/** @file * All actions handling saving and loading goes on in this file. The general actions * are as follows for saving a game (loading is analogous): *
    *
  1. initialize the writer by creating a temporary memory-buffer for it *
  2. go through all to-be saved elements, each 'chunk' (ChunkHandler) prefixed by a label *
  3. use their description array (SaveLoad) to know what elements to save and in what version * of the game it was active (used when loading) *
  4. write all data byte-by-byte to the temporary buffer so it is endian-safe *
  5. when the buffer is full; flush it to the output (eg save to file) (_sl.buf, _sl.bufp, _sl.bufe) *
  6. repeat this until everything is done, and flush any remaining output to file *
* @see ChunkHandler * @see SaveLoad */ #include "stdafx.h" #include "openttd.h" #include "debug.h" #include "vehicle.h" #include "station.h" #include "town.h" #include "player.h" #include "saveload.h" enum { SAVEGAME_MAJOR_VERSION = 13, SAVEGAME_MINOR_VERSION = 0x1, SAVEGAME_LOADABLE_VERSION = (SAVEGAME_MAJOR_VERSION << 8) + SAVEGAME_MINOR_VERSION }; enum NeedLengthValues {NL_NONE = 0, NL_WANTLENGTH = 1, NL_CALCLENGTH = 2}; SaverLoader _sl; /** * Fill the input buffer by reading from the file with the given reader */ static void SlReadFill(void) { uint len = _sl.read_bytes(); assert(len != 0); _sl.bufp = _sl.buf; _sl.bufe = _sl.buf + len; _sl.offs_base += len; } static inline uint32 SlGetOffs(void) {return _sl.offs_base - (_sl.bufe - _sl.bufp);} /** Flush the output buffer by writing to disk with the given reader. * If the buffer pointer has not yet been set up, set it up now. Usually * only called when the buffer is full, or there is no more data to be processed */ static void SlWriteFill(void) { // flush the buffer to disk (the writer) if (_sl.bufp != NULL) { uint len = _sl.bufp - _sl.buf; _sl.offs_base += len; if (len) _sl.write_bytes(len); } /* All the data from the buffer has been written away, rewind to the beginning * to start reading in more data */ _sl.bufp = _sl.buf; _sl.bufe = _sl.buf + _sl.bufsize; } /** Error handler, calls longjmp to simulate an exception. * @todo this was used to have a central place to handle errors, but it is * pretty ugly, and seriously interferes with any multithreaded approaches */ static void NORETURN SlError(const char *msg) { _sl.excpt_msg = msg; longjmp(_sl.excpt, 0); } /** Read in a single byte from file. If the temporary buffer is full, * flush it to its final destination * @return return the read byte from file */ static inline int SlReadByteInternal(void) { if (_sl.bufp == _sl.bufe) SlReadFill(); return *_sl.bufp++; } /** Wrapper for SlReadByteInternal */ int SlReadByte(void) {return SlReadByteInternal();} /** Write away a single byte from memory. If the temporary buffer is full, * flush it to its destination (file) * @param b the byte that is currently written */ static inline void SlWriteByteInternal(byte b) { if (_sl.bufp == _sl.bufe) SlWriteFill(); *_sl.bufp++ = b; } /** Wrapper for SlWriteByteInternal */ void SlWriteByte(byte b) {SlWriteByteInternal(b);} static inline int SlReadUint16(void) { int x = SlReadByte() << 8; return x | SlReadByte(); } static inline uint32 SlReadUint32(void) { uint32 x = SlReadUint16() << 16; return x | SlReadUint16(); } static inline uint64 SlReadUint64(void) { uint32 x = SlReadUint32(); uint32 y = SlReadUint32(); return (uint64)x << 32 | y; } static inline void SlWriteUint16(VarType v) { SlWriteByte((byte)(v >> 8)); SlWriteByte((byte)v); } static inline void SlWriteUint32(uint32 v) { SlWriteUint16((uint16)(v >> 16)); SlWriteUint16((uint16)v); } static inline void SlWriteUint64(uint64 x) { SlWriteUint32((uint32)(x >> 32)); SlWriteUint32((uint32)x); } /** * Read in the header descriptor of an object or an array. * If the highest bit is set (7), then the index is bigger than 127 * elements, so use the next byte to read in the real value. * The actual value is then both bytes added with the first shifted * 8 bits to the left, and dropping the highest bit (which only indicated a big index). * x = ((x & 0x7F) << 8) + SlReadByte(); * @return Return the value of the index */ static uint SlReadSimpleGamma(void) { uint i = SlReadByte(); if (HASBIT(i, 7)) { i = (i << 8) + SlReadByte(); CLRBIT(i, 15); } return i; } /** * Write the header descriptor of an object or an array. * If the element is bigger than 127, use 2 bytes for saving * and use the highest byte of the first written one as a notice * that the length consists of 2 bytes. The length is fixed to a * maximum of 16384 since any higher value will have bit 15 set * and the notice, would obfuscate the real value * @param i Index being written * @todo the maximum of 16384 can easily be reached with vehicles, so raise this artificial limit */ static void SlWriteSimpleGamma(uint i) { assert(i < (1 << 14)); if (i >= (1 << 7)) { SlWriteByte((byte)((1 << 7) | (i >> 8))); SlWriteByte((byte)i); } else SlWriteByte(i); } /** Return if the length will use up 1 or two bytes in a savegame */ static inline uint SlGetGammaLength(uint i) {return (i >= (1 << 7)) ? 2 : 1;} static inline int SlReadSparseIndex(void) {return SlReadSimpleGamma();} static inline void SlWriteSparseIndex(uint index) {SlWriteSimpleGamma(index);} static inline int SlReadArrayLength(void) {return SlReadSimpleGamma();} static inline void SlWriteArrayLength(uint length) {SlWriteSimpleGamma(length);} void SlSetArrayIndex(uint index) { _sl.need_length = NL_WANTLENGTH; _sl.array_index = index; } /** * Iterate through the elements of an array and read the whole thing * @return The index of the object, or -1 if we have reached the end of current block */ int SlIterateArray(void) { int index; static uint32 next_offs; /* After reading in the whole array inside the loop * we must have read in all the data, so we must be at end of current block. */ assert(next_offs == 0 || SlGetOffs() == next_offs); while (true) { uint length = SlReadArrayLength(); if (length == 0) { next_offs = 0; return -1; } _sl.obj_len = --length; next_offs = SlGetOffs() + length; switch (_sl.block_mode) { case CH_SPARSE_ARRAY: index = SlReadSparseIndex(); break; case CH_ARRAY: index = _sl.array_index++; break; default: DEBUG(misc, 0) ("SlIterateArray: error"); return -1; // error } if (length != 0) return index; } } /** * Sets the length of either a RIFF object or the number of items in an array. * This lets us load an object or an array of arbitrary size * @param length The length of the sought object/array */ void SlSetLength(size_t length) { switch (_sl.need_length) { case NL_WANTLENGTH: _sl.need_length = NL_NONE; switch (_sl.block_mode) { case CH_RIFF: // Really simple to write a RIFF length :) SlWriteUint32(length); break; case CH_ARRAY: assert(_sl.last_array_index <= _sl.array_index); while (++_sl.last_array_index <= _sl.array_index) SlWriteArrayLength(1); SlWriteArrayLength(length + 1); break; case CH_SPARSE_ARRAY: SlWriteArrayLength(length + 1 + SlGetGammaLength(_sl.array_index)); // Also include length of sparse index. SlWriteSparseIndex(_sl.array_index); break; default: NOT_REACHED(); } break; case NL_CALCLENGTH: _sl.obj_len += length; break; } } /** * Save/Load bytes. These do not need to be converted to Little/Big Endian * so directly write them or read them to/from file * @param ptr The source or destination of the object being manipulated * @param length number of bytes this fast CopyBytes lasts */ static void SlCopyBytes(void *ptr, size_t length) { byte *p = (byte*)ptr; if (_sl.save) { for (; length != 0; length--) {SlWriteByteInternal(*p++);} } else { for (; length != 0; length--) {*p++ = SlReadByteInternal();} } } #if 0 /** * Read in bytes from the file/data structure but don't do * anything with them * NOTICE: currently unused * @param length The amount of bytes that is being treated this way */ static inline void SlSkipBytes(size_t length) { for (; length != 0; length--) SlReadByte(); } #endif /* Get the length of the current object */ uint SlGetFieldLength(void) {return _sl.obj_len;} /** * Handle all conversion and typechecking of variables here. * In the case of saving, read in the actual value from the struct * and then write them to file, endian safely. Loading a value * goes exactly the opposite way * @param ptr The object being filled/read * @param conv @VarType type of the current element of the struct */ static void SlSaveLoadConv(void *ptr, VarType conv) { int64 x = 0; if (_sl.save) { /* SAVE values */ /* Read a value from the struct. These ARE endian safe. */ switch ((conv >> 4) & 0xF) { case SLE_VAR_I8 >> 4: x = *(int8*)ptr; break; case SLE_VAR_U8 >> 4: x = *(byte*)ptr; break; case SLE_VAR_I16 >> 4: x = *(int16*)ptr; break; case SLE_VAR_U16 >> 4: x = *(uint16*)ptr; break; case SLE_VAR_I32 >> 4: x = *(int32*)ptr; break; case SLE_VAR_U32 >> 4: x = *(uint32*)ptr; break; case SLE_VAR_I64 >> 4: x = *(int64*)ptr; break; case SLE_VAR_U64 >> 4: x = *(uint64*)ptr; break; case SLE_VAR_NULL >> 4: x = 0; break; default: NOT_REACHED(); } // Write the value to the file and check if its value is in the desired range switch (conv & 0xF) { case SLE_FILE_I8: assert(x >= -128 && x <= 127); SlWriteByte(x);break; case SLE_FILE_U8: assert(x >= 0 && x <= 255); SlWriteByte(x);break; case SLE_FILE_I16:assert(x >= -32768 && x <= 32767); SlWriteUint16(x);break; case SLE_FILE_STRINGID: case SLE_FILE_U16:assert(x >= 0 && x <= 65535); SlWriteUint16(x);break; case SLE_FILE_I32: case SLE_FILE_U32: SlWriteUint32((uint32)x);break; case SLE_FILE_I64: case SLE_FILE_U64: SlWriteUint64(x);break; default: NOT_REACHED(); } } else { /* LOAD values */ // Read a value from the file switch (conv & 0xF) { case SLE_FILE_I8: x = (int8)SlReadByte(); break; case SLE_FILE_U8: x = (byte)SlReadByte(); break; case SLE_FILE_I16: x = (int16)SlReadUint16(); break; case SLE_FILE_U16: x = (uint16)SlReadUint16(); break; case SLE_FILE_I32: x = (int32)SlReadUint32(); break; case SLE_FILE_U32: x = (uint32)SlReadUint32(); break; case SLE_FILE_I64: x = (int64)SlReadUint64(); break; case SLE_FILE_U64: x = (uint64)SlReadUint64(); break; case SLE_FILE_STRINGID: x = RemapOldStringID((uint16)SlReadUint16()); break; default: NOT_REACHED(); } /* Write The value to the struct. These ARE endian safe. */ switch ((conv >> 4) & 0xF) { case SLE_VAR_I8 >> 4: *(int8*)ptr = x; break; case SLE_VAR_U8 >> 4: *(byte*)ptr = x; break; case SLE_VAR_I16 >> 4: *(int16*)ptr = x; break; case SLE_VAR_U16 >> 4: *(uint16*)ptr = x; break; case SLE_VAR_I32 >> 4: *(int32*)ptr = x; break; case SLE_VAR_U32 >> 4: *(uint32*)ptr = x; break; case SLE_VAR_I64 >> 4: *(int64*)ptr = x; break; case SLE_VAR_U64 >> 4: *(uint64*)ptr = x; break; case SLE_VAR_NULL >> 4: break; default: NOT_REACHED(); } } } /* Length in bytes of the various datatypes in a savefile. These * sizes are guaranteed by assert_compiles in stdafx.h */ static const byte _conv_lengths[] = {1, 1, 2, 2, 4, 4, 8, 8, 2}; /** * Return the size in bytes of a certain type of normal/atomic variable * @param var The variable the size is being asked of (NOTICE: unused) * @param conv @VarType type of variable that is used for calculating the size * @return Return the size of this type in byes */ static inline size_t SlCalcConvLen(const void *var, VarType conv) {return _conv_lengths[conv & 0xF];} /** * Return the size in bytes of a reference (pointer) */ static inline size_t SlCalcRefLen(void) {return 2;} /** * Return the size in bytes of a certain type of atomic array * @param array The variable the size is being asked of (NOTICE: unused) * @param length The length of the array counted in elements * @param conv @VarType type of the variable that is used in calculating the size */ static inline size_t SlCalcArrayLen(const void *array, uint length, VarType conv) {return _conv_lengths[conv & 0xF] * length;} /** * Save/Load an array. * @param array The array being manipulated * @param length The length of the array in elements * @param conv @VarType type of the atomic array (int, byte, uint64, etc.) */ void SlArray(void *array, uint length, VarType conv) { static const byte conv_mem_size[] = {1, 1, 2, 2, 4, 4, 8, 8, 0}; // Automatically calculate the length? if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcArrayLen(array, length, conv)); // Determine length only? if (_sl.need_length == NL_CALCLENGTH) return; } /* NOTICE - handle some buggy stuff, in really old versions everything was saved * as a byte-type. So detect this, and adjust array size accordingly */ if (!_sl.save && _sl.version == 0) { if (conv == SLE_INT16 || conv == SLE_UINT16 || conv == SLE_STRINGID) { length *= 2; // int16, uint16 and StringID are 2 bytes in size conv = SLE_INT8; } else if (conv == SLE_INT32 || conv == SLE_UINT32) { length *= 4; // int32 and uint32 are 4 bytes in size conv = SLE_INT8; } } /* If the size of elements is 1 byte, no special conversion is needed, * use specialized copy-to-copy function to speed up things */ if (conv == SLE_INT8 || conv == SLE_UINT8) { SlCopyBytes(array, length); } else { byte *a = (byte*)array; for (; length != 0; length --) { SlSaveLoadConv(a, conv); a += conv_mem_size[(conv >> 4) & 0xF]; // get size } } } /** * Calculate the size of an object. * @param object Object that needs its length calculated * @param sld The @SaveLoad description of the object so we know how to manipulate it */ static size_t SlCalcObjLength(void *object, const SaveLoad *sld) { size_t length = 0; // Need to determine the length and write a length tag. for (; sld->cmd != SL_END; sld++) { if (sld->cmd < SL_WRITEBYTE) { if (HASBIT(sld->cmd, 2)) { // check if the field is used in the current savegame version if (_sl.version < sld->version_from || _sl.version > sld->version_to) continue; } switch (sld->cmd) { case SL_VAR: case SL_CONDVAR: /* Normal Variable */ length += SlCalcConvLen(NULL, sld->type); break; case SL_REF: case SL_CONDREF: /* Reference variable */ length += SlCalcRefLen(); break; case SL_ARR: case SL_CONDARR: /* Array */ length += SlCalcArrayLen(NULL, sld->length, sld->type); break; default: NOT_REACHED(); } } else if (sld->cmd == SL_WRITEBYTE) { length++; // a byte is logically of size 1 } else if (sld->cmd == SL_INCLUDE) { length += SlCalcObjLength(NULL, _sl.includes[sld->version_from]); } else assert(sld->cmd == SL_END); } return length; } /** * Main SaveLoad function. * @param object The object that is being saved or loaded * @param sld The @SaveLoad description of the object so we know how to manipulate it */ void SlObject(void *object, const SaveLoad *sld) { // Automatically calculate the length? if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcObjLength(object, sld)); if (_sl.need_length == NL_CALCLENGTH) return; } for (; sld->cmd != SL_END; sld++) { void *ptr = (byte*)object + sld->offset; if (sld->cmd < SL_WRITEBYTE) { /* CONDITIONAL saveload types depend on the savegame version */ if (HASBIT(sld->cmd, 2)) { // check if the field is of the right version, if not, proceed to next one if (_sl.version < sld->version_from || _sl.version > sld->version_to) continue; } switch (sld->cmd) { case SL_VAR: case SL_CONDVAR: /* Normal variable */ SlSaveLoadConv(ptr, sld->type); break; case SL_REF: case SL_CONDREF: /* Reference variable, translate */ /// @todo XXX - another artificial limitof 65K elements of pointers? if (_sl.save) { // XXX - read/write pointer as uint16? What is with higher indeces? SlWriteUint16(_sl.ref_to_int_proc(*(void**)ptr, sld->type)); } else *(void**)ptr = _sl.int_to_ref_proc(SlReadUint16(), sld->type); break; case SL_ARR: case SL_CONDARR: /* Array */ SlArray(ptr, sld->length, sld->type); break; default: NOT_REACHED(); } /* SL_WRITEBYTE translates a value of a variable to another one upon * saving or loading. * XXX - variable renaming abuse * g_value: the value of the variable ingame is abused by sld->version_from * f_value: the value of the variable in the savegame is abused by sld->version_to */ } else if (sld->cmd == SL_WRITEBYTE) { if (_sl.save) { SlWriteByte(sld->version_to); } else *(byte*)ptr = sld->version_from; /* SL_INCLUDE loads common code for a type * XXX - variable renaming abuse * include_index: common code to include from _desc_includes[], abused by sld->version_from */ } else if (sld->cmd == SL_INCLUDE) { SlObject(ptr, _sl.includes[sld->version_from]); } else assert(sld->cmd == SL_END); } } /** Calculate the length of global variables * @param desc The global variable that we want to know the size of * @return Returns the length of the sought global object */ static size_t SlCalcGlobListLength(const SaveLoadGlobVarList *desc) { size_t length = 0; for (; desc->address != NULL; desc++) { // Of course the global variable must exist in the sought savegame version if (_sl.version >= desc->from_version && _sl.version <= desc->to_version) length += SlCalcConvLen(NULL, desc->conv); } return length; } /** * Save or Load (a list of) global variables * @param desc The global variable that is being loaded or saved */ void SlGlobList(const SaveLoadGlobVarList *desc) { if (_sl.need_length != NL_NONE) { SlSetLength(SlCalcGlobListLength(desc)); if (_sl.need_length == NL_CALCLENGTH) return; } for (; desc->address != NULL; desc++) { if (_sl.version >= desc->from_version && _sl.version <= desc->to_version) SlSaveLoadConv(desc->address, desc->conv); } } /** * Do something of which I have no idea what it is :P * @param proc The callback procedure that is called * @param arg The variable that will be used for the callback procedure */ void SlAutolength(AutolengthProc *proc, void *arg) { uint32 offs; assert(_sl.save); // Tell it to calculate the length _sl.need_length = NL_CALCLENGTH; _sl.obj_len = 0; proc(arg); // Setup length _sl.need_length = NL_WANTLENGTH; SlSetLength(_sl.obj_len); offs = SlGetOffs() + _sl.obj_len; // And write the stuff proc(arg); assert(offs == SlGetOffs()); } /** * Load a chunk of data (eg vehicles, stations, etc.) * @param ch The chunkhandler that will be used for the operation */ static void SlLoadChunk(const ChunkHandler *ch) { byte m = SlReadByte(); size_t len; uint32 endoffs; _sl.block_mode = m; _sl.obj_len = 0; switch (m) { case CH_ARRAY: _sl.array_index = 0; ch->load_proc(); break; case CH_SPARSE_ARRAY: ch->load_proc(); break; case CH_RIFF: // Read length len = SlReadByte() << 16; len += SlReadUint16(); _sl.obj_len = len; endoffs = SlGetOffs() + len; ch->load_proc(); assert(SlGetOffs() == endoffs); break; default: NOT_REACHED(); } } /* Stub Chunk handlers to only calculate length and do nothing else */ static ChunkSaveLoadProc *_tmp_proc_1; static inline void SlStubSaveProc2(void *arg) {_tmp_proc_1();} static void SlStubSaveProc(void) {SlAutolength(SlStubSaveProc2, NULL);} /** Save a chunk of data (eg. vehicles, stations, etc.). Each chunk is * prefixed by an ID identifying it, followed by data, and terminator where appropiate * @param ch The chunkhandler that will be used for the operation */ static void SlSaveChunk(const ChunkHandler *ch) { ChunkSaveLoadProc *proc = ch->save_proc; SlWriteUint32(ch->id); if (ch->flags & CH_AUTO_LENGTH) { // Need to calculate the length. Solve that by calling SlAutoLength in the save_proc. _tmp_proc_1 = proc; proc = SlStubSaveProc; } _sl.block_mode = ch->flags & CH_TYPE_MASK; switch (ch->flags & CH_TYPE_MASK) { case CH_RIFF: _sl.need_length = NL_WANTLENGTH; proc(); break; case CH_ARRAY: _sl.last_array_index = 0; SlWriteByte(CH_ARRAY); proc(); SlWriteArrayLength(0); // Terminate arrays break; case CH_SPARSE_ARRAY: SlWriteByte(CH_SPARSE_ARRAY); proc(); SlWriteArrayLength(0); // Terminate arrays break; default: NOT_REACHED(); } } /** Save all chunks */ static void SlSaveChunks(void) { const ChunkHandler *ch; const ChunkHandler* const *chsc; uint p; for (p = 0; p != CH_NUM_PRI_LEVELS; p++) { for (chsc = _sl.chs; (ch = *chsc++) != NULL;) { while (true) { if (((ch->flags >> CH_PRI_SHL) & (CH_NUM_PRI_LEVELS - 1)) == p) SlSaveChunk(ch); if (ch->flags & CH_LAST) break; ch++; } } } // Terminator SlWriteUint32(0); } /** Find the ChunkHandler that will be used for processing the found * chunk in the savegame or in memory * @param id the chunk in question * @return returns the appropiate chunkhandler */ static const ChunkHandler *SlFindChunkHandler(uint32 id) { const ChunkHandler *ch; const ChunkHandler *const *chsc; for (chsc = _sl.chs; (ch=*chsc++) != NULL;) { while(true) { if (ch->id == id) return ch; if (ch->flags & CH_LAST) break; ch++; } } return NULL; } /** Load all chunks */ static void SlLoadChunks(void) { uint32 id; const ChunkHandler *ch; for (id = SlReadUint32(); id != 0; id = SlReadUint32()) { DEBUG(misc, 1) ("Loading chunk %c%c%c%c", id >> 24, id>>16, id>>8, id); ch = SlFindChunkHandler(id); if (ch == NULL) SlError("found unknown tag in savegame (sync error)"); SlLoadChunk(ch); } } //******************************************* //********** START OF LZO CODE ************** //******************************************* #define LZO_SIZE 8192 #include "minilzo.h" static uint ReadLZO(void) { byte out[LZO_SIZE + LZO_SIZE / 64 + 16 + 3 + 8]; uint32 tmp[2]; uint32 size; uint len; // Read header if (fread(tmp, sizeof(tmp), 1, _sl.fh) != 1) SlError("file read failed"); // Check if size is bad ((uint32*)out)[0] = size = tmp[1]; if (_sl.version != 0) { tmp[0] = TO_BE32(tmp[0]); size = TO_BE32(size); } if (size >= sizeof(out)) SlError("inconsistent size"); // Read block if (fread(out + sizeof(uint32), size, 1, _sl.fh) != 1) SlError("file read failed"); // Verify checksum if (tmp[0] != lzo_adler32(0, out, size + sizeof(uint32))) SlError("bad checksum"); // Decompress lzo1x_decompress(out + sizeof(uint32)*1, size, _sl.buf, &len, NULL); return len; } // p contains the pointer to the buffer, len contains the pointer to the length. // len bytes will be written, p and l will be updated to reflect the next buffer. static void WriteLZO(uint size) { byte out[LZO_SIZE + LZO_SIZE / 64 + 16 + 3 + 8]; byte wrkmem[sizeof(byte*)*4096]; uint outlen; lzo1x_1_compress(_sl.buf, size, out + sizeof(uint32)*2, &outlen, wrkmem); ((uint32*)out)[1] = TO_BE32(outlen); ((uint32*)out)[0] = TO_BE32(lzo_adler32(0, out + sizeof(uint32), outlen + sizeof(uint32))); if (fwrite(out, outlen + sizeof(uint32)*2, 1, _sl.fh) != 1) SlError("file write failed"); } static bool InitLZO(void) { _sl.bufsize = LZO_SIZE; _sl.buf = (byte*)malloc(LZO_SIZE); return true; } static void UninitLZO(void) { free(_sl.buf); } //********************************************* //******** START OF NOCOMP CODE (uncompressed)* //********************************************* static uint ReadNoComp(void) { return fread(_sl.buf, 1, LZO_SIZE, _sl.fh); } static void WriteNoComp(uint size) { fwrite(_sl.buf, 1, size, _sl.fh); } static bool InitNoComp(void) { _sl.bufsize = LZO_SIZE; _sl.buf = (byte*)malloc(LZO_SIZE); return true; } static void UninitNoComp(void) { free(_sl.buf); } //******************************************** //********** START OF MEMORY CODE (in ram)**** //******************************************** enum { SAVELOAD_POOL_BLOCK_SIZE_BITS = 17, SAVELOAD_POOL_MAX_BLOCKS = 500 }; /* A maximum size of of 128K * 500 = 64.000KB savegames */ static MemoryPool _saveload_pool = {"Savegame", SAVELOAD_POOL_MAX_BLOCKS, SAVELOAD_POOL_BLOCK_SIZE_BITS, sizeof(byte), NULL, 0, 0, NULL}; static uint _save_byte_count; static bool InitMem(void) { CleanPool(&_saveload_pool); AddBlockToPool(&_saveload_pool); /* A block from the pool is a contigious area of memory, so it is safe to write to it sequentially */ _save_byte_count = 0; _sl.bufsize = _saveload_pool.total_items; _sl.buf = (byte*)GetItemFromPool(&_saveload_pool, _save_byte_count); return true; } static void UnInitMem(void) { CleanPool(&_saveload_pool); } static void WriteMem(uint size) { _save_byte_count += size; /* Allocate new block and new buffer-pointer */ AddBlockIfNeeded(&_saveload_pool, _save_byte_count); _sl.buf = (byte*)GetItemFromPool(&_saveload_pool, _save_byte_count); } //******************************************** //********** START OF ZLIB CODE ************** //******************************************** #if defined(WITH_ZLIB) #include static z_stream _z; static bool InitReadZlib(void) { memset(&_z, 0, sizeof(_z)); if (inflateInit(&_z) != Z_OK) return false; _sl.bufsize = 4096; _sl.buf = (byte*)malloc(4096 + 4096); // also contains fread buffer return true; } static uint ReadZlib(void) { int r; _z.next_out = _sl.buf; _z.avail_out = 4096; do { // read more bytes from the file? if (_z.avail_in == 0) { _z.avail_in = fread(_z.next_in = _sl.buf + 4096, 1, 4096, _sl.fh); } // inflate the data r = inflate(&_z, 0); if (r == Z_STREAM_END) break; if (r != Z_OK) SlError("inflate() failed"); } while (_z.avail_out); return 4096 - _z.avail_out; } static void UninitReadZlib(void) { inflateEnd(&_z); free(_sl.buf); } static bool InitWriteZlib(void) { memset(&_z, 0, sizeof(_z)); if (deflateInit(&_z, 6) != Z_OK) return false; _sl.bufsize = 4096; _sl.buf = (byte*)malloc(4096); // also contains fread buffer return true; } static void WriteZlibLoop(z_streamp z, byte *p, uint len, int mode) { byte buf[1024]; // output buffer int r; uint n; z->next_in = p; z->avail_in = len; do { z->next_out = buf; z->avail_out = sizeof(buf); r = deflate(z, mode); // bytes were emitted? if ((n=sizeof(buf) - z->avail_out) != 0) { if (fwrite(buf, n, 1, _sl.fh) != 1) SlError("file write error"); } if (r == Z_STREAM_END) break; if (r != Z_OK) SlError("zlib returned error code"); } while (z->avail_in || !z->avail_out); } static void WriteZlib(uint len) { WriteZlibLoop(&_z, _sl.buf, len, 0); } static void UninitWriteZlib(void) { // flush any pending output. if (_sl.fh) WriteZlibLoop(&_z, NULL, 0, Z_FINISH); deflateEnd(&_z); free(_sl.buf); } #endif /* WITH_ZLIB */ //******************************************* //************* END OF CODE ***************** //******************************************* // these define the chunks extern const ChunkHandler _misc_chunk_handlers[]; extern const ChunkHandler _player_chunk_handlers[]; extern const ChunkHandler _veh_chunk_handlers[]; extern const ChunkHandler _waypoint_chunk_handlers[]; extern const ChunkHandler _depot_chunk_handlers[]; extern const ChunkHandler _order_chunk_handlers[]; extern const ChunkHandler _town_chunk_handlers[]; extern const ChunkHandler _sign_chunk_handlers[]; extern const ChunkHandler _station_chunk_handlers[]; extern const ChunkHandler _industry_chunk_handlers[]; extern const ChunkHandler _engine_chunk_handlers[]; extern const ChunkHandler _economy_chunk_handlers[]; extern const ChunkHandler _animated_tile_chunk_handlers[]; static const ChunkHandler * const _chunk_handlers[] = { _misc_chunk_handlers, _veh_chunk_handlers, _waypoint_chunk_handlers, _depot_chunk_handlers, _order_chunk_handlers, _industry_chunk_handlers, _economy_chunk_handlers, _engine_chunk_handlers, _town_chunk_handlers, _sign_chunk_handlers, _station_chunk_handlers, _player_chunk_handlers, _animated_tile_chunk_handlers, NULL, }; // used to include a vehicle desc in another desc. extern const SaveLoad _common_veh_desc[]; static const SaveLoad* const _desc_includes[] = { _common_veh_desc }; /** * Pointers cannot be saved to a savegame, so this functions gets * the index of the item, and if not available, it hussles with * pointers (looks really bad :() * Remember that a NULL item has value 0, and all * indeces have +1, so vehicle 0 is saved as index 1. * @param obj The object that we want to get the index of * @param rt @SLRefType type of the object the index is being sought of * @return Return the pointer converted to an index of the type pointed to */ static uint ReferenceToInt(const void *obj, SLRefType rt) { if (obj == NULL) return 0; switch (rt) { case REF_VEHICLE_OLD: // Old vehicles we save as new onces case REF_VEHICLE: return ((Vehicle *)obj)->index + 1; case REF_STATION: return ((Station *)obj)->index + 1; case REF_TOWN: return ((Town *)obj)->index + 1; case REF_ORDER: return ((Order *)obj)->index + 1; case REF_ROADSTOPS: return ((RoadStop *)obj)->index + 1; default: NOT_REACHED(); } return 0; // avoid compiler warning } /** * Pointers cannot be loaded from a savegame, so this function * gets the index from the savegame and returns the appropiate * pointer from the already loaded base. * Remember that an index of 0 is a NULL pointer so all indeces * are +1 so vehicle 0 is saved as 1. * @param index The index that is being converted to a pointer * @param rt @SLRefType type of the object the pointer is sought of * @return Return the index converted to a pointer of any type */ static void *IntToReference(uint index, SLRefType rt) { /* After version 4.3 REF_VEHICLE_OLD is saved as REF_VEHICLE, * and should be loaded like that */ if (rt == REF_VEHICLE_OLD && _sl.full_version >= ((4 << 8) | 4)) rt = REF_VEHICLE; /* No need to look up NULL pointers, just return immediately */ if (rt != REF_VEHICLE_OLD && index == 0) return NULL; index--; // correct for the NULL index switch (rt) { case REF_ORDER: { if (!AddBlockIfNeeded(&_order_pool, index)) error("Orders: failed loading savegame: too many orders"); return GetOrder(index); } case REF_VEHICLE: { if (!AddBlockIfNeeded(&_vehicle_pool, index)) error("Vehicles: failed loading savegame: too many vehicles"); return GetVehicle(index); } case REF_STATION: { if (!AddBlockIfNeeded(&_station_pool, index)) error("Stations: failed loading savegame: too many stations"); return GetStation(index); } case REF_TOWN: { if (!AddBlockIfNeeded(&_town_pool, index)) error("Towns: failed loading savegame: too many towns"); return GetTown(index); } case REF_ROADSTOPS: { if (!AddBlockIfNeeded(&_roadstop_pool, index)) error("RoadStops: failed loading savegame: too many RoadStops"); return GetRoadStop(index); } case REF_VEHICLE_OLD: { /* Old vehicles were saved differently: * invalid vehicle was 0xFFFF, * and the index was not - 1.. correct for this */ index++; if (index == INVALID_VEHICLE) return NULL; if (!AddBlockIfNeeded(&_vehicle_pool, index)) error("Vehicles: failed loading savegame: too many vehicles"); return GetVehicle(index); } default: NOT_REACHED(); } return NULL; } /** The format for a reader/writer type of a savegame */ typedef struct { const char *name; /// name of the compressor/decompressor (debug-only) uint32 tag; /// the 4-letter tag by which it is identified in the savegame bool (*init_read)(void); /// function executed upon initalization of the loader ReaderProc *reader; /// function that loads the data from the file void (*uninit_read)(void); /// function executed when reading is finished bool (*init_write)(void); /// function executed upon intialization of the saver WriterProc *writer; /// function that saves the data to the file void (*uninit_write)(void); /// function executed when writing is done } SaveLoadFormat; static const SaveLoadFormat _saveload_formats[] = { {"memory", 0, NULL, NULL, NULL, InitMem, WriteMem, UnInitMem}, {"lzo", TO_BE32X('OTTD'), InitLZO, ReadLZO, UninitLZO, InitLZO, WriteLZO, UninitLZO}, {"none", TO_BE32X('OTTN'), InitNoComp, ReadNoComp, UninitNoComp, InitNoComp, WriteNoComp, UninitNoComp}, #if defined(WITH_ZLIB) {"zlib", TO_BE32X('OTTZ'), InitReadZlib, ReadZlib, UninitReadZlib, InitWriteZlib, WriteZlib, UninitWriteZlib}, #else {"zlib", TO_BE32X('OTTZ'), NULL, NULL, NULL, NULL, NULL, NULL}, #endif }; /** * Return the savegameformat of the game. Whether it was create with ZLIB compression * uncompressed, or another type * @param s Name of the savegame format. If NULL it picks the first available one * @return Pointer to @SaveLoadFormat struct giving all characteristics of this type of savegame */ static const SaveLoadFormat *GetSavegameFormat(const char *s) { const SaveLoadFormat *def = endof(_saveload_formats) - 1; // find default savegame format, the highest one with which files can be written while (!def->init_write) def--; if (s != NULL && s[0] != '\0') { const SaveLoadFormat *slf; for (slf = &_saveload_formats[0]; slf != endof(_saveload_formats); slf++) { if (slf->init_write != NULL && strcmp(s, slf->name) == 0) return slf; } ShowInfoF("Savegame format '%s' is not available. Reverting to '%s'.", s, def->name); } return def; } // actual loader/saver function void InitializeGame(uint log_x, uint log_y); extern bool AfterLoadGame(uint version); extern void BeforeSaveGame(void); extern bool LoadOldSaveGame(const char *file); /** Small helper function to close the to be loaded savegame an signal error */ static inline int AbortSaveLoad(void) { if (_sl.fh != NULL) fclose(_sl.fh); _sl.fh = NULL; return SL_ERROR; } #include "network.h" #include "table/strings.h" #include "table/sprites.h" #include "gfx.h" #include "gui.h" static bool _saving_game = false; /** Update the gui accordingly when starting saving * and set locks on saveload */ static inline void SaveFileStart(void) { SetMouseCursor(SPR_CURSOR_ZZZ); SendWindowMessage(WC_STATUS_BAR, 0, true, 0, 0); _saving_game = true; } /** Update the gui accordingly when saving is done and release locks * on saveload */ static inline void SaveFileDone(void) { if (_cursor.sprite == SPR_CURSOR_ZZZ) SetMouseCursor(SPR_CURSOR_MOUSE); SendWindowMessage(WC_STATUS_BAR, 0, false, 0, 0); _saving_game = false; } /** We have written the whole game into memory, _saveload_pool, now find * and appropiate compressor and start writing to file. */ static bool SaveFileToDisk(void *ptr) { const SaveLoadFormat *fmt = GetSavegameFormat(_savegame_format); /* XXX - backup _sl.buf cause it is used internally by the writer * and we update it for our own purposes */ byte *tmp = _sl.buf; uint32 hdr[2]; SaveFileStart(); /* XXX - Setup setjmp error handler if an error occurs anywhere deep during * loading/saving execute a longjmp() and continue execution here */ if (setjmp(_sl.excpt)) { AbortSaveLoad(); _sl.buf = tmp; _sl.excpt_uninit(); ShowInfoF("Save game failed: %s.", _sl.excpt_msg); ShowErrorMessage(STR_4007_GAME_SAVE_FAILED, STR_NULL, 0, 0); SaveFileDone(); return false; } /* We have written our stuff to memory, now write it to file! */ hdr[0] = fmt->tag; hdr[1] = TO_BE32((SAVEGAME_MAJOR_VERSION << 16) + (SAVEGAME_MINOR_VERSION << 8)); if (fwrite(hdr, sizeof(hdr), 1, _sl.fh) != 1) SlError("file write failed"); if (!fmt->init_write()) SlError("cannot initialize compressor"); tmp = _sl.buf; // XXX - init_write can change _sl.buf, so update it { uint i; uint count = 1 << _saveload_pool.block_size_bits; assert(_save_byte_count == _sl.offs_base); for (i = 0; i != _saveload_pool.current_blocks - 1; i++) { _sl.buf = _saveload_pool.blocks[i]; fmt->writer(count); } /* The last block is (almost) always not fully filled, so only write away * as much data as it is in there */ _sl.buf = _saveload_pool.blocks[i]; fmt->writer(_save_byte_count - (i * count)); _sl.buf = tmp; // XXX - reset _sl.buf to its original value to let it continue its internal usage } fmt->uninit_write(); assert(_save_byte_count == _sl.offs_base); GetSavegameFormat("memory")->uninit_write(); // clean the memorypool fclose(_sl.fh); SaveFileDone(); CloseOTTDThread(); return true; } /** * Main Save or Load function where the high-level saveload functions are * handled. It opens the savegame, selects format and checks versions * @param filename The name of the savegame being created/loaded * @param mode Save or load. Load can also be a TTD(Patch) game. Use SL_LOAD, SL_OLD_LOAD or SL_SAVE * @return Return the results of the action. SL_OK, SL_ERROR or SL_REINIT ("unload" the game) */ int SaveOrLoad(const char *filename, int mode) { uint32 hdr[2]; const SaveLoadFormat *fmt; uint version; /* Load a TTDLX or TTDPatch game */ if (mode == SL_OLD_LOAD) { InitializeGame(8, 8); // set a mapsize of 256x256 for TTDPatch games or it might get confused if (!LoadOldSaveGame(filename)) return SL_REINIT; AfterLoadGame(0); return SL_OK; } /* An instance of saving is already active, don't start any other cause of global variables */ if (_saving_game == true) { if (!_do_autosave) ShowErrorMessage(_error_message, STR_SAVE_STILL_IN_PROGRESS, 0, 0); return SL_ERROR; } _sl.fh = fopen(filename, (mode == SL_SAVE) ? "wb" : "rb"); if (_sl.fh == NULL) { DEBUG(misc, 0) ("Cannot open savegame for saving/loading."); return SL_ERROR; } _sl.bufe = _sl.bufp = NULL; _sl.offs_base = 0; _sl.int_to_ref_proc = IntToReference; _sl.ref_to_int_proc = ReferenceToInt; _sl.save = mode; _sl.includes = _desc_includes; _sl.chs = _chunk_handlers; /* XXX - Setup setjmp error handler if an error occurs anywhere deep during * loading/saving execute a longjmp() and continue execution here */ if (setjmp(_sl.excpt)) { AbortSaveLoad(); // deinitialize compressor. _sl.excpt_uninit(); /* A saver/loader exception!! reinitialize all variables to prevent crash! */ if (mode == SL_LOAD) { ShowInfoF("Load game failed: %s.", _sl.excpt_msg); return SL_REINIT; } else { ShowInfoF("Save game failed: %s.", _sl.excpt_msg); return SL_ERROR; } } /* We first initialize here to avoid: "warning: variable `version' might * be clobbered by `longjmp' or `vfork'" */ version = 0; /* General tactic is to first save the game to memory, then use an available writer * to write it to file, either in threaded mode if possible, or single-threaded */ if (mode == SL_SAVE) { /* SAVE game */ fmt = GetSavegameFormat("memory"); // write to memory _sl.write_bytes = fmt->writer; _sl.excpt_uninit = fmt->uninit_write; if (!fmt->init_write()) { DEBUG(misc, 0) ("Initializing writer %s failed.", fmt->name); return AbortSaveLoad(); } _sl.version = SAVEGAME_MAJOR_VERSION; BeforeSaveGame(); SlSaveChunks(); SlWriteFill(); // flush the save buffer /* Write to file */ if (_network_server || !CreateOTTDThread(&SaveFileToDisk, NULL)) { DEBUG(misc, 1) ("cannot create savegame thread, reverting to single-threaded mode..."); SaveFileToDisk(NULL); } } else { /* LOAD game */ assert(mode == SL_LOAD); if (fread(hdr, sizeof(hdr), 1, _sl.fh) != 1) { DEBUG(misc, 0) ("Cannot read savegame header, aborting."); return AbortSaveLoad(); } // see if we have any loader for this type. for (fmt = _saveload_formats; ; fmt++) { /* No loader found, treat as version 0 and use LZO format */ if (fmt == endof(_saveload_formats)) { DEBUG(misc, 0) ("Unknown savegame type, trying to load it as the buggy format."); rewind(_sl.fh); _sl.version = version = 0; _sl.full_version = 0; fmt = _saveload_formats + 0; // LZO break; } if (fmt->tag == hdr[0]) { // check version number version = TO_BE32(hdr[1]) >> 8; /* Is the version higher than the current? */ if (version > SAVEGAME_LOADABLE_VERSION) { DEBUG(misc, 0) ("Savegame version invalid."); return AbortSaveLoad(); } _sl.version = (version >> 8); _sl.full_version = version; break; } } _sl.read_bytes = fmt->reader; _sl.excpt_uninit = fmt->uninit_read; // loader for this savegame type is not implemented? if (fmt->init_read == NULL) { ShowInfoF("Loader for '%s' is not available.", fmt->name); return AbortSaveLoad(); } if (!fmt->init_read()) { DEBUG(misc, 0) ("Initializing loader %s failed.", fmt->name); return AbortSaveLoad(); } /* Old maps were hardcoded to 256x256 and thus did not contain * any mapsize information. Pre-initialize to 256x256 to not to * confuse old games */ InitializeGame(8, 8); SlLoadChunks(); fmt->uninit_read(); fclose(_sl.fh); /* After loading fix up savegame for any internal changes that * might've occured since then. If it fails, load back the old game */ if (!AfterLoadGame(version)) return SL_REINIT; } return SL_OK; } /** Do a save when exiting the game (patch option) _patches.autosave_on_exit */ void DoExitSave(void) { char buf[200]; snprintf(buf, sizeof(buf), "%s%sexit.sav", _path.autosave_dir, PATHSEP); SaveOrLoad(buf, SL_SAVE); } #if 0 /** * Function to get the type of the savegame by looking at the file header. * NOTICE: Not used right now, but could be used if extensions of savegames are garbled * @param file Savegame to be checked * @return SL_OLD_LOAD or SL_LOAD of the file */ int GetSavegameType(char *file) { const SaveLoadFormat *fmt; uint32 hdr; FILE *f; int mode = SL_OLD_LOAD; f = fopen(file, "rb"); if (fread(&hdr, sizeof(hdr), 1, f) != 1) { printf("Savegame is obsolete or invalid format.\n"); mode = SL_LOAD; // don't try to get filename, just show name as it is written } else { // see if we have any loader for this type. for (fmt = _saveload_formats; fmt != endof(_saveload_formats); fmt++) { if (fmt->tag == hdr) { mode = SL_LOAD; // new type of savegame break; } } } fclose(f); return mode; } #endif