/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file newgrf_spritegroup.cpp Handling of primarily NewGRF action 2. */ #include "stdafx.h" #include "debug.h" #include "newgrf_spritegroup.h" #include "newgrf_profiling.h" #include "core/pool_func.hpp" #include "vehicle_type.h" #include "newgrf_cache_check.h" #include "string_func.h" #include "newgrf_extension.h" #include "newgrf_industrytiles_analysis.h" #include "scope.h" #include "debug_settings.h" #include "safeguards.h" SpriteGroupPool _spritegroup_pool("SpriteGroup"); INSTANTIATE_POOL_METHODS(SpriteGroup) TemporaryStorageArray _temp_store; std::map _deterministic_sg_shadows; std::map _randomized_sg_shadows; bool _grfs_loaded_with_sg_shadow_enable = false; /** * ResolverObject (re)entry point. * This cannot be made a call to a virtual function because virtual functions * do not like nullptr and checking for nullptr *everywhere* is more cumbersome than * this little helper function. * @param group the group to resolve for * @param object information needed to resolve the group * @param top_level true if this is a top-level SpriteGroup, false if used nested in another SpriteGroup. * @return the resolved group */ /* static */ const SpriteGroup *SpriteGroup::Resolve(const SpriteGroup *group, ResolverObject &object, bool top_level) { if (group == nullptr) return nullptr; const GRFFile *grf = object.grffile; auto profiler = std::find_if(_newgrf_profilers.begin(), _newgrf_profilers.end(), [&](const NewGRFProfiler &pr) { return pr.grffile == grf; }); if (profiler == _newgrf_profilers.end() || !profiler->active) { if (top_level) _temp_store.ClearChanges(); return group->Resolve(object); } else if (top_level) { profiler->BeginResolve(object); _temp_store.ClearChanges(); const SpriteGroup *result = group->Resolve(object); profiler->EndResolve(result); return result; } else { profiler->RecursiveResolve(); return group->Resolve(object); } } static inline uint32 GetVariable(const ResolverObject &object, ScopeResolver *scope, uint16 variable, uint32 parameter, GetVariableExtra *extra) { uint32 value; switch (variable) { case 0x0C: return object.callback; case 0x10: return object.callback_param1; case 0x18: return object.callback_param2; case 0x1A: return UINT_MAX; case 0x1C: return object.last_value; case 0x5F: return (scope->GetRandomBits() << 8) | scope->GetTriggers(); case 0x7D: return _temp_store.GetValue(parameter); case 0x7F: if (object.grffile == nullptr) return 0; return object.grffile->GetParam(parameter); default: /* First handle variables common with Action7/9/D */ if (variable < 0x40 && GetGlobalVariable(variable, &value, object.grffile)) return value; /* Not a common variable, so evaluate the feature specific variables */ return scope->GetVariable(variable, parameter, extra); } } /** * Get a few random bits. Default implementation has no random bits. * @return Random bits. */ /* virtual */ uint32 ScopeResolver::GetRandomBits() const { return 0; } /** * Get the triggers. Base class returns \c 0 to prevent trouble. * @return The triggers. */ /* virtual */ uint32 ScopeResolver::GetTriggers() const { return 0; } /** * Get a variable value. Default implementation has no available variables. * @param variable Variable to read * @param parameter Parameter for 60+x variables * @param[out] available Set to false, in case the variable does not exist. * @return Value */ /* virtual */ uint32 ScopeResolver::GetVariable(uint16 variable, uint32 parameter, GetVariableExtra *extra) const { DEBUG(grf, 1, "Unhandled scope variable 0x%X", variable); extra->available = false; return UINT_MAX; } /** * Store a value into the persistent storage area (PSA). Default implementation does nothing (for newgrf classes without storage). * @param reg Position to store into. * @param value Value to store. */ /* virtual */ void ScopeResolver::StorePSA(uint reg, int32 value) {} /** * Get the real sprites of the grf. * @param group Group to get. * @return The available sprite group. */ /* virtual */ const SpriteGroup *ResolverObject::ResolveReal(const RealSpriteGroup *group) const { if (!group->loaded.empty()) return group->loaded[0]; if (!group->loading.empty()) return group->loading[0]; return nullptr; } /** * Get a resolver for the \a scope. * @param scope Scope to return. * @param relative Additional parameter for #VSG_SCOPE_RELATIVE. * @return The resolver for the requested scope. */ /* virtual */ ScopeResolver *ResolverObject::GetScope(VarSpriteGroupScope scope, byte relative) { return &this->default_scope; } /* Evaluate an adjustment for a variable of the given size. * U is the unsigned type and S is the signed type to use. */ template static U EvalAdjustT(const DeterministicSpriteGroupAdjust &adjust, ScopeResolver *scope, U last_value, uint32 value, const DeterministicSpriteGroupAdjust **adjust_iter = nullptr) { value >>= adjust.shift_num; value &= adjust.and_mask; switch (adjust.type) { case DSGA_TYPE_DIV: value = ((S)value + (S)adjust.add_val) / (S)adjust.divmod_val; break; case DSGA_TYPE_MOD: value = ((S)value + (S)adjust.add_val) % (S)adjust.divmod_val; break; case DSGA_TYPE_EQ: value = (value == adjust.add_val) ? 1 : 0; break; case DSGA_TYPE_NEQ: value = (value != adjust.add_val) ? 1 : 0; break; case DSGA_TYPE_NONE: break; } auto handle_jump = [&](bool jump, U jump_return_value) -> U { if (jump && adjust_iter != nullptr) { /* Jump */ (*adjust_iter) += adjust.jump; return jump_return_value; } else { /* Don't jump */ return last_value; } }; switch (adjust.operation) { case DSGA_OP_ADD: return last_value + value; case DSGA_OP_SUB: return last_value - value; case DSGA_OP_SMIN: return std::min(last_value, value); case DSGA_OP_SMAX: return std::max(last_value, value); case DSGA_OP_UMIN: return std::min(last_value, value); case DSGA_OP_UMAX: return std::max(last_value, value); case DSGA_OP_SDIV: return value == 0 ? (S)last_value : (S)last_value / (S)value; case DSGA_OP_SMOD: return value == 0 ? (S)last_value : (S)last_value % (S)value; case DSGA_OP_UDIV: return value == 0 ? (U)last_value : (U)last_value / (U)value; case DSGA_OP_UMOD: return value == 0 ? (U)last_value : (U)last_value % (U)value; case DSGA_OP_MUL: return last_value * value; case DSGA_OP_AND: return last_value & value; case DSGA_OP_OR: return last_value | value; case DSGA_OP_XOR: return last_value ^ value; case DSGA_OP_STO: _temp_store.StoreValue((U)value, (S)last_value); return last_value; case DSGA_OP_RST: return value; case DSGA_OP_STOP: scope->StorePSA((U)value, (S)last_value); return last_value; case DSGA_OP_ROR: return ROR((U)last_value, (U)value & 0x1F); // mask 'value' to 5 bits, which should behave the same on all architectures. case DSGA_OP_SCMP: return ((S)last_value == (S)value) ? 1 : ((S)last_value < (S)value ? 0 : 2); case DSGA_OP_UCMP: return ((U)last_value == (U)value) ? 1 : ((U)last_value < (U)value ? 0 : 2); case DSGA_OP_SHL: return (uint32)(U)last_value << ((U)value & 0x1F); // Same behaviour as in ParamSet, mask 'value' to 5 bits, which should behave the same on all architectures. case DSGA_OP_SHR: return (uint32)(U)last_value >> ((U)value & 0x1F); case DSGA_OP_SAR: return (int32)(S)last_value >> ((U)value & 0x1F); case DSGA_OP_TERNARY: return (last_value != 0) ? value : adjust.add_val; case DSGA_OP_EQ: return (last_value == value) ? 1 : 0; case DSGA_OP_SLT: return ((S)last_value < (S)value) ? 1 : 0; case DSGA_OP_SGE: return ((S)last_value >= (S)value) ? 1 : 0; case DSGA_OP_SLE: return ((S)last_value <= (S)value) ? 1 : 0; case DSGA_OP_SGT: return ((S)last_value > (S)value) ? 1 : 0; case DSGA_OP_RSUB: return value - last_value; case DSGA_OP_STO_NC: _temp_store.StoreValue(adjust.divmod_val, (S)value); return last_value; case DSGA_OP_ABS: return ((S)last_value < 0) ? -((S)last_value) : (S)last_value; case DSGA_OP_JZ: return handle_jump(value == 0, value); case DSGA_OP_JNZ: return handle_jump(value != 0, value); case DSGA_OP_JZ_LV: return handle_jump(last_value == 0, last_value); case DSGA_OP_JNZ_LV: return handle_jump(last_value != 0, last_value); default: return value; } } uint32 EvaluateDeterministicSpriteGroupAdjust(DeterministicSpriteGroupSize size, const DeterministicSpriteGroupAdjust &adjust, ScopeResolver *scope, uint32 last_value, uint32 value) { switch (size) { case DSG_SIZE_BYTE: return EvalAdjustT (adjust, scope, last_value, value); break; case DSG_SIZE_WORD: return EvalAdjustT(adjust, scope, last_value, value); break; case DSG_SIZE_DWORD: return EvalAdjustT(adjust, scope, last_value, value); break; default: NOT_REACHED(); } } static bool RangeHighComparator(const DeterministicSpriteGroupRange& range, uint32 value) { return range.high < value; } const SpriteGroup *DeterministicSpriteGroup::Resolve(ResolverObject &object) const { uint32 last_value = 0; uint32 value = 0; ScopeResolver *scope = object.GetScope(this->var_scope); const DeterministicSpriteGroupAdjust *end = this->adjusts.data() + this->adjusts.size(); for (const DeterministicSpriteGroupAdjust *iter = this->adjusts.data(); iter != end; ++iter) { const DeterministicSpriteGroupAdjust &adjust = *iter; if ((adjust.adjust_flags & DSGAF_SKIP_ON_ZERO) && (last_value == 0)) continue; if ((adjust.adjust_flags & DSGAF_SKIP_ON_LSB_SET) && (last_value & 1) != 0) continue; /* Try to get the variable. We shall assume it is available, unless told otherwise. */ GetVariableExtra extra(adjust.and_mask << adjust.shift_num); if (adjust.variable == 0x7E) { const SpriteGroup *subgroup = SpriteGroup::Resolve(adjust.subroutine, object, false); if (subgroup == nullptr) { value = CALLBACK_FAILED; } else { value = subgroup->GetCallbackResult(); } /* Note: 'last_value' and 'reseed' are shared between the main chain and the procedure */ } else if (adjust.variable == 0x7B) { _sprite_group_resolve_check_veh_check = false; value = GetVariable(object, scope, adjust.parameter, last_value, &extra); } else { value = GetVariable(object, scope, adjust.variable, adjust.parameter, &extra); } if (!extra.available) { /* Unsupported variable: skip further processing and return either * the group from the first range or the default group. */ return SpriteGroup::Resolve(this->error_group, object, false); } switch (this->size) { case DSG_SIZE_BYTE: value = EvalAdjustT (adjust, scope, last_value, value, &iter); break; case DSG_SIZE_WORD: value = EvalAdjustT(adjust, scope, last_value, value, &iter); break; case DSG_SIZE_DWORD: value = EvalAdjustT(adjust, scope, last_value, value, &iter); break; default: NOT_REACHED(); } last_value = value; } object.last_value = last_value; if (this->calculated_result) { /* nvar == 0 is a special case -- we turn our value into a callback result */ if (value != CALLBACK_FAILED) value = GB(value, 0, 15); static CallbackResultSpriteGroup nvarzero(0); nvarzero.result = value; return &nvarzero; } if (this->ranges.size() > 4) { const auto &lower = std::lower_bound(this->ranges.begin(), this->ranges.end(), value, RangeHighComparator); if (lower != this->ranges.end() && lower->low <= value) { assert(lower->low <= value && value <= lower->high); return SpriteGroup::Resolve(lower->group, object, false); } } else { for (const auto &range : this->ranges) { if (range.low <= value && value <= range.high) { return SpriteGroup::Resolve(range.group, object, false); } } } return SpriteGroup::Resolve(this->default_group, object, false); } void DeterministicSpriteGroup::AnalyseCallbacks(AnalyseCallbackOperation &op) const { auto res = op.seen.insert(this); if (!res.second) { /* Already seen this group */ return; } if (op.mode == ACOM_INDUSTRY_TILE && op.data.indtile->anim_state_at_offset) return; auto check_1A_range = [&]() -> bool { if (this->GroupMayBeBypassed()) { /* Not clear why some GRFs do this, perhaps a way of commenting out a branch */ uint32 value = (this->adjusts.size() == 1) ? EvaluateDeterministicSpriteGroupAdjust(this->size, this->adjusts[0], nullptr, 0, UINT_MAX) : 0; for (const auto &range : this->ranges) { if (range.low <= value && value <= range.high) { if (range.group != nullptr) range.group->AnalyseCallbacks(op); return true; } } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); return true; } return false; }; if (op.mode == ACOM_FIND_CB_RESULT) { if (this->calculated_result) { op.result_flags |= ACORF_CB_RESULT_FOUND; return; } else if (!(op.result_flags & ACORF_CB_RESULT_FOUND)) { if (check_1A_range()) return; auto check_var_filter = [&](uint8 var, uint value) -> bool { if (this->adjusts.size() == 1 && this->adjusts[0].variable == var && (this->adjusts[0].operation == DSGA_OP_ADD || this->adjusts[0].operation == DSGA_OP_RST)) { const auto &adjust = this->adjusts[0]; if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) { for (const auto &range : this->ranges) { if (range.low == range.high && range.low == value) { if (range.group != nullptr) range.group->AnalyseCallbacks(op); return true; } } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); return true; } } return false; }; if (check_var_filter(0xC, op.data.cb_result.callback)) return; if (op.data.cb_result.check_var_10 && check_var_filter(0x10, op.data.cb_result.var_10_value)) return; for (const auto &range : this->ranges) { if (range.group != nullptr) range.group->AnalyseCallbacks(op); } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); } return; } if (check_1A_range()) return; if ((op.mode == ACOM_CB_VAR || op.mode == ACOM_CB_REFIT_CAPACITY) && this->var_scope != VSG_SCOPE_SELF) { op.result_flags |= ACORF_CB_REFIT_CAP_NON_WHITELIST_FOUND; } auto find_cb_result = [&](const SpriteGroup *group, AnalyseCallbackOperation::FindCBResultData data) -> bool { if (group == nullptr) return false; AnalyseCallbackOperation cbr_op; cbr_op.mode = ACOM_FIND_CB_RESULT; cbr_op.data.cb_result = data; group->AnalyseCallbacks(cbr_op); return (cbr_op.result_flags & ACORF_CB_RESULT_FOUND); }; if (this->adjusts.size() == 1 && !this->calculated_result && (this->adjusts[0].operation == DSGA_OP_ADD || this->adjusts[0].operation == DSGA_OP_RST)) { const auto &adjust = this->adjusts[0]; if (op.mode == ACOM_CB_VAR && adjust.variable == 0xC) { if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) { bool found_refit_cap = false; for (const auto &range : this->ranges) { if (range.low == range.high) { switch (range.low) { case CBID_VEHICLE_32DAY_CALLBACK: op.callbacks_used |= SGCU_VEHICLE_32DAY_CALLBACK; break; case CBID_VEHICLE_REFIT_COST: op.callbacks_used |= SGCU_VEHICLE_REFIT_COST; break; case CBID_RANDOM_TRIGGER: op.callbacks_used |= SGCU_RANDOM_TRIGGER; break; case CBID_VEHICLE_MODIFY_PROPERTY: if (range.group != nullptr) { AnalyseCallbackOperation cb36_op; cb36_op.mode = ACOM_CB36_PROP; range.group->AnalyseCallbacks(cb36_op); op.properties_used |= cb36_op.properties_used; op.callbacks_used |= cb36_op.callbacks_used; } break; case CBID_VEHICLE_REFIT_CAPACITY: found_refit_cap = true; if (range.group != nullptr) { AnalyseCallbackOperation cb_refit_op; cb_refit_op.mode = ACOM_CB_REFIT_CAPACITY; range.group->AnalyseCallbacks(cb_refit_op); op.result_flags |= (cb_refit_op.result_flags & (ACORF_CB_REFIT_CAP_NON_WHITELIST_FOUND | ACORF_CB_REFIT_CAP_SEEN_VAR_47)); } break; } } else { if (range.group != nullptr) range.group->AnalyseCallbacks(op); } } if (this->default_group != nullptr) { AnalyseCallbackOperationResultFlags prev_result = op.result_flags; this->default_group->AnalyseCallbacks(op); if (found_refit_cap) { const AnalyseCallbackOperationResultFlags save_mask = ACORF_CB_REFIT_CAP_NON_WHITELIST_FOUND | ACORF_CB_REFIT_CAP_SEEN_VAR_47; op.result_flags &= ~save_mask; op.result_flags |= (prev_result & save_mask); } } return; } } if (op.mode == ACOM_CB36_PROP && adjust.variable == 0x10) { if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) { for (const auto &range : this->ranges) { if (range.low == range.high) { if (range.low < 64) { if (find_cb_result(range.group, { CBID_VEHICLE_MODIFY_PROPERTY, true, (uint8)range.low })) { SetBit(op.properties_used, range.low); if (range.low == 0x9) { /* Speed */ if (range.group != nullptr) { AnalyseCallbackOperation cb36_speed; cb36_speed.mode = ACOM_CB36_SPEED; range.group->AnalyseCallbacks(cb36_speed); op.callbacks_used |= cb36_speed.callbacks_used; } } } } } else { if (range.group != nullptr) range.group->AnalyseCallbacks(op); } } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); return; } } if (op.mode == ACOM_CB36_PROP && adjust.variable == 0xC) { if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) { for (const auto &range : this->ranges) { if (range.low <= CBID_VEHICLE_MODIFY_PROPERTY && CBID_VEHICLE_MODIFY_PROPERTY <= range.high) { if (range.group != nullptr) range.group->AnalyseCallbacks(op); return; } } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); return; } } if (op.mode == ACOM_CB36_SPEED && adjust.variable == 0x4A) { op.callbacks_used |= SGCU_CB36_SPEED_RAILTYPE; return; } if (op.mode == ACOM_INDUSTRY_TILE && adjust.variable == 0xC) { if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) { /* Callback switch, skip to the default/graphics chain */ for (const auto &range : this->ranges) { if (range.low == 0) { if (range.group != nullptr) range.group->AnalyseCallbacks(op); return; } } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); return; } } if (op.mode == ACOM_INDUSTRY_TILE && adjust.variable == 0x44 && this->var_scope == VSG_SCOPE_PARENT) { if (adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) { /* Layout index switch */ for (const auto &range : this->ranges) { if (range.low <= op.data.indtile->layout_index && op.data.indtile->layout_index <= range.high) { if (range.group != nullptr) range.group->AnalyseCallbacks(op); return; } } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); return; } } if (op.mode == ACOM_INDUSTRY_TILE && adjust.variable == 0x43 && this->var_scope == VSG_SCOPE_SELF) { if (adjust.shift_num == 0 && adjust.and_mask == 0xFFFF && adjust.type == DSGA_TYPE_NONE) { /* Relative position switch */ uint64 default_mask = op.data.indtile->check_mask; for (const auto &range : this->ranges) { if (range.high - range.low < 32) { uint64 new_check_mask = 0; for (uint i = range.low; i <= range.high; i++) { int16 x = i & 0xFF; int16 y = (i >> 8) & 0xFF; for (uint bit : SetBitIterator(op.data.indtile->check_mask)) { const TileIndexDiffC &ti = (*(op.data.indtile->layout))[bit].ti; if (ti.x == x && ti.y == y) { SetBit(new_check_mask, bit); } } } default_mask &= ~new_check_mask; if (range.group != nullptr) { AnalyseCallbackOperationIndustryTileData data = *(op.data.indtile); data.check_mask = new_check_mask; AnalyseCallbackOperation sub_op; sub_op.mode = ACOM_INDUSTRY_TILE; sub_op.data.indtile = &data; range.group->AnalyseCallbacks(sub_op); if (data.anim_state_at_offset) { op.data.indtile->anim_state_at_offset = true; return; } } } else { if (range.group != nullptr) range.group->AnalyseCallbacks(op); } } if (this->default_group != nullptr) { AnalyseCallbackOperationIndustryTileData data = *(op.data.indtile); data.check_mask = default_mask; AnalyseCallbackOperation sub_op; sub_op.mode = ACOM_INDUSTRY_TILE; sub_op.data.indtile = &data; this->default_group->AnalyseCallbacks(sub_op); } return; } } } for (const auto &adjust : this->adjusts) { if (op.mode == ACOM_CB_VAR && adjust.variable == 0xC) { op.callbacks_used |= SGCU_ALL; } if (op.mode == ACOM_CB36_PROP && adjust.variable == 0x10) { if (find_cb_result(this, { CBID_VEHICLE_MODIFY_PROPERTY, false, 0 })) { op.properties_used |= UINT64_MAX; } } if ((op.mode == ACOM_CB_VAR || op.mode == ACOM_CB_REFIT_CAPACITY) && !(adjust.variable == 0xC || adjust.variable == 0x1A || adjust.variable == 0x47 || adjust.variable == 0x7D || adjust.variable == 0x7E)) { op.result_flags |= ACORF_CB_REFIT_CAP_NON_WHITELIST_FOUND; } if ((op.mode == ACOM_CB_VAR || op.mode == ACOM_CB_REFIT_CAPACITY) && adjust.variable == 0x47) { op.result_flags |= ACORF_CB_REFIT_CAP_SEEN_VAR_47; } if (adjust.variable == 0x7E && adjust.subroutine != nullptr) { adjust.subroutine->AnalyseCallbacks(op); } if (op.mode == ACOM_INDUSTRY_TILE && this->var_scope == VSG_SCOPE_SELF && (adjust.variable == 0x44 || (adjust.variable == 0x61 && adjust.parameter == 0))) { *(op.data.indtile->result_mask) &= ~op.data.indtile->check_mask; return; } if (op.mode == ACOM_INDUSTRY_TILE && ((this->var_scope == VSG_SCOPE_SELF && adjust.variable == 0x61) || (this->var_scope == VSG_SCOPE_PARENT && adjust.variable == 0x63))) { op.data.indtile->anim_state_at_offset = true; return; } } if (!this->calculated_result) { for (const auto &range : this->ranges) { if (range.group != nullptr) range.group->AnalyseCallbacks(op); } if (this->default_group != nullptr) this->default_group->AnalyseCallbacks(op); } } bool DeterministicSpriteGroup::GroupMayBeBypassed() const { if (this->calculated_result) return false; if (this->adjusts.size() == 0) return true; if ((this->adjusts.size() == 1 && this->adjusts[0].variable == 0x1A && (this->adjusts[0].operation == DSGA_OP_ADD || this->adjusts[0].operation == DSGA_OP_RST))) return true; return false; } void CallbackResultSpriteGroup::AnalyseCallbacks(AnalyseCallbackOperation &op) const { if (op.mode == ACOM_FIND_CB_RESULT) op.result_flags |= ACORF_CB_RESULT_FOUND; } const SpriteGroup *RandomizedSpriteGroup::Resolve(ResolverObject &object) const { ScopeResolver *scope = object.GetScope(this->var_scope, this->count); if (object.callback == CBID_RANDOM_TRIGGER) { /* Handle triggers */ byte match = this->triggers & object.waiting_triggers; bool res = (this->cmp_mode == RSG_CMP_ANY) ? (match != 0) : (match == this->triggers); if (res) { object.used_triggers |= match; object.reseed[this->var_scope] |= (this->groups.size() - 1) << this->lowest_randbit; } } uint32 mask = ((uint)this->groups.size() - 1) << this->lowest_randbit; byte index = (scope->GetRandomBits() & mask) >> this->lowest_randbit; return SpriteGroup::Resolve(this->groups[index], object, false); } void RandomizedSpriteGroup::AnalyseCallbacks(AnalyseCallbackOperation &op) const { op.result_flags |= ACORF_CB_REFIT_CAP_NON_WHITELIST_FOUND; if (op.mode == ACOM_CB_VAR) op.callbacks_used |= SGCU_RANDOM_TRIGGER; for (const SpriteGroup *group: this->groups) { if (group != nullptr) group->AnalyseCallbacks(op); } } const SpriteGroup *RealSpriteGroup::Resolve(ResolverObject &object) const { return object.ResolveReal(this); } /** * Process registers and the construction stage into the sprite layout. * The passed construction stage might get reset to zero, if it gets incorporated into the layout * during the preprocessing. * @param[in,out] stage Construction stage (0-3), or nullptr if not applicable. * @return sprite layout to draw. */ const DrawTileSprites *TileLayoutSpriteGroup::ProcessRegisters(uint8 *stage) const { if (!this->dts.NeedsPreprocessing()) { if (stage != nullptr && this->dts.consistent_max_offset > 0) *stage = GetConstructionStageOffset(*stage, this->dts.consistent_max_offset); return &this->dts; } static DrawTileSprites result; uint8 actual_stage = stage != nullptr ? *stage : 0; this->dts.PrepareLayout(0, 0, 0, actual_stage, false); this->dts.ProcessRegisters(0, 0, false); result.seq = this->dts.GetLayout(&result.ground); /* Stage has been processed by PrepareLayout(), set it to zero. */ if (stage != nullptr) *stage = 0; return &result; } static const char *_dsg_op_names[] { "ADD", "SUB", "SMIN", "SMAX", "UMIN", "UMAX", "SDIV", "SMOD", "UDIV", "UMOD", "MUL", "AND", "OR", "XOR", "STO", "RST", "STOP", "ROR", "SCMP", "UCMP", "SHL", "SHR", "SAR", }; static_assert(lengthof(_dsg_op_names) == DSGA_OP_END); static const char *_dsg_op_special_names[] { "TERNARY", "EQ", "SLT", "SGE", "SLE", "SGT", "RSUB", "STO_NC", "ABS", "JZ", "JNZ", "JZ_LV", "JNZ_LV", }; static_assert(lengthof(_dsg_op_special_names) == DSGA_OP_SPECIAL_END - DSGA_OP_TERNARY); static const char *_sg_scope_names[] { "SELF", "PARENT", "RELATIVE", }; static_assert(lengthof(_sg_scope_names) == VSG_END); static const char *_sg_size_names[] { "BYTE", "WORD", "DWORD", }; static char *GetAdjustOperationName(char *str, const char *last, DeterministicSpriteGroupAdjustOperation operation) { if (operation < DSGA_OP_END) return strecat(str, _dsg_op_names[operation], last); if (operation >= DSGA_OP_TERNARY && operation < DSGA_OP_SPECIAL_END) return strecat(str, _dsg_op_special_names[operation - DSGA_OP_TERNARY], last); return str + seprintf(str, last, "\?\?\?(0x%X)", operation); } static char *DumpSpriteGroupAdjust(char *p, const char *last, const DeterministicSpriteGroupAdjust &adjust, int padding, uint32 &highlight_tag, uint &conditional_indent) { if (adjust.variable == 0x7D) { /* Temp storage load */ highlight_tag = (1 << 16) | (adjust.parameter & 0xFFFF); } p += seprintf(p, last, "%*s", padding, ""); for (uint i = 0; i < conditional_indent; i++) { p += seprintf(p, last, "> "); } auto append_flags = [&]() { if (adjust.adjust_flags & DSGAF_SKIP_ON_ZERO) { p += seprintf(p, last, ", skip on zero"); } if (adjust.adjust_flags & DSGAF_SKIP_ON_LSB_SET) { p += seprintf(p, last, ", skip on LSB set"); } if (adjust.adjust_flags & DSGAF_LAST_VAR_READ && HasBit(_misc_debug_flags, MDF_NEWGRF_SG_DUMP_MORE_DETAIL)) { p += seprintf(p, last, ", last var read"); } if (adjust.adjust_flags & DSGAF_JUMP_INS_HINT && HasBit(_misc_debug_flags, MDF_NEWGRF_SG_DUMP_MORE_DETAIL)) { p += seprintf(p, last, ", jump ins hint"); } if (adjust.adjust_flags & DSGAF_END_BLOCK) { p += seprintf(p, last, ", end block (%u)", adjust.jump); } }; if (IsEvalAdjustJumpOperation(adjust.operation)) { conditional_indent++; } if (adjust.adjust_flags & DSGAF_END_BLOCK) { conditional_indent -= adjust.jump; } if (adjust.operation == DSGA_OP_TERNARY) { p += seprintf(p, last, "TERNARY: true: %X, false: %X", adjust.and_mask, adjust.add_val); append_flags(); return p; } if (adjust.operation == DSGA_OP_ABS) { p += seprintf(p, last, "ABS"); append_flags(); return p; } if (adjust.operation == DSGA_OP_JZ_LV || adjust.operation == DSGA_OP_JNZ_LV) { p = GetAdjustOperationName(p, last, adjust.operation); p += seprintf(p, last, " +%u", adjust.jump); append_flags(); return p; } if (adjust.operation == DSGA_OP_STO && adjust.type == DSGA_TYPE_NONE && adjust.variable == 0x1A && adjust.shift_num == 0) { /* Temp storage store */ highlight_tag = (1 << 16) | (adjust.and_mask & 0xFFFF); } p += seprintf(p, last, "var: %X", adjust.variable); if (adjust.variable == A2VRI_VEHICLE_CURRENT_SPEED_SCALED) { p += seprintf(p, last, " (current_speed_scaled)"); } else if (adjust.variable >= 0x100) { extern const GRFVariableMapDefinition _grf_action2_remappable_variables[]; for (const GRFVariableMapDefinition *info = _grf_action2_remappable_variables; info->name != nullptr; info++) { if (adjust.variable == info->id) { p += seprintf(p, last, " (%s)", info->name); break; } } } if ((adjust.variable >= 0x60 && adjust.variable <= 0x7F && adjust.variable != 0x7E) || adjust.parameter != 0) p += seprintf(p, last, " (parameter: %X)", adjust.parameter); p += seprintf(p, last, ", shift: %X, and: %X", adjust.shift_num, adjust.and_mask); switch (adjust.type) { case DSGA_TYPE_DIV: p += seprintf(p, last, ", add: %X, div: %X", adjust.add_val, adjust.divmod_val); break; case DSGA_TYPE_MOD: p += seprintf(p, last, ", add: %X, mod: %X", adjust.add_val, adjust.divmod_val); break; case DSGA_TYPE_EQ: p += seprintf(p, last, ", eq: %X", adjust.add_val); break; case DSGA_TYPE_NEQ: p += seprintf(p, last, ", neq: %X", adjust.add_val); break; case DSGA_TYPE_NONE: break; } if (adjust.operation == DSGA_OP_STO_NC) { p += seprintf(p, last, ", store to: %X", adjust.divmod_val); highlight_tag = (1 << 16) | adjust.divmod_val; } p += seprintf(p, last, ", op: "); p = GetAdjustOperationName(p, last, adjust.operation); if (IsEvalAdjustJumpOperation(adjust.operation)) { p += seprintf(p, last, " +%u", adjust.jump); } append_flags(); return p; } bool SpriteGroupDumper::use_shadows = false; void SpriteGroupDumper::DumpSpriteGroup(const SpriteGroup *sg, int padding, uint flags) { uint32 highlight_tag = 0; auto print = [&]() { this->print_fn(sg, DSGPO_PRINT, highlight_tag, this->buffer); highlight_tag = 0; }; if (sg == nullptr) { seprintf(this->buffer, lastof(this->buffer), "%*sNULL GROUP", padding, ""); print(); return; } if (sg->nfo_line != 0) this->print_fn(sg, DSGPO_NFO_LINE, sg->nfo_line, nullptr); bool start_emitted = false; auto emit_start = [&]() { this->print_fn(sg, DSGPO_START, 0, nullptr); start_emitted = true; }; auto guard = scope_guard([&]() { if (start_emitted) { this->print_fn(sg, DSGPO_END, padding, nullptr); } }); char extra_info[64] = ""; if (sg->sg_flags & SGF_ACTION6) strecat(extra_info, " (action 6 modified)", lastof(extra_info)); switch (sg->type) { case SGT_REAL: { const RealSpriteGroup *rsg = (const RealSpriteGroup*)sg; seprintf(this->buffer, lastof(this->buffer), "%*sReal (loaded: %u, loading: %u)%s [%u]", padding, "", (uint)rsg->loaded.size(), (uint)rsg->loading.size(), extra_info, sg->nfo_line); print(); emit_start(); for (size_t i = 0; i < rsg->loaded.size(); i++) { seprintf(this->buffer, lastof(this->buffer), "%*sLoaded %u", padding + 2, "", (uint)i); print(); this->DumpSpriteGroup(rsg->loaded[i], padding + 4, 0); } for (size_t i = 0; i < rsg->loading.size(); i++) { seprintf(this->buffer, lastof(this->buffer), "%*sLoading %u", padding + 2, "", (uint)i); print(); this->DumpSpriteGroup(rsg->loading[i], padding + 4, 0); } break; } case SGT_DETERMINISTIC: { const DeterministicSpriteGroup *dsg = (const DeterministicSpriteGroup*)sg; const SpriteGroup *default_group = dsg->default_group; const std::vector *adjusts = &(dsg->adjusts); const std::vector *ranges = &(dsg->ranges); if (SpriteGroupDumper::use_shadows) { auto iter = _deterministic_sg_shadows.find(dsg); if (iter != _deterministic_sg_shadows.end()) { default_group = iter->second.default_group; adjusts = &(iter->second.adjusts); ranges = &(iter->second.ranges); } } if (padding == 0 && !dsg->calculated_result && default_group != nullptr) { this->top_default_group = default_group; } if (dsg == this->top_default_group && !(padding == 4 && (flags & SGDF_DEFAULT))) { seprintf(this->buffer, lastof(this->buffer), "%*sTOP LEVEL DEFAULT GROUP: Deterministic (%s, %s), [%u]", padding, "", _sg_scope_names[dsg->var_scope], _sg_size_names[dsg->size], dsg->nfo_line); print(); return; } auto res = this->seen_dsgs.insert(dsg); if (!res.second) { seprintf(this->buffer, lastof(this->buffer), "%*sGROUP SEEN ABOVE: Deterministic (%s, %s), [%u]", padding, "", _sg_scope_names[dsg->var_scope], _sg_size_names[dsg->size], dsg->nfo_line); print(); return; } char *p = this->buffer; p += seprintf(p, lastof(this->buffer), "%*sDeterministic (%s, %s)%s [%u]", padding, "", _sg_scope_names[dsg->var_scope], _sg_size_names[dsg->size], extra_info, dsg->nfo_line); if (HasBit(_misc_debug_flags, MDF_NEWGRF_SG_DUMP_MORE_DETAIL)) { if (dsg->dsg_flags & DSGF_NO_DSE) p += seprintf(p, lastof(this->buffer), ", NO_DSE"); if (dsg->dsg_flags & DSGF_DSE_RECURSIVE_DISABLE) p += seprintf(p, lastof(this->buffer), ", DSE_RD"); if (dsg->dsg_flags & DSGF_VAR_TRACKING_PENDING) p += seprintf(p, lastof(this->buffer), ", VAR_PENDING"); if (dsg->dsg_flags & DSGF_REQUIRES_VAR1C) p += seprintf(p, lastof(this->buffer), ", REQ_1C"); if (dsg->dsg_flags & DSGF_CHECK_EXPENSIVE_VARS) p += seprintf(p, lastof(this->buffer), ", CHECK_EXP_VAR"); if (dsg->dsg_flags & DSGF_CHECK_INSERT_JUMP) p += seprintf(p, lastof(this->buffer), ", CHECK_INS_JMP"); } print(); emit_start(); padding += 2; uint conditional_indent = 0; for (const auto &adjust : (*adjusts)) { DumpSpriteGroupAdjust(this->buffer, lastof(this->buffer), adjust, padding, highlight_tag, conditional_indent); print(); if (adjust.variable == 0x7E && adjust.subroutine != nullptr) { this->DumpSpriteGroup(adjust.subroutine, padding + 5, 0); } } if (dsg->calculated_result) { seprintf(this->buffer, lastof(this->buffer), "%*scalculated_result", padding, ""); print(); } else { for (const auto &range : (*ranges)) { seprintf(this->buffer, lastof(this->buffer), "%*srange: %X -> %X", padding, "", range.low, range.high); print(); this->DumpSpriteGroup(range.group, padding + 2, 0); } if (default_group != nullptr) { seprintf(this->buffer, lastof(this->buffer), "%*sdefault", padding, ""); print(); this->DumpSpriteGroup(default_group, padding + 2, SGDF_DEFAULT); } } break; } case SGT_RANDOMIZED: { const RandomizedSpriteGroup *rsg = (const RandomizedSpriteGroup*)sg; const std::vector *groups = &(rsg->groups); if (SpriteGroupDumper::use_shadows) { auto iter = _randomized_sg_shadows.find(rsg); if (iter != _randomized_sg_shadows.end()) { groups = &(iter->second.groups); } } seprintf(this->buffer, lastof(this->buffer), "%*sRandom (%s, %s, triggers: %X, count: %X, lowest_randbit: %X, groups: %u)%s [%u]", padding, "", _sg_scope_names[rsg->var_scope], rsg->cmp_mode == RSG_CMP_ANY ? "ANY" : "ALL", rsg->triggers, rsg->count, rsg->lowest_randbit, (uint)rsg->groups.size(), extra_info, rsg->nfo_line); print(); emit_start(); for (const auto &group : (*groups)) { this->DumpSpriteGroup(group, padding + 2, 0); } break; } case SGT_CALLBACK: seprintf(this->buffer, lastof(this->buffer), "%*sCallback Result: %X", padding, "", ((const CallbackResultSpriteGroup *) sg)->result); print(); break; case SGT_RESULT: seprintf(this->buffer, lastof(this->buffer), "%*sSprite Result: SpriteID: %u, num: %u", padding, "", ((const ResultSpriteGroup *) sg)->sprite, ((const ResultSpriteGroup *) sg)->num_sprites); print(); break; case SGT_TILELAYOUT: { const TileLayoutSpriteGroup *tlsg = (const TileLayoutSpriteGroup*)sg; seprintf(this->buffer, lastof(this->buffer), "%*sTile Layout%s [%u]", padding, "", extra_info, sg->nfo_line); print(); emit_start(); padding += 2; if (tlsg->dts.registers != nullptr) { const TileLayoutRegisters *registers = tlsg->dts.registers; size_t count = 1; // 1 for the ground sprite const DrawTileSeqStruct *element; foreach_draw_tile_seq(element, tlsg->dts.seq) count++; for (size_t i = 0; i < count; i ++) { const TileLayoutRegisters *reg = registers + i; seprintf(this->buffer, lastof(this->buffer), "%*ssection: %X, register flags: %X", padding, "", (uint)i, reg->flags); print(); auto log_reg = [&](TileLayoutFlags flag, const char *name, uint8 flag_reg) { if (reg->flags & flag) { highlight_tag = (1 << 16) | flag_reg; seprintf(this->buffer, lastof(this->buffer), "%*s%s reg: %X", padding + 2, "", name, flag_reg); print(); } }; log_reg(TLF_DODRAW, "TLF_DODRAW", reg->dodraw); log_reg(TLF_SPRITE, "TLF_SPRITE", reg->sprite); log_reg(TLF_PALETTE, "TLF_PALETTE", reg->palette); log_reg(TLF_BB_XY_OFFSET, "TLF_BB_XY_OFFSET x", reg->delta.parent[0]); log_reg(TLF_BB_XY_OFFSET, "TLF_BB_XY_OFFSET y", reg->delta.parent[1]); log_reg(TLF_BB_Z_OFFSET, "TLF_BB_Z_OFFSET", reg->delta.parent[2]); log_reg(TLF_CHILD_X_OFFSET, "TLF_CHILD_X_OFFSET", reg->delta.child[0]); log_reg(TLF_CHILD_Y_OFFSET, "TLF_CHILD_Y_OFFSET", reg->delta.child[1]); if (reg->flags & TLF_SPRITE_VAR10) { seprintf(this->buffer, lastof(this->buffer), "%*sTLF_SPRITE_VAR10 value: %X", padding + 2, "", reg->sprite_var10); print(); } if (reg->flags & TLF_PALETTE_VAR10) { seprintf(this->buffer, lastof(this->buffer), "%*sTLF_PALETTE_VAR10 value: %X", padding + 2, "", reg->palette_var10); print(); } } } break; } case SGT_INDUSTRY_PRODUCTION: { const IndustryProductionSpriteGroup *ipsg = (const IndustryProductionSpriteGroup*)sg; seprintf(this->buffer, lastof(this->buffer), "%*sIndustry Production (version %X) [%u]", padding, "", ipsg->version, ipsg->nfo_line); print(); emit_start(); auto log_io = [&](const char *prefix, int i, int quantity, CargoID cargo) { if (ipsg->version >= 1) highlight_tag = (1 << 16) | quantity; if (ipsg->version >= 2) { seprintf(this->buffer, lastof(this->buffer), "%*s%s %X: reg %X, cargo ID: %X", padding + 2, "", prefix, i, quantity, cargo); print(); } else { const char *type = (ipsg->version >= 1) ? "reg" : "value"; seprintf(this->buffer, lastof(this->buffer), "%*s%s %X: %s %X", padding + 2, "", prefix, i, type, quantity); print(); } }; for (int i = 0; i < ipsg->num_input; i++) { log_io("Subtract input", i, ipsg->subtract_input[i], ipsg->cargo_input[i]); } for (int i = 0; i < ipsg->num_output; i++) { log_io("Add input", i, ipsg->add_output[i], ipsg->cargo_output[i]); } if (ipsg->version >= 1) highlight_tag = (1 << 16) | ipsg->again; seprintf(this->buffer, lastof(this->buffer), "%*sAgain: %s %X", padding + 2, "", (ipsg->version >= 1) ? "reg" : "value", ipsg->again); print(); break; } } } void DumpSpriteGroup(const SpriteGroup *sg, DumpSpriteGroupPrinter print) { SpriteGroupDumper dumper(std::move(print)); dumper.DumpSpriteGroup(sg, 0, 0); }