/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file newgrf_spritegroup.h Action 2 handling. */ #ifndef NEWGRF_SPRITEGROUP_H #define NEWGRF_SPRITEGROUP_H #include "town_type.h" #include "engine_type.h" #include "house_type.h" #include "industry_type.h" #include "newgrf_callbacks.h" #include "newgrf_generic.h" #include "newgrf_storage.h" #include "newgrf_commons.h" #include "3rdparty/cpp-btree/btree_set.h" #include #include /** * Gets the value of a so-called newgrf "register". * @param i index of the register * @pre i < 0x110 * @return the value of the register */ inline uint32_t GetRegister(uint i) { extern TemporaryStorageArray _temp_store; return _temp_store.GetValue(i); } /* List of different sprite group types */ enum SpriteGroupType : uint8_t { SGT_REAL, SGT_DETERMINISTIC, SGT_RANDOMIZED, SGT_CALLBACK, SGT_RESULT, SGT_TILELAYOUT, SGT_INDUSTRY_PRODUCTION, }; struct SpriteGroup; typedef uint32_t SpriteGroupID; struct ResolverObject; struct AnalyseCallbackOperation; /* SPRITE_WIDTH is 24. ECS has roughly 30 sprite groups per real sprite. * Adding an 'extra' margin would be assuming 64 sprite groups per real * sprite. 64 = 2^6, so 2^30 should be enough (for now) */ typedef Pool SpriteGroupPool; extern SpriteGroupPool _spritegroup_pool; enum SpriteGroupFlags : uint8_t { SGF_NONE = 0, SGF_ACTION6 = 1 << 0, SGF_INLINING = 1 << 1, SGF_SKIP_CB = 1 << 2, }; DECLARE_ENUM_AS_BIT_SET(SpriteGroupFlags) /* Common wrapper for all the different sprite group types */ struct SpriteGroup : SpriteGroupPool::PoolItem<&_spritegroup_pool> { protected: SpriteGroup(SpriteGroupType type) : nfo_line(0), type(type) {} /** Base sprite group resolver */ virtual const SpriteGroup *Resolve([[maybe_unused]] ResolverObject &object) const { return this; }; public: virtual ~SpriteGroup() = default; uint32_t nfo_line; SpriteGroupType type; GrfSpecFeature feature; SpriteGroupFlags sg_flags = SGF_NONE; virtual SpriteID GetResult() const { return 0; } virtual uint8_t GetNumResults() const { return 0; } virtual uint16_t GetCallbackResult() const { return CALLBACK_FAILED; } virtual void AnalyseCallbacks(AnalyseCallbackOperation &op) const {}; static const SpriteGroup *Resolve(const SpriteGroup *group, ResolverObject &object, bool top_level = true); }; /* 'Real' sprite groups contain a list of other result or callback sprite * groups. */ struct RealSpriteGroup : SpriteGroup { RealSpriteGroup() : SpriteGroup(SGT_REAL) {} /* Loaded = in motion, loading = not moving * Each group contains several spritesets, for various loading stages */ /* XXX: For stations the meaning is different - loaded is for stations * with small amount of cargo whilst loading is for stations with a lot * of da stuff. */ std::vector loaded; ///< List of loaded groups (can be SpriteIDs or Callback results) std::vector loading; ///< List of loading groups (can be SpriteIDs or Callback results) void AnalyseCallbacks(AnalyseCallbackOperation &op) const override; protected: const SpriteGroup *Resolve(ResolverObject &object) const override; }; /* Shared by deterministic and random groups. */ enum VarSpriteGroupScope : uint8_t { VSG_BEGIN, VSG_SCOPE_SELF = VSG_BEGIN, ///< Resolved object itself VSG_SCOPE_PARENT, ///< Related object of the resolved one VSG_SCOPE_RELATIVE, ///< Relative position (vehicles only) VSG_END }; DECLARE_POSTFIX_INCREMENT(VarSpriteGroupScope) enum VarSpriteGroupScopeRelativeMode : uint8_t { VSGSRM_BACKWARD_SELF = 0, VSGSRM_FORWARD_SELF = 1, VSGSRM_BACKWARD_ENGINE = 2, VSGSRM_BACKWARD_SAMEID = 3, VSGSRM_END, }; /* * Decoded relative scope offset: * Bits 0..7: offset * Bits 8..9: mode (VarSpriteGroupScopeRelativeMode) * Bit 15: use var 0x100 */ typedef uint16_t VarSpriteGroupScopeOffset; GrfSpecFeature GetGrfSpecFeatureForParentScope(GrfSpecFeature feature); inline GrfSpecFeature GetGrfSpecFeatureForScope(GrfSpecFeature feature, VarSpriteGroupScope scope) { if (scope == VSG_SCOPE_PARENT) { return GetGrfSpecFeatureForParentScope(feature); } return feature; } enum DeterministicSpriteGroupSize : uint8_t { DSG_SIZE_BYTE, DSG_SIZE_WORD, DSG_SIZE_DWORD, }; enum DeterministicSpriteGroupAdjustType : uint8_t { DSGA_TYPE_NONE, DSGA_TYPE_DIV, DSGA_TYPE_MOD, DSGA_TYPE_EQ, DSGA_TYPE_NEQ, }; enum DeterministicSpriteGroupAdjustOperation : uint8_t { DSGA_OP_ADD, ///< a + b DSGA_OP_SUB, ///< a - b DSGA_OP_SMIN, ///< (signed) min(a, b) DSGA_OP_SMAX, ///< (signed) max(a, b) DSGA_OP_UMIN, ///< (unsigned) min(a, b) DSGA_OP_UMAX, ///< (unsigned) max(a, b) DSGA_OP_SDIV, ///< (signed) a / b DSGA_OP_SMOD, ///< (signed) a % b DSGA_OP_UDIV, ///< (unsigned) a / b DSGA_OP_UMOD, ///< (unsigned) a & b DSGA_OP_MUL, ///< a * b DSGA_OP_AND, ///< a & b DSGA_OP_OR, ///< a | b DSGA_OP_XOR, ///< a ^ b DSGA_OP_STO, ///< store a into temporary storage, indexed by b. return a DSGA_OP_RST, ///< return b DSGA_OP_STOP, ///< store a into persistent storage, indexed by b, return a DSGA_OP_ROR, ///< rotate a b positions to the right DSGA_OP_SCMP, ///< (signed) comparison (a < b -> 0, a == b = 1, a > b = 2) DSGA_OP_UCMP, ///< (unsigned) comparison (a < b -> 0, a == b = 1, a > b = 2) DSGA_OP_SHL, ///< a << b DSGA_OP_SHR, ///< (unsigned) a >> b DSGA_OP_SAR, ///< (signed) a >> b DSGA_OP_END, DSGA_OP_TERNARY = 0x80, ///< a == 0 ? b : c, DSGA_OP_EQ, ///< a == b ? 1 : 0, DSGA_OP_SLT, ///< (signed) a < b ? 1 : 0, DSGA_OP_SGE, ///< (signed) a >= b ? 1 : 0, DSGA_OP_SLE, ///< (signed) a <= b ? 1 : 0, DSGA_OP_SGT, ///< (signed) a > b ? 1 : 0, DSGA_OP_RSUB, ///< b - a DSGA_OP_STO_NC, ///< store b into temporary storage, indexed by c. return a DSGA_OP_ABS, ///< abs(a) DSGA_OP_JZ, ///< jump forward fixed number of adjusts (to adjust after DSGAF_END_BLOCK marker (taking into account nesting)) if b is zero. return 0 if jumped, return a if not jumped DSGA_OP_JNZ, ///< jump forward fixed number of adjusts (to adjust after DSGAF_END_BLOCK marker (taking into account nesting)) if b is non-zero. return b if jumped, return a if not jumped DSGA_OP_JZ_LV, ///< jump forward fixed number of adjusts (to adjust after DSGAF_END_BLOCK marker (taking into account nesting)) if a is zero. return a DSGA_OP_JNZ_LV, ///< jump forward fixed number of adjusts (to adjust after DSGAF_END_BLOCK marker (taking into account nesting)) if a is non-zero. return a DSGA_OP_NOOP, ///< a DSGA_OP_SPECIAL_END, }; static_assert((DSGA_OP_SLT ^ 1) == DSGA_OP_SGE); static_assert((DSGA_OP_SLE ^ 1) == DSGA_OP_SGT); enum DeterministicSpriteGroupAdjustFlags : uint8_t { DSGAF_NONE = 0, DSGAF_SKIP_ON_ZERO = 1 << 0, DSGAF_SKIP_ON_LSB_SET = 1 << 1, DSGAF_LAST_VAR_READ = 1 << 2, DSGAF_JUMP_INS_HINT = 1 << 3, DSGAF_END_BLOCK = 1 << 4, }; DECLARE_ENUM_AS_BIT_SET(DeterministicSpriteGroupAdjustFlags); inline bool IsEvalAdjustWithZeroRemovable(DeterministicSpriteGroupAdjustOperation op) { switch (op) { case DSGA_OP_ADD: case DSGA_OP_SUB: case DSGA_OP_OR: case DSGA_OP_XOR: case DSGA_OP_ROR: case DSGA_OP_SHL: case DSGA_OP_SHR: case DSGA_OP_SAR: case DSGA_OP_UMAX: return true; default: return false; } } inline bool IsEvalAdjustWithZeroAlwaysZero(DeterministicSpriteGroupAdjustOperation op) { switch (op) { case DSGA_OP_UMIN: case DSGA_OP_MUL: case DSGA_OP_AND: case DSGA_OP_RST: return true; default: return false; } } inline bool IsEvalAdjustWithOneRemovable(DeterministicSpriteGroupAdjustOperation op) { switch (op) { case DSGA_OP_MUL: case DSGA_OP_SDIV: case DSGA_OP_UDIV: return true; default: return false; } } inline bool IsEvalAdjustWithSideEffects(DeterministicSpriteGroupAdjustOperation op) { switch (op) { case DSGA_OP_STO: case DSGA_OP_STOP: return true; default: return false; } } inline bool IsEvalAdjustUsableForConstantPropagation(DeterministicSpriteGroupAdjustOperation op) { switch (op) { case DSGA_OP_ADD: case DSGA_OP_SUB: case DSGA_OP_SMIN: case DSGA_OP_SMAX: case DSGA_OP_UMIN: case DSGA_OP_UMAX: case DSGA_OP_SDIV: case DSGA_OP_SMOD: case DSGA_OP_UDIV: case DSGA_OP_UMOD: case DSGA_OP_MUL: case DSGA_OP_AND: case DSGA_OP_OR: case DSGA_OP_XOR: case DSGA_OP_ROR: case DSGA_OP_SCMP: case DSGA_OP_UCMP: case DSGA_OP_SHL: case DSGA_OP_SHR: case DSGA_OP_SAR: return true; default: return false; } } inline bool IsEvalAdjustOperationCommutative(DeterministicSpriteGroupAdjustOperation op) { switch (op) { case DSGA_OP_ADD: case DSGA_OP_MUL: case DSGA_OP_AND: case DSGA_OP_OR: case DSGA_OP_XOR: return true; default: return false; } } inline bool IsEvalAdjustOperationAntiCommutative(DeterministicSpriteGroupAdjustOperation op) { switch (op) { case DSGA_OP_SUB: case DSGA_OP_RSUB: return true; default: return false; } } inline bool IsEvalAdjustOperationReversable(DeterministicSpriteGroupAdjustOperation op) { return IsEvalAdjustOperationCommutative(op) || IsEvalAdjustOperationAntiCommutative(op); } inline DeterministicSpriteGroupAdjustOperation ReverseEvalAdjustOperation(DeterministicSpriteGroupAdjustOperation op) { if (IsEvalAdjustOperationCommutative(op)) return op; switch (op) { case DSGA_OP_SUB: return DSGA_OP_RSUB; case DSGA_OP_RSUB: return DSGA_OP_SUB; default: NOT_REACHED(); } } inline bool IsEvalAdjustOperationRelationalComparison(DeterministicSpriteGroupAdjustOperation op) { switch (op) { case DSGA_OP_SLT: case DSGA_OP_SGE: case DSGA_OP_SLE: case DSGA_OP_SGT: return true; default: return false; } } inline DeterministicSpriteGroupAdjustOperation InvertEvalAdjustRelationalComparisonOperation(DeterministicSpriteGroupAdjustOperation op) { assert(IsEvalAdjustOperationRelationalComparison(op)); return (DeterministicSpriteGroupAdjustOperation)(op ^ 1); } inline bool IsEvalAdjustOperationOnConstantEffectiveLoad(DeterministicSpriteGroupAdjustOperation op, uint32_t constant) { switch (op) { case DSGA_OP_ADD: case DSGA_OP_OR: case DSGA_OP_XOR: return constant == 0; case DSGA_OP_MUL: return constant == 1; default: return false; } } inline bool IsEvalAdjustWithZeroLastValueAlwaysZero(DeterministicSpriteGroupAdjustOperation op) { switch (op) { case DSGA_OP_SDIV: case DSGA_OP_SMOD: case DSGA_OP_UDIV: case DSGA_OP_UMOD: case DSGA_OP_UMIN: case DSGA_OP_MUL: case DSGA_OP_AND: case DSGA_OP_ROR: case DSGA_OP_SHL: case DSGA_OP_SHR: case DSGA_OP_SAR: return true; default: return false; } } inline bool IsEvalAdjustJumpOperation(DeterministicSpriteGroupAdjustOperation op) { switch (op) { case DSGA_OP_JZ: case DSGA_OP_JNZ: case DSGA_OP_JZ_LV: case DSGA_OP_JNZ_LV: return true; default: return false; } } inline bool IsConstantComparisonAdjustType(DeterministicSpriteGroupAdjustType adjust_type) { switch (adjust_type) { case DSGA_TYPE_EQ: case DSGA_TYPE_NEQ: return true; default: return false; } } inline DeterministicSpriteGroupAdjustType InvertConstantComparisonAdjustType(DeterministicSpriteGroupAdjustType adjust_type) { assert(IsConstantComparisonAdjustType(adjust_type)); return (adjust_type == DSGA_TYPE_EQ) ? DSGA_TYPE_NEQ : DSGA_TYPE_EQ; } struct DeterministicSpriteGroupAdjust { DeterministicSpriteGroupAdjustOperation operation; DeterministicSpriteGroupAdjustType type; uint16_t variable; uint8_t shift_num; DeterministicSpriteGroupAdjustFlags adjust_flags = DSGAF_NONE; uint32_t parameter; ///< Used for variables between 0x60 and 0x7F inclusive. uint32_t and_mask; uint32_t add_val; ///< Also used for DSGA_TYPE_EQ/DSGA_TYPE_NEQ constants and DSGA_OP_TERNARY false value uint32_t divmod_val; ///< Also used for DSGA_OP_STO_NC union { const SpriteGroup *subroutine; uint32_t jump; }; }; struct DeterministicSpriteGroupRange { const SpriteGroup *group; uint32_t low; uint32_t high; }; enum DeterministicSpriteGroupFlags : uint8_t { DSGF_NONE = 0, DSGF_NO_DSE = 1 << 0, DSGF_CB_RESULT = 1 << 1, DSGF_VAR_TRACKING_PENDING = 1 << 2, DSGF_REQUIRES_VAR1C = 1 << 3, DSGF_CHECK_EXPENSIVE_VARS = 1 << 4, DSGF_CHECK_INSERT_JUMP = 1 << 5, DSGF_CB_HANDLER = 1 << 6, DSGF_INLINE_CANDIDATE = 1 << 7, }; DECLARE_ENUM_AS_BIT_SET(DeterministicSpriteGroupFlags) struct DeterministicSpriteGroupShadowCopy { std::vector adjusts; std::vector ranges; const SpriteGroup *default_group; bool calculated_result; }; struct DeterministicSpriteGroup : SpriteGroup { DeterministicSpriteGroup() : SpriteGroup(SGT_DETERMINISTIC) {} VarSpriteGroupScope var_scope; VarSpriteGroupScopeOffset var_scope_count; DeterministicSpriteGroupSize size; bool calculated_result; DeterministicSpriteGroupFlags dsg_flags = DSGF_NONE; std::vector adjusts; std::vector ranges; // Dynamically allocated /* Dynamically allocated, this is the sole owner */ const SpriteGroup *default_group; const SpriteGroup *error_group; // was first range, before sorting ranges void AnalyseCallbacks(AnalyseCallbackOperation &op) const override; bool GroupMayBeBypassed() const; protected: const SpriteGroup *Resolve(ResolverObject &object) const override; }; enum RandomizedSpriteGroupCompareMode : uint8_t { RSG_CMP_ANY, RSG_CMP_ALL, }; struct RandomizedSpriteGroupShadowCopy { std::vector groups; }; struct RandomizedSpriteGroup : SpriteGroup { RandomizedSpriteGroup() : SpriteGroup(SGT_RANDOMIZED) {} VarSpriteGroupScope var_scope; ///< Take this object: VarSpriteGroupScopeOffset var_scope_count; RandomizedSpriteGroupCompareMode cmp_mode; ///< Check for these triggers: uint8_t triggers; uint8_t lowest_randbit; ///< Look for this in the per-object randomized bitmask: std::vector groups; ///< Take the group with appropriate index: void AnalyseCallbacks(AnalyseCallbackOperation &op) const override; protected: const SpriteGroup *Resolve(ResolverObject &object) const override; }; extern std::map _deterministic_sg_shadows; extern std::map _randomized_sg_shadows; extern bool _grfs_loaded_with_sg_shadow_enable; /* This contains a callback result. A failed callback has a value of * CALLBACK_FAILED */ struct CallbackResultSpriteGroup : SpriteGroup { /** * Creates a spritegroup representing a callback result * @param result The result as returned from TransformResultValue */ CallbackResultSpriteGroup(uint16_t result) : SpriteGroup(SGT_CALLBACK), result(result) {} /** * Transforms a callback result value * @param value The value that was used to represent this callback result * @param grf_version8 True, if we are dealing with a new NewGRF which uses GRF version >= 8. */ static uint16_t TransformResultValue(uint16_t value, bool grf_version8) { /* Old style callback results (only valid for version < 8) have the highest byte 0xFF so signify it is a callback result. * New style ones only have the highest bit set (allows 15-bit results, instead of just 8) */ if (!grf_version8 && (value >> 8) == 0xFF) { return value & ~0xFF00; } else { return value & ~0x8000; } } uint16_t result; uint16_t GetCallbackResult() const override { return this->result; } void AnalyseCallbacks(AnalyseCallbackOperation &op) const override; }; /* A result sprite group returns the first SpriteID and the number of * sprites in the set */ struct ResultSpriteGroup : SpriteGroup { /** * Creates a spritegroup representing a sprite number result. * @param sprite The sprite number. * @param num_sprites The number of sprites per set. * @return A spritegroup representing the sprite number result. */ ResultSpriteGroup(SpriteID sprite, uint8_t num_sprites) : SpriteGroup(SGT_RESULT), sprite(sprite), num_sprites(num_sprites) { } SpriteID sprite; uint8_t num_sprites; SpriteID GetResult() const override { return this->sprite; } uint8_t GetNumResults() const override { return this->num_sprites; } }; /** * Action 2 sprite layout for houses, industry tiles, objects and airport tiles. */ struct TileLayoutSpriteGroup : SpriteGroup { TileLayoutSpriteGroup() : SpriteGroup(SGT_TILELAYOUT) {} ~TileLayoutSpriteGroup() {} NewGRFSpriteLayout dts; const DrawTileSprites *ProcessRegisters(uint8_t *stage) const; }; struct IndustryProductionSpriteGroup : SpriteGroup { IndustryProductionSpriteGroup() : SpriteGroup(SGT_INDUSTRY_PRODUCTION) {} uint8_t version; ///< Production callback version used, or 0xFF if marked invalid uint8_t num_input; ///< How many subtract_input values are valid int16_t subtract_input[INDUSTRY_NUM_INPUTS]; ///< Take this much of the input cargo (can be negative, is indirect in cb version 1+) CargoID cargo_input[INDUSTRY_NUM_INPUTS]; ///< Which input cargoes to take from (only cb version 2) uint8_t num_output; ///< How many add_output values are valid uint16_t add_output[INDUSTRY_NUM_OUTPUTS]; ///< Add this much output cargo when successful (unsigned, is indirect in cb version 1+) CargoID cargo_output[INDUSTRY_NUM_OUTPUTS]; ///< Which output cargoes to add to (only cb version 2) uint8_t again; }; struct GetVariableExtra { bool available; uint32_t mask; GetVariableExtra(uint32_t mask_ = 0xFFFFFFFF) : available(true), mask(mask_) {} }; /** * Interface to query and set values specific to a single #VarSpriteGroupScope (action 2 scope). * * Multiple of these interfaces are combined into a #ResolverObject to allow access * to different game entities from a #SpriteGroup-chain (action 1-2-3 chain). */ struct ScopeResolver { ResolverObject &ro; ///< Surrounding resolver object. ScopeResolver(ResolverObject &ro) : ro(ro) {} virtual ~ScopeResolver() = default; virtual uint32_t GetRandomBits() const; virtual uint32_t GetTriggers() const; virtual uint32_t GetVariable(uint16_t variable, uint32_t parameter, GetVariableExtra *extra) const; virtual void StorePSA(uint reg, int32_t value); }; /** * Interface for #SpriteGroup-s to access the gamestate. * * Using this interface #SpriteGroup-chains (action 1-2-3 chains) can be resolved, * to get the results of callbacks, rerandomisations or normal sprite lookups. */ struct ResolverObject { /** * Resolver constructor. * @param grffile NewGRF file associated with the object (or \c nullptr if none). * @param callback Callback code being resolved (default value is #CBID_NO_CALLBACK). * @param callback_param1 First parameter (var 10) of the callback (only used when \a callback is also set). * @param callback_param2 Second parameter (var 18) of the callback (only used when \a callback is also set). */ ResolverObject(const GRFFile *grffile, CallbackID callback = CBID_NO_CALLBACK, uint32_t callback_param1 = 0, uint32_t callback_param2 = 0) : default_scope(*this), callback(callback), callback_param1(callback_param1), callback_param2(callback_param2), grffile(grffile), root_spritegroup(nullptr) { this->ResetState(); } virtual ~ResolverObject() = default; ScopeResolver default_scope; ///< Default implementation of the grf scope. CallbackID callback; ///< Callback being resolved. uint32_t callback_param1; ///< First parameter (var 10) of the callback. uint32_t callback_param2; ///< Second parameter (var 18) of the callback. uint32_t last_value; ///< Result of most recent DeterministicSpriteGroup (including procedure calls) uint32_t waiting_triggers; ///< Waiting triggers to be used by any rerandomisation. (scope independent) uint32_t used_triggers; ///< Subset of cur_triggers, which actually triggered some rerandomisation. (scope independent) uint32_t reseed[VSG_END]; ///< Collects bits to rerandomise while triggering triggers. const GRFFile *grffile; ///< GRFFile the resolved SpriteGroup belongs to const SpriteGroup *root_spritegroup; ///< Root SpriteGroup to use for resolving /** * Resolve SpriteGroup. * @return Result spritegroup. */ const SpriteGroup *Resolve() { return SpriteGroup::Resolve(this->root_spritegroup, *this); } /** * Resolve callback. * @return Callback result. */ uint16_t ResolveCallback() { const SpriteGroup *result = Resolve(); return result != nullptr ? result->GetCallbackResult() : CALLBACK_FAILED; } virtual const SpriteGroup *ResolveReal(const RealSpriteGroup *group) const; virtual ScopeResolver *GetScope(VarSpriteGroupScope scope = VSG_SCOPE_SELF, VarSpriteGroupScopeOffset relative = 0); /** * Returns the waiting triggers that did not trigger any rerandomisation. */ uint32_t GetRemainingTriggers() const { return this->waiting_triggers & ~this->used_triggers; } /** * Returns the OR-sum of all bits that need reseeding * independent of the scope they were accessed with. * @return OR-sum of the bits. */ uint32_t GetReseedSum() const { uint32_t sum = 0; for (VarSpriteGroupScope vsg = VSG_BEGIN; vsg < VSG_END; vsg++) { sum |= this->reseed[vsg]; } return sum; } /** * Resets the dynamic state of the resolver object. * To be called before resolving an Action-1-2-3 chain. */ void ResetState() { this->last_value = 0; this->waiting_triggers = 0; this->used_triggers = 0; memset(this->reseed, 0, sizeof(this->reseed)); } /** * Get the feature number being resolved for. * This function is mainly intended for the callback profiling feature. */ virtual GrfSpecFeature GetFeature() const { return GSF_INVALID; } /** * Get an identifier for the item being resolved. * This function is mainly intended for the callback profiling feature, * and should return an identifier recognisable by the NewGRF developer. */ virtual uint32_t GetDebugID() const { return 0; } }; enum DumpSpriteGroupPrintOp { DSGPO_PRINT, DSGPO_START, DSGPO_END, DSGPO_NFO_LINE, }; using DumpSpriteGroupPrinter = std::function; struct SpriteGroupDumper { bool use_shadows = false; bool more_details = false; private: char buffer[1024]; DumpSpriteGroupPrinter print_fn; const SpriteGroup *top_default_group = nullptr; const SpriteGroup *top_graphics_group = nullptr; btree::btree_set seen_dsgs; enum SpriteGroupDumperFlags { SGDF_DEFAULT = 1 << 0, SGDF_RANGE = 1 << 1, }; char *DumpSpriteGroupAdjust(char *p, const char *last, const DeterministicSpriteGroupAdjust &adjust, const char *padding, uint32_t &highlight_tag, uint &conditional_indent); void DumpSpriteGroup(const SpriteGroup *sg, const char *prefix, uint flags); public: SpriteGroupDumper(DumpSpriteGroupPrinter print) : print_fn(print) {} void DumpSpriteGroup(const SpriteGroup *sg, uint flags) { this->DumpSpriteGroup(sg, "", flags); } void Print(const char *msg) { this->print_fn(nullptr, DSGPO_PRINT, 0, msg); } }; uint32_t EvaluateDeterministicSpriteGroupAdjust(DeterministicSpriteGroupSize size, const DeterministicSpriteGroupAdjust &adjust, ScopeResolver *scope, uint32_t last_value, uint32_t value); #endif /* NEWGRF_SPRITEGROUP_H */