/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see .
*/
/** @file programmable_signals.cpp Programmable Pre-Signals */
#include "stdafx.h"
#include "programmable_signals.h"
#include "debug.h"
#include "command_func.h"
#include "table/strings.h"
#include "window_func.h"
#include "company_func.h"
#include "cmd_helper.h"
ProgramList _signal_programs;
bool _cleaning_signal_programs = false;
SignalProgram::SignalProgram(TileIndex tile, Track track, bool raw)
{
this->tile = tile;
this->track = track;
if (!raw) {
this->first_instruction = new SignalSpecial(this, PSO_FIRST);
this->last_instruction = new SignalSpecial(this, PSO_LAST);
SignalSpecial::link(this->first_instruction, this->last_instruction);
}
}
SignalProgram::~SignalProgram()
{
this->first_instruction->Remove();
delete this->first_instruction;
delete this->last_instruction;
}
struct SignalVM {
// Initial information
uint num_exits; ///< Number of exits from block
uint num_green; ///< Number of green exits from block
SignalProgram *program; ///< The program being run
// Current state
SignalInstruction *instruction; ///< Instruction to execute next
// Output state
SignalState state;
void Execute()
{
DEBUG(misc, 6, "Begining execution of programmable pre-signal on tile %x, track %d",
this->program->tile, this->program->track);
do {
DEBUG(misc, 10, " Executing instruction %d, opcode %d", this->instruction->Id(), this->instruction->Opcode());
this->instruction->Evaluate(*this);
} while (this->instruction);
DEBUG(misc, 6, "Completed");
}
};
// -- Conditions
SignalCondition::~SignalCondition()
{}
SignalSimpleCondition::SignalSimpleCondition(SignalConditionCode code)
: SignalCondition(code)
{}
/* virtual */ bool SignalSimpleCondition::Evaluate(SignalVM &vm)
{
switch (this->cond_code) {
case PSC_ALWAYS: return true;
case PSC_NEVER: return false;
default: NOT_REACHED();
}
}
bool SignalConditionComparable::EvaluateComparable(uint32 var_val)
{
switch (this->comparator) {
case SGC_EQUALS: return var_val == this->value;
case SGC_NOT_EQUALS: return var_val != this->value;
case SGC_LESS_THAN: return var_val < this->value;
case SGC_LESS_THAN_EQUALS: return var_val <= this->value;
case SGC_MORE_THAN: return var_val > this->value;
case SGC_MORE_THAN_EQUALS: return var_val >= this->value;
case SGC_IS_TRUE: return var_val != 0;
case SGC_IS_FALSE: return !var_val;
default: NOT_REACHED();
}
}
SignalVariableCondition::SignalVariableCondition(SignalConditionCode code)
: SignalConditionComparable(code)
{
switch (this->cond_code) {
case PSC_NUM_GREEN: comparator = SGC_NOT_EQUALS; break;
case PSC_NUM_RED: comparator = SGC_EQUALS; break;
default: NOT_REACHED();
}
value = 0;
}
/*virtual*/ bool SignalVariableCondition::Evaluate(SignalVM &vm)
{
uint32 var_val;
switch (this->cond_code) {
case PSC_NUM_GREEN: var_val = vm.num_green; break;
case PSC_NUM_RED: var_val = vm.num_exits - vm.num_green; break;
default: NOT_REACHED();
}
return this->EvaluateComparable(var_val);
}
void AddSignalSlotDependency(TraceRestrictSlotID on, SignalReference dep)
{
TraceRestrictSlot *slot = TraceRestrictSlot::Get(on);
assert(slot->owner == GetTileOwner(dep.tile));
slot->progsig_dependants.push_back(dep);
}
void RemoveSignalSlotDependency(TraceRestrictSlotID on, SignalReference dep)
{
TraceRestrictSlot *slot = TraceRestrictSlot::Get(on);
auto ob = std::find(slot->progsig_dependants.begin(), slot->progsig_dependants.end(), dep);
if (ob != slot->progsig_dependants.end()) slot->progsig_dependants.erase(ob);
}
void AddSignalCounterDependency(TraceRestrictCounterID on, SignalReference dep)
{
TraceRestrictCounter *ctr = TraceRestrictCounter::Get(on);
assert(ctr->owner == GetTileOwner(dep.tile));
ctr->progsig_dependants.push_back(dep);
}
void RemoveSignalCounterDependency(TraceRestrictCounterID on, SignalReference dep)
{
TraceRestrictCounter *ctr = TraceRestrictCounter::Get(on);
auto ob = std::find(ctr->progsig_dependants.begin(), ctr->progsig_dependants.end(), dep);
if (ob != ctr->progsig_dependants.end()) ctr->progsig_dependants.erase(ob);
}
SignalSlotCondition::SignalSlotCondition(SignalConditionCode code, SignalReference this_sig, TraceRestrictSlotID slot_id)
: SignalConditionComparable(code), this_sig(this_sig), slot_id(slot_id)
{
this->comparator = SGC_EQUALS;
this->value = 0;
if (this->CheckSlotValid()) {
AddSignalSlotDependency(this->slot_id, this->this_sig);
}
}
bool SignalSlotCondition::IsSlotValid() const
{
return TraceRestrictSlot::IsValidID(this->slot_id);
}
bool SignalSlotCondition::CheckSlotValid()
{
bool valid = this->IsSlotValid();
if (!valid) {
this->Invalidate();
}
return valid;
}
void SignalSlotCondition::Invalidate()
{
this->slot_id = INVALID_TRACE_RESTRICT_SLOT_ID;
}
void SignalSlotCondition::SetSlot(TraceRestrictSlotID slot_id)
{
if (this->IsSlotValid()) {
RemoveSignalSlotDependency(this->slot_id, this->this_sig);
}
this->slot_id = slot_id;
if (this->CheckSlotValid()) {
AddSignalSlotDependency(this->slot_id, this->this_sig);
}
}
/*virtual*/ SignalSlotCondition::~SignalSlotCondition()
{
if (_cleaning_signal_programs) return;
if (this->IsSlotValid()) {
RemoveSignalSlotDependency(this->slot_id, this->this_sig);
}
}
/*virtual*/ bool SignalSlotCondition::Evaluate(SignalVM& vm)
{
if (!this->CheckSlotValid()) {
DEBUG(misc, 1, "Signal (%x, %d) has an invalid condition", this->this_sig.tile, this->this_sig.track);
return false;
}
const TraceRestrictSlot *slot = TraceRestrictSlot::Get(this->slot_id);
switch (this->cond_code) {
case PSC_SLOT_OCC: return this->EvaluateComparable(slot->occupants.size());
case PSC_SLOT_OCC_REM: return this->EvaluateComparable(slot->max_occupancy > slot->occupants.size() ? slot->max_occupancy - slot->occupants.size() : 0);
default: NOT_REACHED();
}
}
SignalCounterCondition::SignalCounterCondition(SignalReference this_sig, TraceRestrictCounterID ctr_id)
: SignalConditionComparable(PSC_COUNTER), this_sig(this_sig), ctr_id(ctr_id)
{
this->comparator = SGC_EQUALS;
this->value = 0;
if (this->CheckCounterValid()) {
AddSignalCounterDependency(this->ctr_id, this->this_sig);
}
}
bool SignalCounterCondition::IsCounterValid() const
{
return TraceRestrictCounter::IsValidID(this->ctr_id);
}
bool SignalCounterCondition::CheckCounterValid()
{
bool valid = this->IsCounterValid();
if (!valid) {
this->Invalidate();
}
return valid;
}
void SignalCounterCondition::Invalidate()
{
this->ctr_id = INVALID_TRACE_RESTRICT_COUNTER_ID;
}
void SignalCounterCondition::SetCounter(TraceRestrictCounterID ctr_id)
{
if (this->IsCounterValid()) {
RemoveSignalCounterDependency(this->ctr_id, this->this_sig);
}
this->ctr_id = ctr_id;
if (this->CheckCounterValid()) {
AddSignalCounterDependency(this->ctr_id, this->this_sig);
}
}
/*virtual*/ SignalCounterCondition::~SignalCounterCondition()
{
if (_cleaning_signal_programs) return;
if (this->IsCounterValid()) {
RemoveSignalCounterDependency(this->ctr_id, this->this_sig);
}
}
/*virtual*/ bool SignalCounterCondition::Evaluate(SignalVM& vm)
{
if (!this->CheckCounterValid()) {
DEBUG(misc, 1, "Signal (%x, %d) has an invalid condition", this->this_sig.tile, this->this_sig.track);
return false;
}
return this->EvaluateComparable(TraceRestrictCounter::Get(this->ctr_id)->value);
}
SignalStateCondition::SignalStateCondition(SignalReference this_sig,
TileIndex sig_tile, Trackdir sig_track)
: SignalCondition(PSC_SIGNAL_STATE), this_sig(this_sig), sig_tile(sig_tile)
, sig_track(sig_track)
{
if (this->CheckSignalValid())
AddSignalDependency(SignalReference(this->sig_tile, TrackdirToTrack(sig_track)),
this->this_sig);
}
bool SignalStateCondition::IsSignalValid() const
{
return IsValidTile(this->sig_tile) && IsTileType(this->sig_tile, MP_RAILWAY) && HasSignalOnTrackdir(this->sig_tile, this->sig_track);
}
bool SignalStateCondition::CheckSignalValid()
{
bool valid = this->IsSignalValid();
if (!valid) {
this->Invalidate();
}
return valid;
}
void SignalStateCondition::Invalidate()
{
this->sig_tile = INVALID_TILE;
}
void SignalStateCondition::SetSignal(TileIndex tile, Trackdir track)
{
if (this->IsSignalValid())
RemoveSignalDependency(SignalReference(this->sig_tile, TrackdirToTrack(sig_track)),
this->this_sig);
this->sig_tile = tile;
this->sig_track = track;
if (this->CheckSignalValid())
AddSignalDependency(SignalReference(this->sig_tile, TrackdirToTrack(sig_track)),
this->this_sig);
}
/*virtual*/ SignalStateCondition::~SignalStateCondition()
{
if (_cleaning_signal_programs) return;
if (this->IsSignalValid()) {
RemoveSignalDependency(SignalReference(this->sig_tile, TrackdirToTrack(sig_track)),
this->this_sig);
}
}
/*virtual*/ bool SignalStateCondition::Evaluate(SignalVM& vm)
{
if (!this->CheckSignalValid()) {
DEBUG(misc, 1, "Signal (%x, %d) has an invalid condition", this->this_sig.tile, this->this_sig.track);
return false;
}
return GetSignalStateByTrackdir(this->sig_tile, this->sig_track) == SIGNAL_STATE_GREEN;
}
// -- Instructions
SignalInstruction::SignalInstruction(SignalProgram *prog, SignalOpcode op)
: opcode(op), previous(nullptr), program(prog)
{
program->instructions.push_back(this);
}
SignalInstruction::~SignalInstruction()
{
auto pthis = std::find(program->instructions.begin(), program->instructions.end(), this);
assert(pthis != program->instructions.end());
program->instructions.erase(pthis);
}
void SignalInstruction::Insert(SignalInstruction *before_insn)
{
this->previous = before_insn->Previous();
before_insn->Previous()->SetNext(this);
before_insn->SetPrevious(this);
this->SetNext(before_insn);
}
SignalSpecial::SignalSpecial(SignalProgram *prog, SignalOpcode op)
: SignalInstruction(prog, op)
{
assert(op == PSO_FIRST || op == PSO_LAST);
this->next = nullptr;
}
/*virtual*/ void SignalSpecial::Remove()
{
if (opcode == PSO_FIRST) {
while (this->next->Opcode() != PSO_LAST) this->next->Remove();
} else if (opcode == PSO_LAST) {
} else NOT_REACHED();
}
/*static*/ void SignalSpecial::link(SignalSpecial *first, SignalSpecial *last)
{
assert(first->opcode == PSO_FIRST && last->opcode == PSO_LAST);
first->next = last;
last->previous = first;
}
void SignalSpecial::Evaluate(SignalVM &vm)
{
if (this->opcode == PSO_FIRST) {
DEBUG(misc, 7, " Executing First");
vm.instruction = this->next;
} else {
DEBUG(misc, 7, " Executing Last");
vm.instruction = nullptr;
}
}
/*virtual*/ void SignalSpecial::SetNext(SignalInstruction *next_insn)
{
this->next = next_insn;
}
SignalIf::PseudoInstruction::PseudoInstruction(SignalProgram *prog, SignalOpcode op)
: SignalInstruction(prog, op)
{}
SignalIf::PseudoInstruction::PseudoInstruction(SignalProgram *prog, SignalIf *block, SignalOpcode op)
: SignalInstruction(prog, op)
{
this->block = block;
if (op == PSO_IF_ELSE) {
previous = block;
} else if (op == PSO_IF_ENDIF) {
previous = block->if_true;
} else NOT_REACHED();
}
/*virtual*/ void SignalIf::PseudoInstruction::Remove()
{
if (opcode == PSO_IF_ELSE) {
this->block->if_true = nullptr;
while(this->block->if_false) this->block->if_false->Remove();
} else if (opcode == PSO_IF_ENDIF) {
this->block->if_false = nullptr;
} else NOT_REACHED();
delete this;
}
/*virtual*/ void SignalIf::PseudoInstruction::Evaluate(SignalVM &vm)
{
DEBUG(misc, 7, " Executing If Pseudo Instruction %s", opcode == PSO_IF_ELSE ? "Else" : "Endif");
vm.instruction = this->block->after;
}
/*virtual*/ void SignalIf::PseudoInstruction::SetNext(SignalInstruction *next_insn)
{
if (this->opcode == PSO_IF_ELSE) {
this->block->if_false = next_insn;
} else if (this->opcode == PSO_IF_ENDIF) {
this->block->after = next_insn;
} else NOT_REACHED();
}
SignalIf::SignalIf(SignalProgram *prog, bool raw)
: SignalInstruction(prog, PSO_IF)
{
if (!raw) {
this->condition = new SignalSimpleCondition(PSC_ALWAYS);
this->if_true = new PseudoInstruction(prog, this, PSO_IF_ELSE);
this->if_false = new PseudoInstruction(prog, this, PSO_IF_ENDIF);
this->after = nullptr;
}
}
/*virtual*/ void SignalIf::Remove()
{
delete this->condition;
while (this->if_true) this->if_true->Remove();
this->previous->SetNext(this->after);
this->after->SetPrevious(this->previous);
delete this;
}
/*virtual*/ void SignalIf::Insert(SignalInstruction *before_insn)
{
this->previous = before_insn->Previous();
before_insn->Previous()->SetNext(this);
before_insn->SetPrevious(this->if_false);
this->after = before_insn;
}
void SignalIf::SetCondition(SignalCondition *cond)
{
assert(cond != this->condition);
delete this->condition;
this->condition = cond;
}
/*virtual*/ void SignalIf::Evaluate(SignalVM &vm)
{
bool is_true = this->condition->Evaluate(vm);
DEBUG(misc, 7, " Executing If, taking %s branch", is_true ? "then" : "else");
if (is_true) {
vm.instruction = this->if_true;
} else {
vm.instruction = this->if_false;
}
}
/*virtual*/ void SignalIf::SetNext(SignalInstruction *next_insn)
{
this->if_true = next_insn;
}
SignalSet::SignalSet(SignalProgram *prog, SignalState state)
: SignalInstruction(prog, PSO_SET_SIGNAL)
{
this->to_state = state;
}
/*virtual*/ void SignalSet::Remove()
{
this->next->SetPrevious(this->previous);
this->previous->SetNext(this->next);
delete this;
}
/*virtual*/ void SignalSet::Evaluate(SignalVM &vm)
{
DEBUG(misc, 7, " Executing SetSignal, making %s", this->to_state? "green" : "red");
vm.state = this->to_state;
vm.instruction = nullptr;
}
/*virtual*/ void SignalSet::SetNext(SignalInstruction *next_insn)
{
this->next = next_insn;
}
SignalProgram *GetExistingSignalProgram(SignalReference ref)
{
ProgramList::iterator i = _signal_programs.find(ref);
if (i != _signal_programs.end()) {
assert(i->first == ref);
return i->second;
} else {
return nullptr;
}
}
SignalProgram *GetSignalProgram(SignalReference ref)
{
SignalProgram *pr = GetExistingSignalProgram(ref);
if (!pr) {
pr = new SignalProgram(ref.tile, ref.track);
_signal_programs[ref] = pr;
} else {
assert(pr->tile == ref.tile && pr->track == ref.track);
}
return pr;
}
void FreeSignalProgram(SignalReference ref)
{
DeleteWindowById(WC_SIGNAL_PROGRAM, (ref.tile << 3) | ref.track);
ProgramList::iterator i = _signal_programs.find(ref);
if (i != _signal_programs.end()) {
delete i->second;
_signal_programs.erase(i);
}
}
void FreeSignalPrograms()
{
_cleaning_signal_programs = true;
ProgramList::iterator i, e;
for (i = _signal_programs.begin(), e = _signal_programs.end(); i != e;) {
delete i->second;
// Must postincrement here to avoid iterator invalidation
_signal_programs.erase(i++);
}
_cleaning_signal_programs = false;
}
SignalState RunSignalProgram(SignalReference ref, uint num_exits, uint num_green)
{
SignalProgram *program = GetExistingSignalProgram(ref);
if (!program) return SIGNAL_STATE_RED;
SignalVM vm;
vm.program = program;
vm.num_exits = num_exits;
vm.num_green = num_green;
vm.instruction = program->first_instruction;
vm.state = SIGNAL_STATE_RED;
DEBUG(misc, 7, "%d exits, of which %d green", vm.num_exits, vm.num_green);
vm.Execute();
DEBUG(misc, 7, "Returning %s", vm.state == SIGNAL_STATE_GREEN ? "green" : "red");
return vm.state;
}
void RemoveProgramDependencies(SignalReference dependency_target, SignalReference signal_to_update)
{
SignalProgram *prog = GetExistingSignalProgram(signal_to_update);
if (!prog) return;
for (SignalInstruction *insn : prog->instructions) {
if (insn->Opcode() == PSO_IF) {
SignalIf* ifi = static_cast(insn);
if (ifi->condition->ConditionCode() == PSC_SIGNAL_STATE) {
SignalStateCondition* c = static_cast(ifi->condition);
if (c->sig_tile == dependency_target.tile && TrackdirToTrack(c->sig_track) == dependency_target.track) {
c->Invalidate();
}
}
}
}
InvalidateWindowData(WC_SIGNAL_PROGRAM, (signal_to_update.tile << 3) | signal_to_update.track);
AddTrackToSignalBuffer(signal_to_update.tile, signal_to_update.track, GetTileOwner(signal_to_update.tile));
UpdateSignalsInBuffer();
}
void RemoveProgramSlotDependencies(TraceRestrictSlotID slot_being_removed, SignalReference signal_to_update)
{
SignalProgram *prog = GetExistingSignalProgram(signal_to_update);
if (!prog) return;
for (SignalInstruction *insn : prog->instructions) {
if (insn->Opcode() == PSO_IF) {
SignalIf* ifi = static_cast(insn);
if (ifi->condition->ConditionCode() == PSC_SLOT_OCC || ifi->condition->ConditionCode() == PSC_SLOT_OCC_REM) {
SignalSlotCondition* c = static_cast(ifi->condition);
if (c->slot_id == slot_being_removed) {
c->Invalidate();
}
}
}
}
InvalidateWindowData(WC_SIGNAL_PROGRAM, (signal_to_update.tile << 3) | signal_to_update.track);
AddTrackToSignalBuffer(signal_to_update.tile, signal_to_update.track, GetTileOwner(signal_to_update.tile));
UpdateSignalsInBuffer();
}
void RemoveProgramCounterDependencies(TraceRestrictCounterID ctr_being_removed, SignalReference signal_to_update)
{
SignalProgram *prog = GetExistingSignalProgram(signal_to_update);
if (!prog) return;
for (SignalInstruction *insn : prog->instructions) {
if (insn->Opcode() == PSO_IF) {
SignalIf* ifi = static_cast(insn);
if (ifi->condition->ConditionCode() == PSC_COUNTER) {
SignalCounterCondition* c = static_cast(ifi->condition);
if (c->ctr_id == ctr_being_removed) {
c->Invalidate();
}
}
}
}
InvalidateWindowData(WC_SIGNAL_PROGRAM, (signal_to_update.tile << 3) | signal_to_update.track);
AddTrackToSignalBuffer(signal_to_update.tile, signal_to_update.track, GetTileOwner(signal_to_update.tile));
UpdateSignalsInBuffer();
}
void SignalProgram::DebugPrintProgram()
{
DEBUG(misc, 5, "Program %p listing", this);
for (size_t i = 0; i < this->instructions.size(); i++) {
SignalInstruction *insn = this->instructions[i];
DEBUG(misc, 5, " %d: Opcode %d, prev %d", int(i), int(insn->Opcode()),
int(insn->Previous() ? insn->Previous()->Id() : -1));
}
}
/** Insert a signal instruction into the signal program.
*
* @param tile The Tile on which to perform the operation
* @param p1 Flags and information
* - Bits 0-2 Which track the signal sits on
* - Bits 3-18 ID of instruction to insert before
* - Bits 19-26 Which opcode to create
* - Bits 27-31 Reserved
* @param p2 Depends upon instruction
* - PSO_SET_SIGNAL:
* - Colour to set the signal to
* @param text unused
*/
CommandCost CmdInsertSignalInstruction(TileIndex tile, DoCommandFlag flags, uint32 p1, uint32 p2, const char *text)
{
Track track = Extract