/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file math_func.cpp Math functions. */ #include "../stdafx.h" #include "math_func.hpp" #include "bitmath_func.hpp" #include "../safeguards.h" /** * Compute least common multiple (lcm) of arguments \a a and \a b, the smallest * integer value that is a multiple of both \a a and \a b. * @param a First number. * @param b second number. * @return Least common multiple of values \a a and \a b. * * @note This function only works for non-negative values of \a a and \a b. */ int LeastCommonMultiple(int a, int b) { if (a == 0 || b == 0) return 0; // By definition. if (a == 1 || a == b) return b; if (b == 1) return a; return a * b / GreatestCommonDivisor(a, b); } /** * Compute greatest common divisor (gcd) of \a a and \a b. * @param a First number. * @param b second number. * @return Greatest common divisor of \a a and \a b. */ int GreatestCommonDivisor(int a, int b) { while (b != 0) { int t = b; b = a % b; a = t; } return a; } /** * Deterministic approximate division. * Cancels out division errors stemming from the integer nature of the division over multiple runs. * @param a Dividend. * @param b Divisor. * @return a/b or (a/b)+1. */ int DivideApprox(int a, int b) { int random_like = (((int64) (a + b)) * ((int64) (a - b))) % b; int remainder = a % b; int ret = a / b; if (abs(random_like) < abs(remainder)) { ret += ((a < 0) ^ (b < 0)) ? -1 : 1; } return ret; } /** * Compute the integer square root. * @param num Radicand. * @return Rounded integer square root. * @note Algorithm taken from http://en.wikipedia.org/wiki/Methods_of_computing_square_roots */ uint32 IntSqrt(uint32 num) { uint32 res = 0; uint32 bit = 1UL << 30; // Second to top bit number. /* 'bit' starts at the highest power of four <= the argument. */ while (bit > num) bit >>= 2; while (bit != 0) { if (num >= res + bit) { num -= res + bit; res = (res >> 1) + bit; } else { res >>= 1; } bit >>= 2; } /* Arithmetic rounding to nearest integer. */ if (num > res) res++; return res; } /** * Compute the integer square root. * @param num Radicand. * @return Rounded integer square root. * @note Algorithm taken from http://en.wikipedia.org/wiki/Methods_of_computing_square_roots */ uint32 IntSqrt64(uint64 num) { uint64 res = 0; uint64 bit = 1ULL << 62; // Second to top bit number. /* 'bit' starts at the highest power of four <= the argument. */ while (bit > num) bit >>= 2; while (bit != 0) { if (num >= res + bit) { num -= res + bit; res = (res >> 1) + bit; } else { res >>= 1; } bit >>= 2; } /* Arithmetic rounding to nearest integer. */ if (num > res) res++; return (uint32)res; } /** * Compute the integer cube root. * @param num Radicand. * @return Rounded integer square root. * @note Algorithm taken from https://stackoverflow.com/a/56738014 */ uint32 IntCbrt(uint64 num) { uint64 r0 = 1; uint64 r1 = 0; if (num == 0) return 0; #ifdef WITH_BITMATH_BUILTINS int b = 64 - __builtin_clzll(num); #ifdef _DEBUG assert(b == FindLastBit(num) + 1); #endif #else int b = FindLastBit(num) + 1; #endif r0 <<= (b + 2) / 3; /* ceil(b / 3) */ do /* quadratic convergence: */ { r1 = r0; r0 = (2 * r1 + num / (r1 * r1)) / 3; } while (r0 < r1); return ((uint32) r1); /* floor(cbrt(x)); */ } /** * Compress unsigned integer into 16 bits, in a way that increases dynamic range, at the expense of precision for large values */ uint16 RXCompressUint(uint32 num) { if (num <= 0x100) return num; if (num <= 0x7900) return 0x100 + ((num - 0x100) >> 3); return std::min(UINT16_MAX, 0x1000 + ((num - 0x7900) >> 6)); } /** * Inverse of RXCompressUint */ uint32 RXDecompressUint(uint16 num) { if (num > 0x1000) return ((num - 0x1000) << 6) + 0x7900; if (num > 0x100) return ((num - 0x100) << 3) + 0x100; return num; }