/** @file demands.cpp Definition of demand calculating link graph handler. */ #include "../stdafx.h" #include "demands.h" #include "../core/ring_buffer_queue.hpp" #include #include #include "../safeguards.h" typedef ring_buffer_queue NodeList; /** * Scale various things according to symmetric/asymmetric distribution. */ class Scaler { public: void SetDemands(LinkGraphJob &job, NodeID from, NodeID to, uint demand_forw); }; /** * Scaler for symmetric distribution. */ class SymmetricScaler : public Scaler { public: /** * Constructor. * @param mod_size Size modifier to be used. Determines how much demands * increase with the supply of the remote station. */ inline SymmetricScaler(uint mod_size) : mod_size(mod_size), supply_sum(0), demand_per_node(0) {} /** * Count a node's supply into the sum of supplies. * @param node Node. */ inline void AddNode(const Node &node) { this->supply_sum += node.Supply(); } /** * Calculate the mean demand per node using the sum of supplies. * @param num_demands Number of accepting nodes. */ inline void SetDemandPerNode(uint num_demands) { this->demand_per_node = std::max(this->supply_sum / num_demands, 1U); } /** * Get the effective supply of one node towards another one. In symmetric * distribution the supply of the other node is weighed in. * @param from The supplying node. * @param to The receiving node. * @return Effective supply. */ inline uint EffectiveSupply(const Node &from, const Node &to) { return std::max(from.Supply() * std::max(1U, to.Supply()) * this->mod_size / 100 / this->demand_per_node, 1U); } /** * Check if there is any acceptance left for this node. In symmetric distribution * nodes only accept anything if they also supply something. So if * undelivered_supply == 0 at the node there isn't any demand left either. * @param to Node to be checked. * @return If demand is left. */ inline bool HasDemandLeft(const Node &to) { return (to.Supply() == 0 || to.UndeliveredSupply() > 0) && to.Demand() > 0; } void SetDemands(LinkGraphJob &job, NodeID from, NodeID to, uint demand_forw); private: uint mod_size; ///< Size modifier. Determines how much demands increase with the supply of the remote station. uint supply_sum; ///< Sum of all supplies in the component. uint demand_per_node; ///< Mean demand associated with each node. }; /** * A scaler for asymmetric distribution. */ class AsymmetricScaler : public Scaler { public: /** * Nothing to do here. * @param unused. */ inline void AddNode(const Node &) { } /** * Nothing to do here. * @param unused. */ inline void SetDemandPerNode(uint) { } /** * Nothing to do here. * @param unused. * @param unused. */ inline void AdjustDemandNodes(LinkGraphJob &, const std::vector &) { } /** * Get the effective supply of one node towards another one. * @param from The supplying node. * @param unused. */ inline uint EffectiveSupply(const Node &from, const Node &) { return from.Supply(); } /** * Check if there is any acceptance left for this node. In asymmetric distribution * nodes always accept as long as their demand > 0. * @param to The node to be checked. */ inline bool HasDemandLeft(const Node &to) { return to.Demand() > 0; } }; /** * A scaler for asymmetric distribution (equal supply). */ class AsymmetricScalerEq : public Scaler { public: /** * Count a node's supply into the sum of supplies. * @param node Node. */ inline void AddNode(const Node &node) { this->supply_sum += node.Supply(); } /** * Calculate the mean demand per node using the sum of supplies. * @param num_demands Number of accepting nodes. */ inline void SetDemandPerNode(uint num_demands) { this->demand_per_node = CeilDiv(this->supply_sum, num_demands); this->missing_supply = (this->demand_per_node * num_demands) - this->supply_sum; } /** * Adjust demand nodes after setting demand per node. * @param job The link graph job. * @param demands List of demand nodes to adjust. */ inline void AdjustDemandNodes(LinkGraphJob &job, const std::vector &demands) { const uint count = std::min((uint)demands.size(), this->missing_supply); this->missing_supply = 0; for (uint i = 0; i < count; i++) { job[demands[i]].ReceiveDemand(1); } } /** * Get the effective supply of one node towards another one. In symmetric * distribution the supply of the other node is weighed in. * @param from The supplying node. * @param to The receiving node. * @return Effective supply. */ inline uint EffectiveSupply(const Node &from, const Node &to) { return std::max(std::min(from.Supply(), ((int) this->demand_per_node) - ((int) to.ReceivedDemand())), 1); } /** * Check if there is any acceptance left for this node. In asymmetric (equal) distribution * nodes accept as long as their demand > 0 and received_demand < demand_per_node. * @param to The node to be checked. */ inline bool HasDemandLeft(const Node &to) { return to.Demand() > 0 && to.ReceivedDemand() < this->demand_per_node; } void SetDemands(LinkGraphJob &job, NodeID from, NodeID to, uint demand_forw); private: uint supply_sum; ///< Sum of all supplies in the component. uint demand_per_node; ///< Mean demand associated with each node. uint missing_supply; ///< Suppply/demand adjustment for in AdjustDemandNodes. }; /** * Set the demands between two nodes using the given base demand. In symmetric mode * this sets demands in both directions. * @param job The link graph job. * @param from_id The supplying node. * @param to_id The receiving node. * @param demand_forw Demand calculated for the "forward" direction. */ void SymmetricScaler::SetDemands(LinkGraphJob &job, NodeID from_id, NodeID to_id, uint demand_forw) { if (job[from_id].Demand() > 0) { uint demand_back = demand_forw * this->mod_size / 100; uint undelivered = job[to_id].UndeliveredSupply(); if (demand_back > undelivered) { demand_back = undelivered; demand_forw = std::max(1U, demand_back * 100 / this->mod_size); } this->Scaler::SetDemands(job, to_id, from_id, demand_back); } this->Scaler::SetDemands(job, from_id, to_id, demand_forw); } /** * Set the demands between two nodes using the given base demand. * @param job The link graph job. * @param from_id The supplying node. * @param to_id The receiving node. * @param demand_forw Demand calculated for the "forward" direction. */ void AsymmetricScalerEq::SetDemands(LinkGraphJob &job, NodeID from_id, NodeID to_id, uint demand_forw) { this->Scaler::SetDemands(job, from_id, to_id, demand_forw); job[to_id].ReceiveDemand(demand_forw); } /** * Set the demands between two nodes using the given base demand. In asymmetric mode * this only sets demand in the "forward" direction. * @param job The link graph job. * @param from_id The supplying node. * @param to_id The receiving node. * @param demand_forw Demand calculated for the "forward" direction. */ inline void Scaler::SetDemands(LinkGraphJob &job, NodeID from_id, NodeID to_id, uint demand_forw) { job[from_id].DeliverSupply(demand_forw); job.demand_map[std::make_pair(from_id, to_id)] += demand_forw; } /** * Do the actual demand calculation, called from constructor. * @param job Job to calculate the demands for. * @param reachable_nodes Bitmap of reachable nodes. * @tparam Tscaler Scaler to be used for scaling demands. */ template void DemandCalculator::CalcDemand(LinkGraphJob &job, const std::vector &reachable_nodes, Tscaler scaler) { NodeList supplies; NodeList demands; uint num_supplies = 0; uint num_demands = 0; for (NodeID node = 0; node < job.Size(); node++) { if (!reachable_nodes[node]) continue; scaler.AddNode(job[node]); if (job[node].Supply() > 0) { supplies.push(node); num_supplies++; } if (job[node].Demand() > 0) { demands.push(node); num_demands++; } } if (num_supplies == 0 || num_demands == 0) return; /* Mean acceptance attributed to each node. If the distribution is * symmetric this is relative to remote supply, otherwise it is * relative to remote demand. */ scaler.SetDemandPerNode(num_demands); uint chance = 0; while (!supplies.empty() && !demands.empty()) { NodeID from_id = supplies.front(); supplies.pop(); for (uint i = 0; i < num_demands; ++i) { assert(!demands.empty()); NodeID to_id = demands.front(); demands.pop(); if (from_id == to_id) { /* Only one node with supply and demand left */ if (demands.empty() && supplies.empty()) return; demands.push(to_id); continue; } int32 supply = scaler.EffectiveSupply(job[from_id], job[to_id]); assert(supply > 0); /* Scale the distance by mod_dist around max_distance */ int32 distance = this->max_distance - (this->max_distance - (int32)DistanceMaxPlusManhattan(job[from_id].XY(), job[to_id].XY())) * this->mod_dist / 100; /* Scale the accuracy by distance around accuracy / 2 */ int32 divisor = this->accuracy * (this->mod_dist - 50) / 100 + this->accuracy * distance / this->max_distance + 1; assert(divisor > 0); uint demand_forw = 0; if (divisor <= supply) { /* At first only distribute demand if * effective supply / accuracy divisor >= 1 * Others are too small or too far away to be considered. */ demand_forw = supply / divisor; } else if (++chance > this->accuracy * num_demands * num_supplies) { /* After some trying, if there is still supply left, distribute * demand also to other nodes. */ demand_forw = 1; } demand_forw = std::min(demand_forw, job[from_id].UndeliveredSupply()); scaler.SetDemands(job, from_id, to_id, demand_forw); if (scaler.HasDemandLeft(job[to_id])) { demands.push(to_id); } else { num_demands--; } if (job[from_id].UndeliveredSupply() == 0) break; } if (job[from_id].UndeliveredSupply() != 0) { supplies.push(from_id); } else { num_supplies--; } } } /** * Do the actual demand calculation, called from constructor. * @param job Job to calculate the demands for. * @param reachable_nodes Bitmap of reachable nodes. * @tparam Tscaler Scaler to be used for scaling demands. */ template void DemandCalculator::CalcMinimisedDistanceDemand(LinkGraphJob &job, const std::vector &reachable_nodes, Tscaler scaler) { std::vector supplies; std::vector demands; for (NodeID node = 0; node < job.Size(); node++) { if (!reachable_nodes[node]) continue; scaler.AddNode(job[node]); if (job[node].Supply() > 0) { supplies.push_back(node); } if (job[node].Demand() > 0) { demands.push_back(node); } } if (supplies.empty() || demands.empty()) return; scaler.SetDemandPerNode((uint)demands.size()); scaler.AdjustDemandNodes(job, demands); struct EdgeCandidate { NodeID from_id; NodeID to_id; uint distance; }; std::vector candidates; candidates.reserve(supplies.size() * demands.size() - std::min(supplies.size(), demands.size())); for (NodeID from_id : supplies) { for (NodeID to_id : demands) { if (from_id != to_id) { candidates.push_back({ from_id, to_id, DistanceMaxPlusManhattan(job[from_id].XY(), job[to_id].XY()) }); } } } std::sort(candidates.begin(), candidates.end(), [](const EdgeCandidate &a, const EdgeCandidate &b) { return std::tie(a.distance, a.from_id, a.to_id) < std::tie(b.distance, b.from_id, b.to_id); }); for (const EdgeCandidate &candidate : candidates) { if (job[candidate.from_id].UndeliveredSupply() == 0) continue; if (!scaler.HasDemandLeft(job[candidate.to_id])) continue; scaler.SetDemands(job, candidate.from_id, candidate.to_id, std::min(job[candidate.from_id].UndeliveredSupply(), scaler.EffectiveSupply(job[candidate.from_id], job[candidate.to_id]))); } } /** * Create the DemandCalculator and immediately do the calculation. * @param job Job to calculate the demands for. */ DemandCalculator::DemandCalculator(LinkGraphJob &job) : max_distance(DistanceMaxPlusManhattan(TileXY(0,0), TileXY(MapMaxX(), MapMaxY()))) { const LinkGraphSettings &settings = job.Settings(); CargoID cargo = job.Cargo(); this->accuracy = settings.accuracy; this->mod_dist = settings.demand_distance; if (this->mod_dist > 100) { /* Increase effect of mod_dist > 100 */ int over100 = this->mod_dist - 100; this->mod_dist = 100 + over100 * over100; } if (settings.GetDistributionType(cargo) == DT_MANUAL) return; const uint size = job.Size(); /* Symmetric edge matrix * Storage order: e01 e02 e12 e03 e13 e23 e04 e14 e24 e34 ... */ auto se_index = [](uint i, uint j) -> uint { if (j < i) std::swap(i, j); return i + (j * (j - 1) / 2); }; std::vector symmetric_edges(se_index(0, size)); for (auto &it : job.Graph().GetEdges()) { if (it.first.first != it.first.second) { symmetric_edges[se_index(it.first.first, it.first.second)] = true; } } uint first_unseen = 0; std::vector reachable_nodes(size); do { reachable_nodes.assign(size, false); std::vector queue; queue.push_back(first_unseen); reachable_nodes[first_unseen] = true; while (!queue.empty()) { NodeID from = queue.back(); queue.pop_back(); for (NodeID to = 0; to < size; ++to) { if (from == to) continue; if (symmetric_edges[se_index(from, to)]) { std::vector::reference bit = reachable_nodes[to]; if (!bit) { bit = true; queue.push_back(to); } } } } switch (settings.GetDistributionType(cargo)) { case DT_SYMMETRIC: this->CalcDemand(job, reachable_nodes, SymmetricScaler(settings.demand_size)); break; case DT_ASYMMETRIC: this->CalcDemand(job, reachable_nodes, AsymmetricScaler()); break; case DT_ASYMMETRIC_EQ: this->CalcMinimisedDistanceDemand(job, reachable_nodes, AsymmetricScalerEq()); break; case DT_ASYMMETRIC_NEAR: this->CalcMinimisedDistanceDemand(job, reachable_nodes, AsymmetricScaler()); break; default: /* Nothing to do. */ break; } while (first_unseen < size && reachable_nodes[first_unseen]) { first_unseen++; } } while (first_unseen < size); if (job.demand_map.size() > 0) { job.demand_annotation_store.resize(job.demand_map.size()); size_t start_idx = 0; size_t idx = 0; NodeID last_from = job.demand_map.begin()->first.first; auto flush = [&]() { job[last_from].SetDemandAnnotations({ job.demand_annotation_store.data() + start_idx, idx - start_idx }); }; for (auto &iter : job.demand_map) { if (iter.first.first != last_from) { flush(); last_from = iter.first.first; start_idx = idx; } job.demand_annotation_store[idx] = { iter.first.second, iter.second, iter.second }; idx++; } flush(); job.demand_map.clear(); } }