* 1) All the sprites in a railset MUST be in the same order. This order * is determined by normal rail. Check sprites 1005 and following for this order
* 2) The position where the railtype is loaded must always be the same, otherwise
* the offset will fail.
*/
inline uint GetRailtypeSpriteOffset() const
{
return 82 * this->fallback_railtype;
}
};
/**
* Returns a pointer to the Railtype information for a given railtype
* @param railtype the rail type which the information is requested for
* @return The pointer to the RailtypeInfo
*/
static inline const RailtypeInfo *GetRailTypeInfo(RailType railtype)
{
extern RailtypeInfo _railtypes[RAILTYPE_END];
dbg_assert_msg(railtype < RAILTYPE_END, "%u", railtype);
return &_railtypes[railtype];
}
/**
* Checks if an engine of the given RailType can drive on a tile with a given
* RailType. This would normally just be an equality check, but for electric
* rails (which also support non-electric engines).
* @return Whether the engine can drive on this tile.
* @param enginetype The RailType of the engine we are considering.
* @param tiletype The RailType of the tile we are considering.
*/
static inline bool IsCompatibleRail(RailType enginetype, RailType tiletype)
{
return HasBit(GetRailTypeInfo(enginetype)->compatible_railtypes, tiletype);
}
/**
* Checks if an engine of the given RailType got power on a tile with a given
* RailType. This would normally just be an equality check, but for electric
* rails (which also support non-electric engines).
* @return Whether the engine got power on this tile.
* @param enginetype The RailType of the engine we are considering.
* @param tiletype The RailType of the tile we are considering.
*/
static inline bool HasPowerOnRail(RailType enginetype, RailType tiletype)
{
return HasBit(GetRailTypeInfo(enginetype)->powered_railtypes, tiletype);
}
/**
* Test if a RailType disallows build of level crossings.
* @param rt The RailType to check.
* @return Whether level crossings are not allowed.
*/
static inline bool RailNoLevelCrossings(RailType rt)
{
return HasBit(GetRailTypeInfo(rt)->flags, RTF_NO_LEVEL_CROSSING);
}
/**
* Test if 90 degree turns are disallowed between two railtypes.
* @param rt1 First railtype to test for.
* @param rt2 Second railtype to test for.
* @param def Default value to use if the rail type doesn't specify anything.
* @return True if 90 degree turns are disallowed between the two rail types.
*/
static inline bool Rail90DegTurnDisallowed(RailType rt1, RailType rt2, bool def = _settings_game.pf.forbid_90_deg)
{
if (rt1 == INVALID_RAILTYPE || rt2 == INVALID_RAILTYPE) return def;
const RailtypeInfo *rti1 = GetRailTypeInfo(rt1);
const RailtypeInfo *rti2 = GetRailTypeInfo(rt2);
bool rt1_90deg = HasBit(rti1->flags, RTF_DISALLOW_90DEG) || (!HasBit(rti1->flags, RTF_ALLOW_90DEG) && def);
bool rt2_90deg = HasBit(rti2->flags, RTF_DISALLOW_90DEG) || (!HasBit(rti2->flags, RTF_ALLOW_90DEG) && def);
return rt1_90deg || rt2_90deg;
}
static inline bool Rail90DegTurnDisallowedTilesFromDiagDir(TileIndex t1, TileIndex t2, DiagDirection t1_towards_t2, bool def = _settings_game.pf.forbid_90_deg)
{
return Rail90DegTurnDisallowed(GetTileRailTypeByEntryDir(t1, ReverseDiagDir(t1_towards_t2)), GetTileRailTypeByEntryDir(t2, t1_towards_t2), def);
}
static inline bool Rail90DegTurnDisallowedAdjacentTiles(TileIndex t1, TileIndex t2, bool def = _settings_game.pf.forbid_90_deg)
{
return Rail90DegTurnDisallowedTilesFromDiagDir(t1, t2, DiagdirBetweenTiles(t1, t2));
}
static inline bool Rail90DegTurnDisallowedTilesFromTrackdir(TileIndex t1, TileIndex t2, Trackdir t1_td, bool def = _settings_game.pf.forbid_90_deg)
{
return Rail90DegTurnDisallowedTilesFromDiagDir(t1, t2, TrackdirToExitdir(t1_td));
}
/**
* Returns the cost of building the specified railtype.
* @param railtype The railtype being built.
* @return The cost multiplier.
*/
static inline Money RailBuildCost(RailType railtype)
{
dbg_assert(railtype < RAILTYPE_END);
return (_price[PR_BUILD_RAIL] * GetRailTypeInfo(railtype)->cost_multiplier) >> 3;
}
/**
* Returns the 'cost' of clearing the specified railtype.
* @param railtype The railtype being removed.
* @return The cost.
*/
static inline Money RailClearCost(RailType railtype)
{
/* Clearing rail in fact earns money, but if the build cost is set
* very low then a loophole exists where money can be made.
* In this case we limit the removal earnings to 3/4s of the build
* cost.
*/
dbg_assert(railtype < RAILTYPE_END);
return std::max(_price[PR_CLEAR_RAIL], -RailBuildCost(railtype) * 3 / 4);
}
/**
* Calculates the cost of rail conversion
* @param from The railtype we are converting from
* @param to The railtype we are converting to
* @return Cost per TrackBit
*/
static inline Money RailConvertCost(RailType from, RailType to)
{
/* Get the costs for removing and building anew
* A conversion can never be more costly */
Money rebuildcost = RailBuildCost(to) + RailClearCost(from);
/* Conversion between somewhat compatible railtypes:
* Pay 1/8 of the target rail cost (labour costs) and additionally any difference in the
* build costs, if the target type is more expensive (material upgrade costs).
* Upgrade can never be more expensive than re-building. */
if (HasPowerOnRail(from, to) || HasPowerOnRail(to, from)) {
Money upgradecost = RailBuildCost(to) / 8 + std::max((Money)0, RailBuildCost(to) - RailBuildCost(from));
return std::min(upgradecost, rebuildcost);
}
/* make the price the same as remove + build new type for rail types
* which are not compatible in any way */
return rebuildcost;
}
/**
* Calculates the maintenance cost of a number of track bits.
* @param railtype The railtype to get the cost of.
* @param num Number of track bits of this railtype.
* @param total_num Total number of track bits of all railtypes.
* @return Total cost.
*/
static inline Money RailMaintenanceCost(RailType railtype, uint32 num, uint32 total_num)
{
dbg_assert(railtype < RAILTYPE_END);
return (_price[PR_INFRASTRUCTURE_RAIL] * GetRailTypeInfo(railtype)->maintenance_multiplier * num * (1 + IntSqrt(total_num))) >> 11; // 4 bits fraction for the multiplier and 7 bits scaling.
}
/**
* Calculates the maintenance cost of a number of signals.
* @param num Number of signals.
* @return Total cost.
*/
static inline Money SignalMaintenanceCost(uint32 num)
{
return (_price[PR_INFRASTRUCTURE_RAIL] * 15 * num * (1 + IntSqrt(num))) >> 8; // 1 bit fraction for the multiplier and 7 bits scaling.
}
void MarkSingleSignalDirty(TileIndex tile, Trackdir td);
void MarkSingleSignalDirtyAtZ(TileIndex tile, Trackdir td, bool opposite_side, uint z);
void DrawTrainDepotSprite(int x, int y, int image, RailType railtype);
int TicksToLeaveDepot(const Train *v);
Foundation GetRailFoundation(Slope tileh, TrackBits bits);
bool HasRailtypeAvail(const CompanyID company, const RailType railtype);
bool HasAnyRailtypesAvail(const CompanyID company);
bool ValParamRailtype(const RailType rail);
RailTypes AddDateIntroducedRailTypes(RailTypes current, Date date);
RailTypes GetCompanyRailtypes(CompanyID company, bool introduces = true);
RailTypes GetRailTypes(bool introduces);
RailType GetRailTypeByLabel(RailTypeLabel label, bool allow_alternate_labels = true);
void ResetRailTypes();
void UpdateRailGuiSprites();
void InitRailTypes();
RailType AllocateRailType(RailTypeLabel label);
extern std::vector