/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see .
*/
/** @file 32bpp_sse4_anim.cpp Implementation of the SSE4 32 bpp blitter with animation support. */
#ifdef WITH_SSE
#include "../stdafx.h"
#include "../video/video_driver.hpp"
#include "../table/sprites.h"
#include "32bpp_anim_sse4.hpp"
/** Instantiation of the SSE4 32bpp blitter factory. */
static FBlitter_32bppSSE4_Anim iFBlitter_32bppSSE4_Anim;
/**
* Draws a sprite to a (screen) buffer. It is templated to allow faster operation.
*
* @tparam mode blitter mode
* @param bp further blitting parameters
* @param zoom zoom level at which we are drawing
*/
IGNORE_UNINITIALIZED_WARNING_START
template
inline void Blitter_32bppSSE4_Anim::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
{
const byte * const remap = bp->remap;
Colour *dst_line = (Colour *) bp->dst + bp->top * bp->pitch + bp->left;
uint16 *anim_line = this->anim_buf + ((uint32 *)bp->dst - (uint32 *)_screen.dst_ptr) + bp->top * this->anim_buf_width + bp->left;
int effective_width = bp->width;
/* Find where to start reading in the source sprite. */
const Blitter_32bppSSE_Base::SpriteData * const sd = (const Blitter_32bppSSE_Base::SpriteData *) bp->sprite;
const SpriteInfo * const si = &sd->infos[zoom];
const MapValue *src_mv_line = (const MapValue *) &sd->data[si->mv_offset] + bp->skip_top * si->sprite_width;
const Colour *src_rgba_line = (const Colour *) ((const byte *) &sd->data[si->sprite_offset] + bp->skip_top * si->sprite_line_size);
if (read_mode != RM_WITH_MARGIN) {
src_rgba_line += bp->skip_left;
src_mv_line += bp->skip_left;
}
const MapValue *src_mv = src_mv_line;
/* Load these variables into register before loop. */
const __m128i a_cm = ALPHA_CONTROL_MASK;
const __m128i pack_low_cm = PACK_LOW_CONTROL_MASK;
const __m128i briAB_cm = BRIGHTNESS_LOW_CONTROL_MASK;
const __m128i div_cleaner = BRIGHTNESS_DIV_CLEANER;
const __m128i ob_check = OVERBRIGHT_PRESENCE_MASK;
const __m128i ob_mask = OVERBRIGHT_VALUE_MASK;
const __m128i ob_cm = OVERBRIGHT_CONTROL_MASK;
const __m128i tr_nom_base = TRANSPARENT_NOM_BASE;
for (int y = bp->height; y != 0; y--) {
Colour *dst = dst_line;
const Colour *src = src_rgba_line + META_LENGTH;
if (mode != BM_TRANSPARENT) src_mv = src_mv_line;
uint16 *anim = anim_line;
if (read_mode == RM_WITH_MARGIN) {
anim += src_rgba_line[0].data;
src += src_rgba_line[0].data;
dst += src_rgba_line[0].data;
if (mode != BM_TRANSPARENT) src_mv += src_rgba_line[0].data;
const int width_diff = si->sprite_width - bp->width;
effective_width = bp->width - (int) src_rgba_line[0].data;
const int delta_diff = (int) src_rgba_line[1].data - width_diff;
const int new_width = effective_width - delta_diff;
effective_width = delta_diff > 0 ? new_width : effective_width;
if (effective_width <= 0) goto next_line;
}
switch (mode) {
default:
for (uint x = (uint) effective_width/2; x != 0; x--) {
uint32 mvX2 = *((uint32 *) const_cast(src_mv));
__m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
__m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
/* Remap colours. */
const byte m0 = mvX2;
if (m0 >= PALETTE_ANIM_START) {
const Colour c0 = (this->LookupColourInPalette(m0).data & 0x00FFFFFF) | (src[0].data & 0xFF000000);
INSR32(AdjustBrightness(c0, (byte) (mvX2 >> 8)).data, srcABCD, 0);
}
const byte m1 = mvX2 >> 16;
if (m1 >= PALETTE_ANIM_START) {
const Colour c1 = (this->LookupColourInPalette(m1).data & 0x00FFFFFF) | (src[1].data & 0xFF000000);
INSR32(AdjustBrightness(c1, (byte) (mvX2 >> 24)).data, srcABCD, 1);
}
/* Update anim buffer. */
const byte a0 = src[0].a;
const byte a1 = src[1].a;
uint32 anim01 = 0;
if (a0 == 255) {
if (a1 == 255) {
*(uint32*) anim = mvX2;
goto bmno_full_opacity;
}
anim01 = (uint16) mvX2;
} else if (a0 == 0) {
if (a1 == 0) {
goto bmno_full_transparency;
} else {
if (a1 == 255) anim[1] = (uint16) (mvX2 >> 16);
goto bmno_alpha_blend;
}
}
if (a1 > 0) {
if (a1 == 255) anim01 |= mvX2 & 0xFFFF0000;
*(uint32*) anim = anim01;
} else {
anim[0] = (uint16) anim01;
}
/* Blend colours. */
bmno_alpha_blend:
ALPHA_BLEND_2();
bmno_full_opacity:
_mm_storel_epi64((__m128i *) dst, srcABCD);
bmno_full_transparency:
src_mv += 2;
src += 2;
anim += 2;
dst += 2;
}
if ((bt_last == BT_NONE && effective_width & 1) || bt_last == BT_ODD) {
if (src->a == 0) {
} else if (src->a == 255) {
*anim = *(const uint16*) src_mv;
*dst = (src_mv->m >= PALETTE_ANIM_START) ? AdjustBrightness(LookupColourInPalette(src_mv->m), src_mv->v) : *src;
} else {
*anim = 0;
__m128i srcABCD;
__m128i dstABCD = _mm_cvtsi32_si128(dst->data);
if (src_mv->m >= PALETTE_ANIM_START) {
Colour colour = AdjustBrightness(LookupColourInPalette(src_mv->m), src_mv->v);
colour.a = src->a;
srcABCD = _mm_cvtsi32_si128(colour.data);
} else {
srcABCD = _mm_cvtsi32_si128(src->data);
}
ALPHA_BLEND_2();
dst->data = _mm_cvtsi128_si32(srcABCD);
}
}
break;
case BM_COLOUR_REMAP:
for (uint x = (uint) effective_width / 2; x != 0; x--) {
uint32 mvX2 = *((uint32 *) const_cast(src_mv));
__m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
__m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
/* Remap colours. */
const uint m0 = (byte) mvX2;
const uint r0 = remap[m0];
const uint m1 = (byte) (mvX2 >> 16);
const uint r1 = remap[m1];
if (mvX2 & 0x00FF00FF) {
/* Written so the compiler uses CMOV. */
const Colour src0 = src[0];
const Colour c0map = (this->LookupColourInPalette(r0).data & 0x00FFFFFF) | (src0.data & 0xFF000000);
Colour c0 = dst[0];
c0 = r0 == 0 ? c0 : c0map;
c0 = m0 != 0 ? c0 : src0;
INSR32(c0.data, srcABCD, 0);
const Colour src1 = src[1];
const Colour c1map = (this->LookupColourInPalette(r1).data & 0x00FFFFFF) | (src1.data & 0xFF000000);
Colour c1 = dst[1];
c1 = r1 == 0 ? c1 : c1map;
c1 = m1 != 0 ? c1 : src1;
INSR32(c1.data, srcABCD, 1);
if ((mvX2 & 0xFF00FF00) != 0x80008000) {
ADJUST_BRIGHTNESS_2(srcABCD, mvX2);
}
}
/* Update anim buffer. */
const byte a0 = src[0].a;
const byte a1 = src[1].a;
uint32 anim01 = mvX2 & 0xFF00FF00;
if (a0 == 255) {
anim01 |= r0;
if (a1 == 255) {
*(uint32*) anim = anim01 | (r1 << 16);
goto bmcr_full_opacity;
}
} else if (a0 == 0) {
if (a1 == 0) {
goto bmcr_full_transparency;
} else {
if (a1 == 255) {
anim[1] = r1 | (anim01 >> 16);
}
goto bmcr_alpha_blend;
}
}
if (a1 > 0) {
if (a1 == 255) anim01 |= r1 << 16;
*(uint32*) anim = anim01;
} else {
anim[0] = (uint16) anim01;
}
/* Blend colours. */
bmcr_alpha_blend:
ALPHA_BLEND_2();
bmcr_full_opacity:
_mm_storel_epi64((__m128i *) dst, srcABCD);
bmcr_full_transparency:
src_mv += 2;
dst += 2;
src += 2;
anim += 2;
}
if ((bt_last == BT_NONE && effective_width & 1) || bt_last == BT_ODD) {
/* In case the m-channel is zero, do not remap this pixel in any way. */
__m128i srcABCD;
if (src->a == 0) break;
if (src_mv->m) {
const uint r = remap[src_mv->m];
*anim = (src->a == 255) ? r | ((uint16) src_mv->v << 8 ) : 0;
if (r != 0) {
Colour remapped_colour = AdjustBrightness(this->LookupColourInPalette(r), src_mv->v);
if (src->a == 255) {
*dst = remapped_colour;
} else {
remapped_colour.a = src->a;
srcABCD = _mm_cvtsi32_si128(remapped_colour.data);
goto bmcr_alpha_blend_single;
}
}
} else {
*anim = 0;
srcABCD = _mm_cvtsi32_si128(src->data);
if (src->a < 255) {
bmcr_alpha_blend_single:
__m128i dstABCD = _mm_cvtsi32_si128(dst->data);
ALPHA_BLEND_2();
}
dst->data = _mm_cvtsi128_si32(srcABCD);
}
}
break;
case BM_TRANSPARENT:
/* Make the current colour a bit more black, so it looks like this image is transparent. */
for (uint x = (uint) bp->width / 2; x > 0; x--) {
__m128i srcABCD = _mm_loadl_epi64((const __m128i*) src);
__m128i dstABCD = _mm_loadl_epi64((__m128i*) dst);
DARKEN_2();
_mm_storel_epi64((__m128i *) dst, dstAB);
src += 2;
dst += 2;
anim += 2;
if (src[-2].a) anim[-2] = 0;
if (src[-1].a) anim[-1] = 0;
}
if ((bt_last == BT_NONE && bp->width & 1) || bt_last == BT_ODD) {
__m128i srcABCD = _mm_cvtsi32_si128(src->data);
__m128i dstABCD = _mm_cvtsi32_si128(dst->data);
DARKEN_2();
dst->data = _mm_cvtsi128_si32(dstAB);
if (src[0].a) anim[0] = 0;
}
break;
}
next_line:
if (mode != BM_TRANSPARENT) src_mv_line += si->sprite_width;
src_rgba_line = (const Colour*) ((const byte*) src_rgba_line + si->sprite_line_size);
dst_line += bp->pitch;
anim_line += this->anim_buf_width;
}
}
IGNORE_UNINITIALIZED_WARNING_STOP
/**
* Draws a sprite to a (screen) buffer. Calls adequate templated function.
*
* @param bp further blitting parameters
* @param mode blitter mode
* @param zoom zoom level at which we are drawing
*/
void Blitter_32bppSSE4_Anim::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
{
switch (mode) {
case BM_NORMAL: {
if (bp->skip_left != 0 || bp->width <= MARGIN_NORMAL_THRESHOLD) {
const BlockType bt_last = (BlockType) (bp->width & 1);
switch (bt_last) {
case BT_EVEN: Draw(bp, zoom); return;
case BT_ODD: Draw(bp, zoom); return;
default: NOT_REACHED();
}
} else {
Draw(bp, zoom); return;
}
break;
}
case BM_COLOUR_REMAP:
if (bp->skip_left != 0 || bp->width <= MARGIN_REMAP_THRESHOLD) {
Draw(bp, zoom); return;
} else {
Draw(bp, zoom); return;
}
case BM_TRANSPARENT: Draw(bp, zoom); return;
default: NOT_REACHED();
}
}
/** Same code as seen in 32bpp_sse2.cpp but some macros are not the same. */
inline Colour Blitter_32bppSSE4_Anim::AdjustBrightness(Colour colour, uint8 brightness)
{
/* Shortcut for normal brightness. */
if (brightness == DEFAULT_BRIGHTNESS) return colour;
return Blitter_32bppSSE4::ReallyAdjustBrightness(colour, brightness);
}
#endif /* WITH_SSE */