/* $Id$ */ /* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file 32bpp_sse4_anim.cpp Implementation of the SSE4 32 bpp blitter with animation support. */ #ifdef WITH_SSE #include "../stdafx.h" #include "../video/video_driver.hpp" #include "../table/sprites.h" #include "32bpp_anim_sse4.hpp" /** Instantiation of the SSE4 32bpp blitter factory. */ static FBlitter_32bppSSE4_Anim iFBlitter_32bppSSE4_Anim; /** * Draws a sprite to a (screen) buffer. It is templated to allow faster operation. * * @tparam mode blitter mode * @param bp further blitting parameters * @param zoom zoom level at which we are drawing */ IGNORE_UNINITIALIZED_WARNING_START template inline void Blitter_32bppSSE4_Anim::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom) { const byte * const remap = bp->remap; Colour *dst_line = (Colour *) bp->dst + bp->top * bp->pitch + bp->left; uint16 *anim_line = this->anim_buf + ((uint32 *)bp->dst - (uint32 *)_screen.dst_ptr) + bp->top * this->anim_buf_width + bp->left; int effective_width = bp->width; /* Find where to start reading in the source sprite. */ const Blitter_32bppSSE_Base::SpriteData * const sd = (const Blitter_32bppSSE_Base::SpriteData *) bp->sprite; const SpriteInfo * const si = &sd->infos[zoom]; const MapValue *src_mv_line = (const MapValue *) &sd->data[si->mv_offset] + bp->skip_top * si->sprite_width; const Colour *src_rgba_line = (const Colour *) ((const byte *) &sd->data[si->sprite_offset] + bp->skip_top * si->sprite_line_size); if (read_mode != RM_WITH_MARGIN) { src_rgba_line += bp->skip_left; src_mv_line += bp->skip_left; } const MapValue *src_mv = src_mv_line; /* Load these variables into register before loop. */ const __m128i a_cm = ALPHA_CONTROL_MASK; const __m128i pack_low_cm = PACK_LOW_CONTROL_MASK; const __m128i briAB_cm = BRIGHTNESS_LOW_CONTROL_MASK; const __m128i div_cleaner = BRIGHTNESS_DIV_CLEANER; const __m128i ob_check = OVERBRIGHT_PRESENCE_MASK; const __m128i ob_mask = OVERBRIGHT_VALUE_MASK; const __m128i ob_cm = OVERBRIGHT_CONTROL_MASK; const __m128i tr_nom_base = TRANSPARENT_NOM_BASE; for (int y = bp->height; y != 0; y--) { Colour *dst = dst_line; const Colour *src = src_rgba_line + META_LENGTH; if (mode != BM_TRANSPARENT) src_mv = src_mv_line; uint16 *anim = anim_line; if (read_mode == RM_WITH_MARGIN) { anim += src_rgba_line[0].data; src += src_rgba_line[0].data; dst += src_rgba_line[0].data; if (mode != BM_TRANSPARENT) src_mv += src_rgba_line[0].data; const int width_diff = si->sprite_width - bp->width; effective_width = bp->width - (int) src_rgba_line[0].data; const int delta_diff = (int) src_rgba_line[1].data - width_diff; const int new_width = effective_width - delta_diff; effective_width = delta_diff > 0 ? new_width : effective_width; if (effective_width <= 0) goto next_line; } switch (mode) { default: for (uint x = (uint) effective_width/2; x != 0; x--) { uint32 mvX2 = *((uint32 *) const_cast(src_mv)); __m128i srcABCD = _mm_loadl_epi64((const __m128i*) src); __m128i dstABCD = _mm_loadl_epi64((__m128i*) dst); /* Remap colours. */ const byte m0 = mvX2; if (m0 >= PALETTE_ANIM_START) { const Colour c0 = (this->LookupColourInPalette(m0).data & 0x00FFFFFF) | (src[0].data & 0xFF000000); INSR32(AdjustBrightness(c0, (byte) (mvX2 >> 8)).data, srcABCD, 0); } const byte m1 = mvX2 >> 16; if (m1 >= PALETTE_ANIM_START) { const Colour c1 = (this->LookupColourInPalette(m1).data & 0x00FFFFFF) | (src[1].data & 0xFF000000); INSR32(AdjustBrightness(c1, (byte) (mvX2 >> 24)).data, srcABCD, 1); } /* Update anim buffer. */ const byte a0 = src[0].a; const byte a1 = src[1].a; uint32 anim01 = 0; if (a0 == 255) { if (a1 == 255) { *(uint32*) anim = mvX2; goto bmno_full_opacity; } anim01 = (uint16) mvX2; } else if (a0 == 0) { if (a1 == 0) { goto bmno_full_transparency; } else { if (a1 == 255) anim[1] = (uint16) (mvX2 >> 16); goto bmno_alpha_blend; } } if (a1 > 0) { if (a1 == 255) anim01 |= mvX2 & 0xFFFF0000; *(uint32*) anim = anim01; } else { anim[0] = (uint16) anim01; } /* Blend colours. */ bmno_alpha_blend: ALPHA_BLEND_2(); bmno_full_opacity: _mm_storel_epi64((__m128i *) dst, srcABCD); bmno_full_transparency: src_mv += 2; src += 2; anim += 2; dst += 2; } if ((bt_last == BT_NONE && effective_width & 1) || bt_last == BT_ODD) { if (src->a == 0) { } else if (src->a == 255) { *anim = *(const uint16*) src_mv; *dst = (src_mv->m >= PALETTE_ANIM_START) ? AdjustBrightness(LookupColourInPalette(src_mv->m), src_mv->v) : *src; } else { *anim = 0; __m128i srcABCD; __m128i dstABCD = _mm_cvtsi32_si128(dst->data); if (src_mv->m >= PALETTE_ANIM_START) { Colour colour = AdjustBrightness(LookupColourInPalette(src_mv->m), src_mv->v); colour.a = src->a; srcABCD = _mm_cvtsi32_si128(colour.data); } else { srcABCD = _mm_cvtsi32_si128(src->data); } ALPHA_BLEND_2(); dst->data = _mm_cvtsi128_si32(srcABCD); } } break; case BM_COLOUR_REMAP: for (uint x = (uint) effective_width / 2; x != 0; x--) { uint32 mvX2 = *((uint32 *) const_cast(src_mv)); __m128i srcABCD = _mm_loadl_epi64((const __m128i*) src); __m128i dstABCD = _mm_loadl_epi64((__m128i*) dst); /* Remap colours. */ const uint m0 = (byte) mvX2; const uint r0 = remap[m0]; const uint m1 = (byte) (mvX2 >> 16); const uint r1 = remap[m1]; if (mvX2 & 0x00FF00FF) { /* Written so the compiler uses CMOV. */ const Colour src0 = src[0]; const Colour c0map = (this->LookupColourInPalette(r0).data & 0x00FFFFFF) | (src0.data & 0xFF000000); Colour c0 = dst[0]; c0 = r0 == 0 ? c0 : c0map; c0 = m0 != 0 ? c0 : src0; INSR32(c0.data, srcABCD, 0); const Colour src1 = src[1]; const Colour c1map = (this->LookupColourInPalette(r1).data & 0x00FFFFFF) | (src1.data & 0xFF000000); Colour c1 = dst[1]; c1 = r1 == 0 ? c1 : c1map; c1 = m1 != 0 ? c1 : src1; INSR32(c1.data, srcABCD, 1); if ((mvX2 & 0xFF00FF00) != 0x80008000) { ADJUST_BRIGHTNESS_2(srcABCD, mvX2); } } /* Update anim buffer. */ const byte a0 = src[0].a; const byte a1 = src[1].a; uint32 anim01 = mvX2 & 0xFF00FF00; if (a0 == 255) { anim01 |= r0; if (a1 == 255) { *(uint32*) anim = anim01 | (r1 << 16); goto bmcr_full_opacity; } } else if (a0 == 0) { if (a1 == 0) { goto bmcr_full_transparency; } else { if (a1 == 255) { anim[1] = r1 | (anim01 >> 16); } goto bmcr_alpha_blend; } } if (a1 > 0) { if (a1 == 255) anim01 |= r1 << 16; *(uint32*) anim = anim01; } else { anim[0] = (uint16) anim01; } /* Blend colours. */ bmcr_alpha_blend: ALPHA_BLEND_2(); bmcr_full_opacity: _mm_storel_epi64((__m128i *) dst, srcABCD); bmcr_full_transparency: src_mv += 2; dst += 2; src += 2; anim += 2; } if ((bt_last == BT_NONE && effective_width & 1) || bt_last == BT_ODD) { /* In case the m-channel is zero, do not remap this pixel in any way. */ __m128i srcABCD; if (src->a == 0) break; if (src_mv->m) { const uint r = remap[src_mv->m]; *anim = (src->a == 255) ? r | ((uint16) src_mv->v << 8 ) : 0; if (r != 0) { Colour remapped_colour = AdjustBrightness(this->LookupColourInPalette(r), src_mv->v); if (src->a == 255) { *dst = remapped_colour; } else { remapped_colour.a = src->a; srcABCD = _mm_cvtsi32_si128(remapped_colour.data); goto bmcr_alpha_blend_single; } } } else { *anim = 0; srcABCD = _mm_cvtsi32_si128(src->data); if (src->a < 255) { bmcr_alpha_blend_single: __m128i dstABCD = _mm_cvtsi32_si128(dst->data); ALPHA_BLEND_2(); } dst->data = _mm_cvtsi128_si32(srcABCD); } } break; case BM_TRANSPARENT: /* Make the current colour a bit more black, so it looks like this image is transparent. */ for (uint x = (uint) bp->width / 2; x > 0; x--) { __m128i srcABCD = _mm_loadl_epi64((const __m128i*) src); __m128i dstABCD = _mm_loadl_epi64((__m128i*) dst); DARKEN_2(); _mm_storel_epi64((__m128i *) dst, dstAB); src += 2; dst += 2; anim += 2; if (src[-2].a) anim[-2] = 0; if (src[-1].a) anim[-1] = 0; } if ((bt_last == BT_NONE && bp->width & 1) || bt_last == BT_ODD) { __m128i srcABCD = _mm_cvtsi32_si128(src->data); __m128i dstABCD = _mm_cvtsi32_si128(dst->data); DARKEN_2(); dst->data = _mm_cvtsi128_si32(dstAB); if (src[0].a) anim[0] = 0; } break; } next_line: if (mode != BM_TRANSPARENT) src_mv_line += si->sprite_width; src_rgba_line = (const Colour*) ((const byte*) src_rgba_line + si->sprite_line_size); dst_line += bp->pitch; anim_line += this->anim_buf_width; } } IGNORE_UNINITIALIZED_WARNING_STOP /** * Draws a sprite to a (screen) buffer. Calls adequate templated function. * * @param bp further blitting parameters * @param mode blitter mode * @param zoom zoom level at which we are drawing */ void Blitter_32bppSSE4_Anim::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom) { switch (mode) { case BM_NORMAL: { if (bp->skip_left != 0 || bp->width <= MARGIN_NORMAL_THRESHOLD) { const BlockType bt_last = (BlockType) (bp->width & 1); switch (bt_last) { case BT_EVEN: Draw(bp, zoom); return; case BT_ODD: Draw(bp, zoom); return; default: NOT_REACHED(); } } else { Draw(bp, zoom); return; } break; } case BM_COLOUR_REMAP: if (bp->skip_left != 0 || bp->width <= MARGIN_REMAP_THRESHOLD) { Draw(bp, zoom); return; } else { Draw(bp, zoom); return; } case BM_TRANSPARENT: Draw(bp, zoom); return; default: NOT_REACHED(); } } /** Same code as seen in 32bpp_sse2.cpp but some macros are not the same. */ inline Colour Blitter_32bppSSE4_Anim::AdjustBrightness(Colour colour, uint8 brightness) { /* Shortcut for normal brightness. */ if (brightness == DEFAULT_BRIGHTNESS) return colour; return Blitter_32bppSSE4::ReallyAdjustBrightness(colour, brightness); } #endif /* WITH_SSE */