type. * @param storage The storage being manipulated. * @param conv VarType type of variable that is used for calculating the size. * @param cmd The SaveLoadType ware are saving/loading. */ static void SlSaveLoad(void *storage, VarType conv, SaveLoadType cmd = SL_VAR) { assert(cmd == SL_VAR || cmd == SL_REF); SlStorageT *list = static_cast(storage); switch (_sl.action) { case SLA_SAVE: SlWriteArrayLength(list->size()); for (auto &item : *list) { SlSaveLoadMember(cmd, &item, conv); } break; case SLA_LOAD_CHECK: case SLA_LOAD: { size_t length; switch (cmd) { case SL_VAR: length = IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH) ? SlReadUint32() : SlReadArrayLength(); break; case SL_REF: length = IsSavegameVersionBefore(SLV_69) ? SlReadUint16() : IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH) ? SlReadUint32() : SlReadArrayLength(); break; default: NOT_REACHED(); } /* Load each value and push to the end of the storage. */ for (size_t i = 0; i < length; i++) { Tvar &data = list->emplace_back(); SlSaveLoadMember(cmd, &data, conv); } break; } case SLA_PTRS: for (auto &item : *list) { SlSaveLoadMember(cmd, &item, conv); } break; case SLA_NULL: list->clear(); break; default: NOT_REACHED(); } } }; /** * Return the size in bytes of a list. * @param list The std::list to find the size of. * @param conv VarType type of variable that is used for calculating the size. */ static inline size_t SlCalcRefListLen(const void *list, VarType conv) { return SlStorageHelper::SlCalcLen(list, conv, SL_REF); } /** * Return the size in bytes of a ring buffer. * @param list The ring buffer to find the size of. * @param conv VarType type of variable that is used for calculating the size. */ static inline size_t SlCalcRefRingLen(const void *list, VarType conv) { return SlStorageHelper::SlCalcLen(list, conv, SL_REF); } /** * Return the size in bytes of a vector. * @param list The std::vector to find the size of. * @param conv VarType type of variable that is used for calculating the size. */ static inline size_t SlCalcRefVectorLen(const void *list, VarType conv) { return SlStorageHelper::SlCalcLen(list, conv, SL_REF); } /** * Save/Load a list. * @param list The list being manipulated. * @param conv VarType type of variable that is used for calculating the size. */ static void SlRefList(void *list, VarType conv) { /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcRefListLen(list, conv)); /* Determine length only? */ if (_sl.need_length == NL_CALCLENGTH) return; } SlStorageHelper::SlSaveLoad(list, conv, SL_REF); } /** * Save/Load a ring buffer. * @param list The list being manipulated. * @param conv VarType type of variable that is used for calculating the size. */ static void SlRefRing(void *list, VarType conv) { /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcRefRingLen(list, conv)); /* Determine length only? */ if (_sl.need_length == NL_CALCLENGTH) return; } SlStorageHelper::SlSaveLoad(list, conv, SL_REF); } /** * Save/Load a vector. * @param list The list being manipulated. * @param conv VarType type of variable that is used for calculating the size. */ static void SlRefVector(void *list, VarType conv) { /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcRefVectorLen(list, conv)); /* Determine length only? */ if (_sl.need_length == NL_CALCLENGTH) return; } SlStorageHelper::SlSaveLoad(list, conv, SL_REF); } /** * Return the size in bytes of a ring buffer. * @param ring The ring buffer to find the size of * @param conv VarType type of variable that is used for calculating the size */ static inline size_t SlCalcRingLen(const void *ring, VarType conv) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: return SlStorageHelper::SlCalcLen(ring, conv); case SLE_VAR_I8: return SlStorageHelper::SlCalcLen(ring, conv); case SLE_VAR_U8: return SlStorageHelper::SlCalcLen(ring, conv); case SLE_VAR_I16: return SlStorageHelper::SlCalcLen(ring, conv); case SLE_VAR_U16: return SlStorageHelper::SlCalcLen(ring, conv); case SLE_VAR_I32: return SlStorageHelper::SlCalcLen(ring, conv); case SLE_VAR_U32: return SlStorageHelper::SlCalcLen(ring, conv); case SLE_VAR_I64: return SlStorageHelper::SlCalcLen(ring, conv); case SLE_VAR_U64: return SlStorageHelper::SlCalcLen(ring, conv); default: NOT_REACHED(); } } /** * Save/load a ring buffer. * @param ring The ring buffer being manipulated * @param conv VarType type of variable that is used for calculating the size */ static void SlRing(void *ring, VarType conv) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: SlStorageHelper::SlSaveLoad(ring, conv); break; case SLE_VAR_I8: SlStorageHelper::SlSaveLoad(ring, conv); break; case SLE_VAR_U8: SlStorageHelper::SlSaveLoad(ring, conv); break; case SLE_VAR_I16: SlStorageHelper::SlSaveLoad(ring, conv); break; case SLE_VAR_U16: SlStorageHelper::SlSaveLoad(ring, conv); break; case SLE_VAR_I32: SlStorageHelper::SlSaveLoad(ring, conv); break; case SLE_VAR_U32: SlStorageHelper::SlSaveLoad(ring, conv); break; case SLE_VAR_I64: SlStorageHelper::SlSaveLoad(ring, conv); break; case SLE_VAR_U64: SlStorageHelper::SlSaveLoad(ring, conv); break; default: NOT_REACHED(); } } /** * Return the size in bytes of a std::vector. * @param vector The std::vector to find the size of * @param conv VarType type of variable that is used for calculating the size */ static inline size_t SlCalcVectorLen(const void *vector, VarType conv) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: NOT_REACHED(); // Not supported case SLE_VAR_I8: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_U8: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_I16: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_U16: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_I32: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_U32: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_I64: return SlStorageHelper::SlCalcLen(vector, conv); case SLE_VAR_U64: return SlStorageHelper::SlCalcLen(vector, conv); default: NOT_REACHED(); } } /** * Save/load a std::vector. * @param vector The std::vector being manipulated * @param conv VarType type of variable that is used for calculating the size */ static void SlVector(void *vector, VarType conv) { switch (GetVarMemType(conv)) { case SLE_VAR_BL: NOT_REACHED(); // Not supported case SLE_VAR_I8: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_U8: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_I16: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_U16: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_I32: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_U32: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_I64: SlStorageHelper::SlSaveLoad(vector, conv); break; case SLE_VAR_U64: SlStorageHelper::SlSaveLoad(vector, conv); break; default: NOT_REACHED(); } } /** Are we going to save this object or not? */ static inline bool SlIsObjectValidInSavegame(const SaveLoad &sld) { return (_sl_version >= sld.version_from && _sl_version < sld.version_to); } /** * Calculate the size of the table header. * @param slt The SaveLoad table with objects to save/load. * @return size of given object. */ static size_t SlCalcTableHeader(const SaveLoadTable &slt) { size_t length = 0; for (auto &sld : slt) { if (!SlIsObjectValidInSavegame(sld)) continue; length += SlCalcConvFileLen(SLE_UINT8); length += SlCalcStdStringLen(&sld.name); } length += SlCalcConvFileLen(SLE_UINT8); // End-of-list entry. for (auto &sld : slt) { if (!SlIsObjectValidInSavegame(sld)) continue; if (sld.cmd == SL_STRUCTLIST || sld.cmd == SL_STRUCT) { length += SlCalcTableHeader(sld.handler->GetDescription()); } } return length; } /** * Calculate the size of an object. * @param object to be measured. * @param slt The SaveLoad table with objects to save/load. * @return size of given object. */ size_t SlCalcObjLength(const void *object, const SaveLoadTable &slt) { size_t length = 0; /* Need to determine the length and write a length tag. */ for (auto &sld : slt) { length += SlCalcObjMemberLength(object, sld); } return length; } size_t SlCalcObjMemberLength(const void *object, const SaveLoad &sld) { assert(_sl.action == SLA_SAVE); if (!SlIsObjectValidInSavegame(sld)) return 0; switch (sld.cmd) { case SL_VAR: return SlCalcConvFileLen(sld.conv); case SL_REF: return SlCalcRefLen(); case SL_ARR: return SlCalcArrayLen(sld.length, sld.conv); case SL_STR: return SlCalcStringLen(GetVariableAddress(object, sld), sld.length, sld.conv); case SL_REFLIST: return SlCalcRefListLen(GetVariableAddress(object, sld), sld.conv); case SL_REFRING: return SlCalcRefRingLen(GetVariableAddress(object, sld), sld.conv); case SL_REFVEC: return SlCalcRefVectorLen(GetVariableAddress(object, sld), sld.conv); case SL_RING: return SlCalcRingLen(GetVariableAddress(object, sld), sld.conv); case SL_VECTOR: return SlCalcVectorLen(GetVariableAddress(object, sld), sld.conv); case SL_STDSTR: return SlCalcStdStringLen(GetVariableAddress(object, sld)); case SL_SAVEBYTE: return 1; // a byte is logically of size 1 case SL_NULL: return SlCalcConvFileLen(sld.conv) * sld.length; case SL_STRUCT: case SL_STRUCTLIST: { NeedLength old_need_length = _sl.need_length; size_t old_obj_len = _sl.obj_len; _sl.need_length = NL_CALCLENGTH; _sl.obj_len = 0; /* Pretend that we are saving to collect the object size. Other * means are difficult, as we don't know the length of the list we * are about to store. */ sld.handler->Save(const_cast(object)); size_t length = _sl.obj_len; _sl.obj_len = old_obj_len; _sl.need_length = old_need_length; if (sld.cmd == SL_STRUCT) { length += SlGetArrayLength(1); } return length; } default: NOT_REACHED(); } return 0; } static bool SlObjectMember(void *object, const SaveLoad &sld) { if (!SlIsObjectValidInSavegame(sld)) return false; VarType conv = GB(sld.conv, 0, 8); switch (sld.cmd) { case SL_VAR: case SL_REF: case SL_ARR: case SL_STR: case SL_REFLIST: case SL_REFRING: case SL_REFVEC: case SL_RING: case SL_VECTOR: case SL_STDSTR: { void *ptr = GetVariableAddress(object, sld); switch (sld.cmd) { case SL_VAR: SlSaveLoadConv(ptr, conv); break; case SL_REF: SlSaveLoadRef(ptr, conv); break; case SL_ARR: SlArray(ptr, sld.length, conv); break; case SL_STR: SlString(ptr, sld.length, sld.conv); break; case SL_REFLIST: SlRefList(ptr, conv); break; case SL_REFRING: SlRefRing(ptr, conv); break; case SL_REFVEC: SlRefVector(ptr, conv); break; case SL_RING: SlRing(ptr, conv); break; case SL_VECTOR: SlVector(ptr, conv); break; case SL_STDSTR: SlStdString(ptr, sld.conv); break; default: NOT_REACHED(); } break; } /* SL_SAVEBYTE writes a value to the savegame to identify the type of an object. * When loading, the value is read explicitly with SlReadByte() to determine which * object description to use. */ case SL_SAVEBYTE: { void *ptr = GetVariableAddress(object, sld); switch (_sl.action) { case SLA_SAVE: SlWriteByte(*(uint8_t *)ptr); break; case SLA_LOAD_CHECK: case SLA_LOAD: case SLA_PTRS: case SLA_NULL: break; default: NOT_REACHED(); } break; } case SL_NULL: { assert(GetVarMemType(sld.conv) == SLE_VAR_NULL); switch (_sl.action) { case SLA_LOAD_CHECK: case SLA_LOAD: SlSkipBytes(SlCalcConvFileLen(sld.conv) * sld.length); break; case SLA_SAVE: for (int i = 0; i < SlCalcConvFileLen(sld.conv) * sld.length; i++) SlWriteByte(0); break; case SLA_PTRS: case SLA_NULL: break; default: NOT_REACHED(); } break; } case SL_STRUCT: case SL_STRUCTLIST: switch (_sl.action) { case SLA_SAVE: { if (sld.cmd == SL_STRUCT) { /* Store in the savegame if this struct was written or not. */ SlSetStructListLength(SlCalcObjMemberLength(object, sld) > SlGetArrayLength(1) ? 1 : 0); } sld.handler->Save(object); break; } case SLA_LOAD_CHECK: { if (sld.cmd == SL_STRUCT && !IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH)) { SlGetStructListLength(1); } sld.handler->LoadCheck(object); break; } case SLA_LOAD: { if (sld.cmd == SL_STRUCT && !IsSavegameVersionBefore(SLV_SAVELOAD_LIST_LENGTH)) { SlGetStructListLength(1); } sld.handler->Load(object); break; } case SLA_PTRS: sld.handler->FixPointers(object); break; case SLA_NULL: break; default: NOT_REACHED(); } break; default: NOT_REACHED(); } return true; } /** * Set the length of this list. * @param The length of the list. */ void SlSetStructListLength(size_t length) { /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlGetArrayLength(length)); if (_sl.need_length == NL_CALCLENGTH) return; } SlWriteArrayLength(length); } /** * Get the length of this list; if it exceeds the limit, error out. * @param limit The maximum size the list can be. * @return The length of the list. */ size_t SlGetStructListLength(size_t limit) { size_t length = SlReadArrayLength(); if (length > limit) SlErrorCorrupt("List exceeds storage size"); return length; } /** * Main SaveLoad function. * @param object The object that is being saved or loaded. * @param slt The SaveLoad table with objects to save/load. */ void SlObject(void *object, const SaveLoadTable &slt) { /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcObjLength(object, slt)); if (_sl.need_length == NL_CALCLENGTH) return; } for (auto &sld : slt) { SlObjectMember(object, sld); } } /** * Handler that is assigned when there is a struct read in the savegame which * is not known to the code. This means we are going to skip it. */ class SlSkipHandler : public SaveLoadHandler { void Save(void *) const override { NOT_REACHED(); } void Load(void *object) const override { size_t length = SlGetStructListLength(UINT32_MAX); for (; length > 0; length--) { SlObject(object, this->GetLoadDescription()); } } void LoadCheck(void *object) const override { this->Load(object); } virtual SaveLoadTable GetDescription() const override { return {}; } virtual SaveLoadCompatTable GetCompatDescription() const override { NOT_REACHED(); } }; /** * Save or Load a table header. * @note a table-header can never contain more than 65535 fields. * @param slt The SaveLoad table with objects to save/load. * @return When loading, the ordered SaveLoad array to use; otherwise an empty list. */ std::vector SlTableHeader(const SaveLoadTable &slt) { /* You can only use SlTableHeader if you are a CH_TABLE. */ assert(_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE); switch (_sl.action) { case SLA_LOAD_CHECK: case SLA_LOAD: { std::vector saveloads; /* Build a key lookup mapping based on the available fields. */ std::map key_lookup; for (auto &sld : slt) { if (!SlIsObjectValidInSavegame(sld)) continue; /* Check that there is only one active SaveLoad for a given name. */ assert(key_lookup.find(sld.name) == key_lookup.end()); key_lookup[sld.name] = &sld; } while (true) { uint8_t type = 0; SlSaveLoadConv(&type, SLE_UINT8); if (type == SLE_FILE_END) break; std::string key; SlStdString(&key, SLE_STR); auto sld_it = key_lookup.find(key); if (sld_it == key_lookup.end()) { /* SLA_LOADCHECK triggers this debug statement a lot and is perfectly normal. */ DEBUG(sl, _sl.action == SLA_LOAD ? 2 : 6, "Field '%s' of type 0x%02X not found, skipping", key.c_str(), type); std::shared_ptr handler = nullptr; SaveLoadType saveload_type; switch (type & SLE_FILE_TYPE_MASK) { case SLE_FILE_STRING: /* Strings are always marked with SLE_FILE_HAS_LENGTH_FIELD, as they are a list of chars. */ saveload_type = SL_STR; break; case SLE_FILE_STRUCT: /* Structs are always marked with SLE_FILE_HAS_LENGTH_FIELD as SL_STRUCT is seen as a list of 0/1 in length. */ saveload_type = SL_STRUCTLIST; handler = std::make_shared(); break; default: saveload_type = (type & SLE_FILE_HAS_LENGTH_FIELD) ? SL_ARR : SL_VAR; break; } /* We don't know this field, so read to nothing. */ saveloads.push_back({key, saveload_type, ((VarType)type & SLE_FILE_TYPE_MASK) | SLE_VAR_NULL, 1, SL_MIN_VERSION, SL_MAX_VERSION, 0, nullptr, 0, handler}); continue; } /* Validate the type of the field. If it is changed, the * savegame should have been bumped so we know how to do the * conversion. If this error triggers, that clearly didn't * happen and this is a friendly poke to the developer to bump * the savegame version and add conversion code. */ uint8_t correct_type = GetSavegameFileType(*sld_it->second); if (correct_type != type) { DEBUG(sl, 1, "Field type for '%s' was expected to be 0x%02X but 0x%02X was found", key.c_str(), correct_type, type); SlErrorCorrupt("Field type is different than expected"); } saveloads.push_back(*sld_it->second); } for (auto &sld : saveloads) { if (sld.cmd == SL_STRUCTLIST || sld.cmd == SL_STRUCT) { sld.handler->load_description = SlTableHeader(sld.handler->GetDescription()); } } return saveloads; } case SLA_SAVE: { /* Automatically calculate the length? */ if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcTableHeader(slt)); if (_sl.need_length == NL_CALCLENGTH) break; } for (auto &sld : slt) { if (!SlIsObjectValidInSavegame(sld)) continue; /* Make sure we are not storing empty keys. */ assert(!sld.name.empty()); uint8_t type = GetSavegameFileType(sld); assert(type != SLE_FILE_END); SlSaveLoadConv(&type, SLE_UINT8); SlStdString(const_cast(&sld.name), SLE_STR); } /* Add an end-of-header marker. */ uint8_t type = SLE_FILE_END; SlSaveLoadConv(&type, SLE_UINT8); /* After the table, write down any sub-tables we might have. */ for (auto &sld : slt) { if (!SlIsObjectValidInSavegame(sld)) continue; if (sld.cmd == SL_STRUCTLIST || sld.cmd == SL_STRUCT) { /* SlCalcTableHeader already looks in sub-lists, so avoid the length being added twice. */ NeedLength old_need_length = _sl.need_length; _sl.need_length = NL_NONE; SlTableHeader(sld.handler->GetDescription()); _sl.need_length = old_need_length; } } break; } default: NOT_REACHED(); } return std::vector(); } /** * Load a table header in a savegame compatible way. If the savegame was made * before table headers were added, it will fall back to the * SaveLoadCompatTable for the order of fields while loading. * * @note You only have to call this function if the chunk existed as a * non-table type before converting it to a table. New chunks created as * table can call SlTableHeader() directly. * * @param slt The SaveLoad table with objects to save/load. * @param slct The SaveLoadCompat table the original order of the fields. * @return When loading, the ordered SaveLoad array to use; otherwise an empty list. */ std::vector SlCompatTableHeader(const SaveLoadTable &slt, const SaveLoadCompatTable &slct) { assert(_sl.action == SLA_LOAD || _sl.action == SLA_LOAD_CHECK); /* CH_TABLE / CH_SPARSE_TABLE always have a header. */ if (_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE) return SlTableHeader(slt); std::vector saveloads; /* Build a key lookup mapping based on the available fields. */ std::map> key_lookup; for (auto &sld : slt) { /* All entries should have a name; otherwise the entry should just be removed. */ assert(!sld.name.empty()); key_lookup[sld.name].push_back(&sld); } for (auto &slc : slct) { if (slc.name.empty()) { /* In old savegames there can be data we no longer care for. We * skip this by simply reading the amount of bytes indicated and * send those to /dev/null. */ saveloads.push_back({"", SL_NULL, SLE_FILE_U8 | SLE_VAR_NULL, slc.length, slc.version_from, slc.version_to, 0, nullptr, 0, nullptr}); } else { auto sld_it = key_lookup.find(slc.name); /* If this branch triggers, it means that an entry in the * SaveLoadCompat list is not mentioned in the SaveLoad list. Did * you rename a field in one and not in the other? */ if (sld_it == key_lookup.end()) { /* This isn't an assert, as that leaves no information what * field was to blame. This way at least we have breadcrumbs. */ DEBUG(sl, 0, "internal error: saveload compatibility field '%s' not found", slc.name.c_str()); SlErrorCorrupt("Internal error with savegame compatibility"); } for (auto &sld : sld_it->second) { saveloads.push_back(*sld); } } } for (auto &sld : saveloads) { if (!SlIsObjectValidInSavegame(sld)) continue; if (sld.cmd == SL_STRUCTLIST || sld.cmd == SL_STRUCT) { sld.handler->load_description = SlCompatTableHeader(sld.handler->GetDescription(), sld.handler->GetCompatDescription()); } } return saveloads; } /** * Save or Load (a list of) global variables. * @param slt The SaveLoad table with objects to save/load. */ void SlGlobList(const SaveLoadTable &slt) { SlObject(nullptr, slt); } /** * Do something of which I have no idea what it is :P * @param proc The callback procedure that is called * @param arg The variable that will be used for the callback procedure */ void SlAutolength(AutolengthProc *proc, void *arg) { assert(_sl.action == SLA_SAVE); assert(_sl.need_length == NL_WANTLENGTH); _sl.need_length = NL_NONE; uint8_t state = SlSaveToTempBufferSetup(); proc(arg); std::span result = SlSaveToTempBufferRestore(state); _sl.need_length = NL_WANTLENGTH; SlSetLength(result.size()); SlCopyBytesWrite(result.data(), result.size()); } void ChunkHandler::LoadCheck(size_t len) const { switch (_sl.block_mode) { case CH_TABLE: case CH_SPARSE_TABLE: SlTableHeader({}); [[fallthrough]]; case CH_ARRAY: case CH_SPARSE_ARRAY: SlSkipArray(); break; case CH_RIFF: SlSkipBytes(len); break; default: NOT_REACHED(); } } /** * Load a chunk of data (eg vehicles, stations, etc.) * @param ch The chunkhandler that will be used for the operation */ static void SlLoadChunk(const ChunkHandler &ch) { byte m = SlReadByte(); size_t len; size_t endoffs; _sl.block_mode = m & CH_TYPE_MASK; _sl.obj_len = 0; _sl.expect_table_header = (_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE); /* The header should always be at the start. Read the length; the * Load() should as first action process the header. */ if (_sl.expect_table_header) { SlIterateArray(); } switch (_sl.block_mode) { case CH_TABLE: case CH_ARRAY: _sl.array_index = 0; ch.Load(); if (_next_offs != 0) SlErrorCorrupt("Invalid array length"); break; case CH_SPARSE_TABLE: case CH_SPARSE_ARRAY: ch.Load(); if (_next_offs != 0) SlErrorCorrupt("Invalid array length"); break; case CH_RIFF: /* Read length */ len = (SlReadByte() << 16) | ((m >> 4) << 24); len += SlReadUint16(); _sl.obj_len = len; endoffs = SlGetBytesRead() + len; ch.Load(); if (SlGetBytesRead() != endoffs) SlErrorCorrupt("Invalid chunk size"); break; default: SlErrorCorrupt("Invalid chunk type"); break; } if (_sl.expect_table_header) SlErrorCorrupt("Table chunk without header"); } /** * Load a chunk of data for checking savegames. * If the chunkhandler is nullptr, the chunk is skipped. * @param ch The chunkhandler that will be used for the operation */ static void SlLoadCheckChunk(const ChunkHandler &ch) { byte m = SlReadByte(); size_t len; size_t endoffs; _sl.block_mode = m & CH_TYPE_MASK; _sl.obj_len = 0; _sl.expect_table_header = (_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE); /* The header should always be at the start. Read the length; the * LoadCheck() should as first action process the header. */ if (_sl.expect_table_header) { SlIterateArray(); } switch (_sl.block_mode) { case CH_TABLE: case CH_ARRAY: _sl.array_index = 0; ch.LoadCheck(); break; case CH_SPARSE_TABLE: case CH_SPARSE_ARRAY: ch.LoadCheck(); break; case CH_RIFF: /* Read length */ len = (SlReadByte() << 16) | ((m >> 4) << 24); len += SlReadUint16(); _sl.obj_len = len; endoffs = SlGetBytesRead() + len; ch.LoadCheck(len); if (SlGetBytesRead() != endoffs) SlErrorCorrupt("Invalid chunk size"); break; default: SlErrorCorrupt("Invalid chunk type"); break; } if (_sl.expect_table_header) SlErrorCorrupt("Table chunk without header"); } /** * Find the ChunkHandler that will be used for processing the found * chunk in the savegame or in memory * @param id the chunk in question * @return returns the appropriate chunkhandler */ static const ChunkHandler *SlFindChunkHandler(uint32_t id) { for (const ChunkHandler &ch : ChunkHandlers()) if (ch.id == id) return &ch; return nullptr; } /** Load all chunks */ void SlLoadChunks() { _sl.action = SLA_LOAD; uint32_t id; const ChunkHandler *ch; for (id = SlReadUint32(); id != 0; id = SlReadUint32()) { DEBUG(sl, 2, "Loading chunk %c%c%c%c", id >> 24, id >> 16, id >> 8, id); ch = SlFindChunkHandler(id); if (ch == nullptr) SlErrorCorrupt("Unknown chunk type"); SlLoadChunk(*ch); } } /** Load a chunk */ void SlLoadChunkByID(uint32_t id) { _sl.action = SLA_LOAD; DEBUG(sl, 2, "Loading chunk %c%c%c%c", id >> 24, id >> 16, id >> 8, id); const ChunkHandler *ch = SlFindChunkHandler(id); if (ch == nullptr) SlErrorCorrupt("Unknown chunk type"); SlLoadChunk(*ch); } /** Load all chunks for savegame checking */ void SlLoadCheckChunks() { _sl.action = SLA_LOAD_CHECK; uint32_t id; const ChunkHandler *ch; for (id = SlReadUint32(); id != 0; id = SlReadUint32()) { DEBUG(sl, 2, "Loading chunk %c%c%c%c", id >> 24, id >> 16, id >> 8, id); ch = SlFindChunkHandler(id); if (ch == nullptr) SlErrorCorrupt("Unknown chunk type"); SlLoadCheckChunk(*ch); } } /** Load a chunk for savegame checking */ void SlLoadCheckChunkByID(uint32_t id) { _sl.action = SLA_LOAD_CHECK; DEBUG(sl, 2, "Loading chunk %c%c%c%c", id >> 24, id >> 16, id >> 8, id); const ChunkHandler *ch = SlFindChunkHandler(id); if (ch == nullptr) SlErrorCorrupt("Unknown chunk type"); SlLoadCheckChunk(*ch); } /** Fix all pointers (convert index -> pointer) */ void SlFixPointers() { _sl.action = SLA_PTRS; for (const ChunkHandler &ch : ChunkHandlers()) { DEBUG(sl, 3, "Fixing pointers for %c%c%c%c", ch.id >> 24, ch.id >> 16, ch.id >> 8, ch.id); ch.FixPointers(); } assert(_sl.action == SLA_PTRS); } void SlFixPointerChunkByID(uint32_t id) { const ChunkHandler *ch = SlFindChunkHandler(id); if (ch == nullptr) SlErrorCorrupt("Unknown chunk type"); DEBUG(sl, 3, "Fixing pointers for %c%c%c%c", ch->id >> 24, ch->id >> 16, ch->id >> 8, ch->id); ch->FixPointers(); } /** * Save a chunk of data (eg. vehicles, stations, etc.). Each chunk is * prefixed by an ID identifying it, followed by data, and terminator where appropriate * @param ch The chunkhandler that will be used for the operation */ static void SlSaveChunk(const ChunkHandler &ch) { if (ch.type == CH_READONLY) return; SlWriteUint32(ch.id); DEBUG(sl, 2, "Saving chunk %c%c%c%c", ch.id >> 24, ch.id >> 16, ch.id >> 8, ch.id); _sl.block_mode = ch.type; _sl.expect_table_header = (_sl.block_mode == CH_TABLE || _sl.block_mode == CH_SPARSE_TABLE); _sl.need_length = (_sl.expect_table_header || _sl.block_mode == CH_RIFF) ? NL_WANTLENGTH : NL_NONE; switch (_sl.block_mode) { case CH_RIFF: ch.Save(); break; case CH_TABLE: case CH_ARRAY: _sl.last_array_index = 0; SlWriteByte(_sl.block_mode); ch.Save(); SlWriteArrayLength(0); // Terminate arrays break; case CH_SPARSE_TABLE: case CH_SPARSE_ARRAY: SlWriteByte(_sl.block_mode); ch.Save(); SlWriteArrayLength(0); // Terminate arrays break; default: NOT_REACHED(); } if (_sl.expect_table_header) SlErrorCorrupt("Table chunk without header"); } /** Save a chunk of data */ void SlSaveChunkChunkByID(uint32_t id) { const ChunkHandler *ch = SlFindChunkHandler(id); if (ch == nullptr) SlErrorCorrupt("Unknown chunk type"); _sl.action = SLA_SAVE; SlSaveChunk(*ch); } /** Reset state prior to a load */ void SlResetLoadState() { _next_offs = 0; } SaveLoadTable SaveLoadHandler::GetLoadDescription() const { assert(this->load_description.has_value()); return *this->load_description; } }