#include "stdafx.h" #include "ttd.h" #include "npf.h" #include "aystar.h" #include "macros.h" #include "pathfind.h" #include "station.h" #include "tile.h" AyStar _train_find_station; AyStar _train_find_depot; AyStar _road_find_station; AyStar _road_find_depot; AyStar _npf_aystar; /* Maps a trackdir to the bit that stores its status in the map arrays, in the * direction along with the trackdir */ const byte _signal_along_trackdir[14] = { 0x80, 0x80, 0x80, 0x20, 0x40, 0x10, 0, 0, 0x40, 0x40, 0x40, 0x10, 0x80, 0x20 }; /* Maps a trackdir to the bit that stores its status in the map arrays, in the * direction against the trackdir */ const byte _signal_against_trackdir[14] = { 0x40, 0x40, 0x40, 0x10, 0x80, 0x20, 0, 0, 0x80, 0x80, 0x80, 0x20, 0x40, 0x10 }; /* Maps a trackdir to the trackdirs that can be reached from it (ie, when * entering the next tile */ const uint16 _trackdir_reaches_trackdirs[14] = { 0x1009, 0x0016, 0x1009, 0x0016, 0x0520, 0x0016, 0, 0, 0x0520, 0x2A00, 0x2A00, 0x0520, 0x2A00, 0x1009 }; /* Maps a trackdir to all trackdirs that make 90 deg turns with it. */ const uint16 _trackdir_crosses_trackdirs[14] = { 0x0202, 0x0101, 0x3030, 0x3030, 0x0C0C, 0x0C0C, 0, 0, 0x0202, 0x0101, 0x3030, 0x3030, 0x0C0C, 0x0C0C }; /* Maps a track to all tracks that make 90 deg turns with it. */ const byte _track_crosses_tracks[6] = { 0x2, /* Track 1 -> Track 2 */ 0x1, /* Track 2 -> Track 1 */ 0x30, /* Upper -> Left | Right */ 0x30, /* Lower -> Left | Right */ 0x0C, /* Left -> Upper | Lower */ 0x0C, /* Right -> Upper | Lower */ }; /* Maps a trackdir to the (4-way) direction the tile is exited when following * that trackdir */ const byte _trackdir_to_exitdir[14] = { 0,1,0,1,2,1, 0,0, 2,3,3,2,3,0, }; const byte _track_exitdir_to_trackdir[6][4] = { {0, 0xff, 8, 0xff}, {0xff, 1, 0xff, 9}, {2, 0xff, 0xff, 10}, {0xff, 3, 11, 0xf}, {0xff, 0xff, 4, 12}, {13, 5, 0xff, 0xff} }; const byte _track_direction_to_trackdir[6][8] = { {0xff, 0, 0xff, 0xff, 0xff, 8, 0xff, 0xff}, {0xff, 0xff, 0xff, 1, 0xff, 0xff, 0xff, 9}, {0xff, 0xff, 2, 0xff, 0xff, 0xff, 10, 0xff}, {0xff, 0xff, 3, 0xff, 0xff, 0xff, 11, 0xff}, {12, 0xff, 0xff, 0xff, 4, 0xff, 0xff, 0xff}, {13, 0xff, 0xff, 0xff, 5, 0xff, 0xff, 0xff} }; const byte _dir_to_diag_trackdir[4] = { 0, 1, 8, 9, }; const byte _reverse_dir[4] = { 2, 3, 0, 1 }; const byte _reverse_trackdir[14] = { 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5 }; /* The cost of each trackdir. A diagonal piece is the full NPF_TILE_LENGTH, * the shorter piece is sqrt(2)/2*NPF_TILE_LENGTH =~ 0.7071 */ #define NPF_STRAIGHT_LENGTH (uint)(NPF_TILE_LENGTH * 0.7071) static const uint _trackdir_length[14] = { NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, 0, 0, NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH }; uint NTPHash(uint key1, uint key2) { return PATHFIND_HASH_TILE(key1); } int32 NPFCalcZero(AyStar* as, AyStarNode* current, OpenListNode* parent) { return 0; } /* Calcs the heuristic to the target station (using NPFFindStationOrTileData). After * will save the heuristic into NPFFoundTargetData if it is the smallest until * now. It will then also save AyStarNode.user_data[NPF_TRACKDIR_CHOICE] in * best_trackdir */ int32 NPFCalcStationOrTileHeuristic(AyStar* as, AyStarNode* current, OpenListNode* parent) { NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target; NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path; TileIndex from = current->tile; TileIndex to = fstd->dest_coords; uint dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH; if (dist < ftd->best_bird_dist) { ftd->best_bird_dist = dist; ftd->best_trackdir = current->user_data[NPF_TRACKDIR_CHOICE]; } #ifdef NPF_DEBUG debug("Calculating H for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), dist); #endif return dist; } /* Fills AyStarNode.user_data[NPF_TRACKDIRCHOICE] with the chosen direction to * get here, either getting it from the current choice or from the parent's * choice */ void NPFFillTrackdirChoice(AyStarNode* current, OpenListNode* parent) { if (parent->path.parent == NULL) { byte trackdir = current->direction; /* This is a first order decision, so we'd better save the * direction we chose */ current->user_data[NPF_TRACKDIR_CHOICE] = trackdir; #ifdef NPF_DEBUG debug("Saving trackdir: %#x", trackdir); #endif } else { /* We've already made the decision, so just save our parent's * decision */ current->user_data[NPF_TRACKDIR_CHOICE] = parent->path.node.user_data[NPF_TRACKDIR_CHOICE]; } } /* Will return the cost of the tunnel. If it is an entry, it will return the * cost of that tile. If the tile is an exit, it will return the tunnel length * including the exit tile. Requires that this is a Tunnel tile */ uint NPFTunnelCost(AyStarNode* current) { byte exitdir = _trackdir_to_exitdir[current->direction]; TileIndex tile = current->tile; if ( (uint)(_map5[tile] & 3) == _reverse_dir[exitdir]) { /* We just popped out if this tunnel, since were * facing the tunnel exit */ FindLengthOfTunnelResult flotr; flotr = FindLengthOfTunnel(tile, _reverse_dir[exitdir]); return flotr.length * NPF_TILE_LENGTH; //TODO: Penalty for tunnels? } else { /* We are entering the tunnel, the enter tile is just a * straight track */ return NPF_TILE_LENGTH; } } uint NPFSlopeCost(AyStarNode* current) { TileIndex next = current->tile + TileOffsByDir(_trackdir_to_exitdir[current->direction]); if (GetTileZ(next) > GetTileZ(current->tile)) { /* Slope up */ return _patches.npf_rail_slope_penalty; } return 0; /* Should we give a bonus for slope down? Probably not, we * could just substract that bonus from the penalty, because * there is only one level of steepness... */ } void NPFMarkTile(TileIndex tile) { switch(GetTileType(tile)) { case MP_RAILWAY: case MP_STREET: /* DEBUG: mark visited tiles by mowing the grass under them * ;-) */ _map2[tile] &= ~15; MarkTileDirtyByTile(tile); break; default: break; } } int32 NPFWaterPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) { //TileIndex tile = current->tile; int32 cost = 0; byte trackdir = current->direction; cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */ /* TODO Penalties? */ return cost; } /* Determine the cost of this node, for road tracks */ int32 NPFRoadPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) { TileIndex tile = current->tile; int32 cost = 0; /* Determine base length */ switch (GetTileType(tile)) { case MP_TUNNELBRIDGE: if ((_map5[tile] & 0xF0)==0) { cost = NPFTunnelCost(current); break; } /* Fall through if above if is false, it is a bridge * then. We treat that as ordinary rail */ case MP_STREET: cost = NPF_TILE_LENGTH; break; default: break; } /* Determine extra costs */ /* Check for slope */ cost += NPFSlopeCost(current); /* Check for turns */ //TODO #ifdef NPF_MARKROUTE NPFMarkTile(tile); #endif #ifdef NPF_DEBUG debug("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost); #endif return cost; } /* Determine the cost of this node, for railway tracks */ int32 NPFRailPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) { TileIndex tile = current->tile; byte trackdir = current->direction; int32 cost = 0; /* Determine base length */ switch (GetTileType(tile)) { case MP_TUNNELBRIDGE: if ((_map5[tile] & 0xF0)==0) { cost = NPFTunnelCost(current); break; } /* Fall through if above if is false, it is a bridge * then. We treat that as ordinary rail */ case MP_RAILWAY: cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */ break; case MP_STREET: /* Railway crossing */ cost = NPF_TILE_LENGTH; break; default: break; } /* Determine extra costs */ /* Ordinary track with signals */ if (IsTileType(tile, MP_RAILWAY) && (_map5[tile] & 0xC0) == 0x40) { if ((_map2[tile] & _signal_along_trackdir[trackdir]) == 0) { /* Signal facing us is red */ if (!(current->user_data[NPF_NODE_FLAGS] & NPF_FLAG_SEEN_SIGNAL)) { /* Penalize the first signal we * encounter, if it is red */ cost += _patches.npf_rail_firstred_penalty; } } current->user_data[NPF_NODE_FLAGS] |= NPF_FLAG_SEEN_SIGNAL; } /* Check for slope */ cost += NPFSlopeCost(current); /* Check for turns */ //TODO /* Check for occupied track */ //TODO /* Check for station tiles */ if (IsTileType(tile, MP_STATION)) { /* We give a station tile a penalty. Logically we would only * want to give station tiles that are not our destination * this penalty. This would discourage trains to drive through * busy stations. But, we can just give any station tile a * penalty, because every possible route will get this penalty * exactly once, on its end tile (if it's a station) and it * will therefore not make a difference. */ cost += _patches.npf_rail_station_penalty; } #ifdef NPF_MARKROUTE NPFMarkTile(tile); #endif #ifdef NPF_DEBUG debug("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost); #endif return cost; } /* Will find any depot */ int32 NPFFindDepot(AyStar* as, OpenListNode *current) { TileIndex tile = current->path.node.tile; bool isDepot; switch(GetTileType(tile)) { case MP_RAILWAY: /* Check if this is a rail depot */ isDepot = IsTrainDepotTile(tile); break; case MP_STREET: /* Check if this is a road depot */ isDepot = IsRoadDepotTile(tile); break; case MP_WATER: isDepot = IsShipDepotTile(tile); break; default: isDepot = false; break; } if (isDepot) return AYSTAR_FOUND_END_NODE; else return AYSTAR_DONE; } /* Will find a station identified using the NPFFindStationOrTileData */ int32 NPFFindStationOrTile(AyStar* as, OpenListNode *current) { /* If GetNeighbours said we could get here, we assume the station type * is correct */ NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target; TileIndex tile = current->path.node.tile; if ( (fstd->station_index == -1 && tile == fstd->dest_coords) || /* We've found the tile, or */ (IsTileType(tile, MP_STATION) && _map2[tile] == fstd->station_index) /* the station */ ) return AYSTAR_FOUND_END_NODE; else return AYSTAR_DONE; } /* To be called when current contains the (shortest route to) the target node. * Will fill the contents of the NPFFoundTargetData using * AyStarNode[NPF_TRACKDIR_CHOICE]. */ void NPFSaveTargetData(AyStar* as, OpenListNode* current) { NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path; ftd->best_trackdir = current->path.node.user_data[NPF_TRACKDIR_CHOICE]; ftd->best_path_dist = current->g; ftd->best_bird_dist = 0; ftd->node = current->path.node; } /* Will just follow the results of GetTileTrackStatus concerning where we can * go and where not. Uses AyStar.user_data[NPF_TYPE] as the transport type and * an argument to GetTileTrackStatus. Will skip tunnels, meaning that the * entry and exit are neighbours. Will fill AyStarNode.user_data[NPF_TRACKDIR_CHOICE] with an * appropriate value, and copy AyStarNode.user_data[NPF_NODE_FLAGS] from the * parent */ void NPFFollowTrack(AyStar* aystar, OpenListNode* current) { byte src_trackdir = current->path.node.direction; TileIndex src_tile = current->path.node.tile; byte src_exitdir = _trackdir_to_exitdir[src_trackdir]; FindLengthOfTunnelResult flotr; TileIndex dst_tile; int i = 0; uint trackdirs, ts; TransportType type = aystar->user_data[NPF_TYPE]; /* Initialize to 0, so we can jump out (return) somewhere an have no neighbours */ aystar->num_neighbours = 0; #ifdef NPF_DEBUG debug("Expanding: (%d, %d, %d) [%d]", TileX(src_tile), TileY(src_tile), src_trackdir, src_tile); #endif /* Find dest tile */ if (IsTileType(src_tile, MP_TUNNELBRIDGE) && (_map5[src_tile] & 0xF0)==0 && (_map5[src_tile] & 3) == src_exitdir) { /* This is a tunnel. We know this tunnel is our type, * otherwise we wouldn't have got here. It is also facing us, * so we should skip it's body */ flotr = FindLengthOfTunnel(src_tile, src_exitdir); dst_tile = flotr.tile; } else { if ( (type == TRANSPORT_ROAD && IsRoadStationTile(src_tile)) || (type == TRANSPORT_ROAD && IsRoadDepotTile(src_tile)) || (type == TRANSPORT_RAIL && IsTrainDepotTile(src_tile)) ){ /* This is a road station or a train or road depot. We can enter and exit * those from one side only. Trackdirs don't support that (yet), so we'll * do this here. */ byte exitdir; /* Find out the exit direction first */ if (IsRoadStationTile(src_tile)) exitdir = GetRoadStationDir(src_tile); else /* Train or road depot. Direction is stored the same for both, in map5 */ exitdir = _map5[src_tile] & 3; /* Extract the direction from the map */ /* Let's see if were headed the right way */ if (src_trackdir != _dir_to_diag_trackdir[exitdir]) /* Not going out of the station/depot through the exit, but the back. No * neighbours then. */ return; } /* This a normal tile, a bridge, a tunnel exit, etc. */ dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(_trackdir_to_exitdir[src_trackdir])); if (dst_tile == INVALID_TILE) { /* We reached the border of the map */ /* TODO Nicer control flow for this */ return; } } // TODO: check correct rail type (mono, maglev, etc) // TODO: check tile owner /* Determine available tracks */ if (type == TRANSPORT_ROAD && (IsRoadStationTile(dst_tile) || IsRoadDepotTile(dst_tile))){ byte exitdir; /* Road stations and depots return 0 on GTTS, so we have to do this by hand... */ if (IsRoadStationTile(dst_tile)) exitdir = GetRoadStationDir(dst_tile); else /* Road depot */ exitdir = _map5[dst_tile] & 3; /* Extract the direction from the map */ ts = (1 << _dir_to_diag_trackdir[exitdir]) | (1 << _dir_to_diag_trackdir[_reverse_dir[exitdir]]); /* Find the trackdirs that are available for a station with this orientation. They are in both directions */ } else { ts = GetTileTrackStatus(dst_tile, type); } trackdirs = ts & 0x3F3F; /* Filter out signal status and the unused bits */ #ifdef NPF_DEBUG debug("Next node: (%d, %d) [%d], possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), dst_tile, trackdirs); #endif /* Select only trackdirs we can reach from our current trackdir */ trackdirs &= _trackdir_reaches_trackdirs[src_trackdir]; if (_patches.forbid_90_deg && (type == TRANSPORT_RAIL || type == TRANSPORT_WATER)) /* Filter out trackdirs that would make 90 deg turns for trains */ trackdirs &= ~_trackdir_crosses_trackdirs[src_trackdir]; #ifdef NPF_DEBUG debug("After filtering: (%d, %d), possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), trackdirs); #endif /* Enumerate possible track */ while (trackdirs != 0) { byte dst_trackdir; dst_trackdir = FindFirstBit2x64(trackdirs); trackdirs = KillFirstBit2x64(trackdirs); #ifdef NPF_DEBUG debug("Expanded into trackdir: %d, remaining trackdirs: %#x", dst_trackdir, trackdirs); #endif /* Check for oneway signal against us */ if (IsTileType(dst_tile, MP_RAILWAY) && (_map5[dst_tile]&0xC0) == 0x40) { // the tile has a signal byte signal_present = _map3_lo[dst_tile]; if (!(signal_present & _signal_along_trackdir[dst_trackdir])) { // if one way signal not pointing towards us, stop going in this direction. if (signal_present & _signal_against_trackdir[dst_trackdir]) break; } } { /* We've found ourselves a neighbour :-) */ AyStarNode* neighbour = &aystar->neighbours[i]; neighbour->tile = dst_tile; neighbour->direction = dst_trackdir; /* Save user data */ neighbour->user_data[NPF_NODE_FLAGS] = current->path.node.user_data[NPF_NODE_FLAGS]; NPFFillTrackdirChoice(neighbour, current); } i++; } aystar->num_neighbours = i; } /* * Plan a route to the specified target (which is checked by target_proc), * from start1 and if not NULL, from start2 as well. The type of transport we * are checking is in type. * When we are looking for one specific target (optionally multiple tiles), we * should use a good heuristic to perform aystar search. When we search for * multiple targets that are spread around, we should perform a breadth first * search by specifiying CalcZero as our heuristic. */ NPFFoundTargetData NPFRouteInternal(AyStarNode* start1, AyStarNode* start2, NPFFindStationOrTileData* target, AyStar_EndNodeCheck target_proc, AyStar_CalculateH heuristic_proc, TransportType type) { int r; NPFFoundTargetData result; /* Initialize procs */ _npf_aystar.CalculateH = heuristic_proc; _npf_aystar.EndNodeCheck = target_proc; _npf_aystar.FoundEndNode = NPFSaveTargetData; _npf_aystar.GetNeighbours = NPFFollowTrack; if (type == TRANSPORT_RAIL) _npf_aystar.CalculateG = NPFRailPathCost; else if (type == TRANSPORT_ROAD) _npf_aystar.CalculateG = NPFRoadPathCost; else if (type == TRANSPORT_WATER) _npf_aystar.CalculateG = NPFWaterPathCost; else assert(0); /* Initialize Start Node(s) */ start1->user_data[NPF_TRACKDIR_CHOICE] = 0xff; start1->user_data[NPF_NODE_FLAGS] = 0; _npf_aystar.addstart(&_npf_aystar, start1); if (start2) { start2->user_data[NPF_TRACKDIR_CHOICE] = 0xff; start2->user_data[NPF_NODE_FLAGS] = NPF_FLAG_REVERSE; _npf_aystar.addstart(&_npf_aystar, start2); } /* Initialize result */ result.best_bird_dist = (uint)-1; result.best_path_dist = (uint)-1; result.best_trackdir = 0xff; _npf_aystar.user_path = &result; /* Initialize target */ _npf_aystar.user_target = target; /* Initialize user_data */ _npf_aystar.user_data[NPF_TYPE] = type; /* GO! */ r = AyStarMain_Main(&_npf_aystar); assert(r != AYSTAR_STILL_BUSY); if (result.best_bird_dist != 0) { if (target) { DEBUG(misc, 1) ("NPF: Could not find route to 0x%x from 0x%x.", target->dest_coords, start1->tile); } else { /* Assumption: target == NULL, so we are looking for a depot */ DEBUG(misc, 1) ("NPF: Could not find route to a depot from 0x%x.", start1->tile); } } return result; } NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, byte trackdir1, TileIndex tile2, byte trackdir2, NPFFindStationOrTileData* target, TransportType type) { AyStarNode start1; AyStarNode start2; start1.tile = tile1; start2.tile = tile2; start1.direction = trackdir1; start2.direction = trackdir2; return NPFRouteInternal(&start1, &start2, target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type); } NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, byte trackdir, NPFFindStationOrTileData* target, TransportType type) { AyStarNode start; assert(tile != 0); start.tile = tile; start.direction = trackdir; /* We set this in case the target is also the start tile, we will just * return a not found then */ start.user_data[NPF_TRACKDIR_CHOICE] = 0xff; return NPFRouteInternal(&start, NULL, target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type); } NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, byte trackdir, TransportType type) { AyStarNode start; start.tile = tile; start.direction = trackdir; /* We set this in case the target is also the start tile, we will just * return a not found then */ start.user_data[NPF_TRACKDIR_CHOICE] = 0xff; /* perform a breadth first search. Target is NULL, * since we are just looking for any depot...*/ return NPFRouteInternal(&start, NULL, NULL, NPFFindDepot, NPFCalcZero, type); } NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, byte trackdir, TransportType type) { /* Okay, what we're gonna do. First, we look at all depots, calculate * the manhatten distance to get to each depot. We then sort them by * distance. We start by trying to plan a route to the closest, then * the next closest, etc. We stop when the best route we have found so * far, is shorter than the manhattan distance. This will obviously * always find the closest depot. It will probably be most efficient * for ships, since the heuristic will not be to far off then. I hope. */ Queue depots; uint i; TileType tiletype = 0; int r; NPFFoundTargetData best_result; NPFFoundTargetData result; NPFFindStationOrTileData target; AyStarNode start; Depot* current; /* This is a little ugly, but it works :-S */ if (type == TRANSPORT_ROAD) tiletype = MP_STREET; else if (type == TRANSPORT_RAIL) tiletype = MP_RAILWAY; else if (type == TRANSPORT_WATER) tiletype = MP_WATER; else assert(0); init_InsSort(&depots); /* Okay, let's find all depots that we can use first */ for (i=0;ixy * NPF_TILE_LENGTH) > best_result.best_path_dist) break; /* Initialize Start Node */ /* We set this in case the target is also the start tile, we will just * return a not found then */ start.user_data[NPF_TRACKDIR_CHOICE] = 0xff; start.user_data[NPF_NODE_FLAGS] = 0; _npf_aystar.addstart(&_npf_aystar, &start); /* Initialize result */ result.best_bird_dist = (uint)-1; result.best_path_dist = (uint)-1; result.best_trackdir = 0xff; /* Initialize target */ target.dest_coords = current->xy; /* GO! */ r = AyStarMain_Main(&_npf_aystar); assert(r != AYSTAR_STILL_BUSY); /* This depot is closer */ if (result.best_path_dist < best_result.best_path_dist) best_result = result; } if (result.best_bird_dist != 0) { DEBUG(misc, 1) ("NPF: Could not find route to any depot from 0x%x.", tile); } return best_result; } void InitializeNPF(void) { init_AyStar(&_npf_aystar, NTPHash, 1024); _npf_aystar.loops_per_tick = 0; _npf_aystar.max_path_cost = 0; _npf_aystar.max_search_nodes = 0; /* init_AyStar(&_train_find_station, NTPHash, 1024); init_AyStar(&_train_find_depot, NTPHash, 1024); init_AyStar(&_road_find_station, NTPHash, 1024); init_AyStar(&_road_find_depot, NTPHash, 1024); _train_find_station.loops_per_tick = 0; _train_find_depot.loops_per_tick = 0; _road_find_station.loops_per_tick = 0; _road_find_depot.loops_per_tick = 0; _train_find_station.max_path_cost = 0; _train_find_depot.max_path_cost = 0; _road_find_station.max_path_cost = 0; _road_find_depot.max_path_cost = 0; _train_find_station.max_search_nodes = 0; _train_find_depot.max_search_nodes = 0; _road_find_station.max_search_nodes = 0; _road_find_depot.max_search_nodes = 0; _train_find_station.CalculateG = NPFRailPathCost; _train_find_depot.CalculateG = NPFRailPathCost; _road_find_station.CalculateG = NPFRoadPathCost; _road_find_depot.CalculateG = NPFRoadPathCost; _train_find_station.CalculateH = NPFCalcStationHeuristic; _train_find_depot.CalculateH = NPFCalcStationHeuristic; _road_find_station.CalculateH = NPFCalcStationHeuristic; _road_find_depot.CalculateH = NPFCalcStationHeuristic; _train_find_station.EndNodeCheck = NPFFindStationOrTile; _train_find_depot.EndNodeCheck = NPFFindStationOrTile; _road_find_station.EndNodeCheck = NPFFindStationOrTile; _road_find_depot.EndNodeCheck = NPFFindStationOrTile; _train_find_station.FoundEndNode = NPFSaveTargetData; _train_find_depot.FoundEndNode = NPFSaveTargetData; _road_find_station.FoundEndNode = NPFSaveTargetData; _road_find_depot.FoundEndNode = NPFSaveTargetData; _train_find_station.GetNeighbours = NPFFollowTrack; _train_find_depot.GetNeighbours = NPFFollowTrack; _road_find_station.GetNeighbours = NPFFollowTrack; _road_find_depot.GetNeighbours = NPFFollowTrack; */ } void NPFFillWithOrderData(NPFFindStationOrTileData* fstd, Vehicle* v) { /* Ships don't really reach their stations, but the tile in front. So don't * save the station id for ships. For roadvehs we don't store it either, * because multistop depends on vehicles actually reaching the exact * dest_tile, not just any stop of that station. * So only for train orders to stations we fill fstd->station_index, for all * others only dest_coords */ if ((v->current_order.type) == OT_GOTO_STATION && v->type == VEH_Train) { const Station* st = GetStation(v->current_order.station); TileIndexDiffC center = {st->trainst_w/2, st->trainst_h/2}; fstd->station_index = v->current_order.station; /* Let's take the center of the station as our target tile for trains */ fstd->dest_coords = TILE_ADD(st->train_tile, ToTileIndexDiff(center)); } else { fstd->dest_coords = v->dest_tile; fstd->station_index = -1; } }