/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file newgrf_spritegroup.cpp Handling of primarily NewGRF action 2. */ #include "stdafx.h" #include "debug.h" #include "newgrf_spritegroup.h" #include "newgrf_profiling.h" #include "core/pool_func.hpp" #include "vehicle_type.h" #include "newgrf_cache_check.h" #include "string_func.h" #include "newgrf_extension.h" #include "scope.h" #include "debug_settings.h" #include "newgrf_engine.h" #include #include "safeguards.h" SpriteGroupPool _spritegroup_pool("SpriteGroup"); INSTANTIATE_POOL_METHODS(SpriteGroup) TemporaryStorageArray _temp_store; std::map _deterministic_sg_shadows; std::map _randomized_sg_shadows; bool _grfs_loaded_with_sg_shadow_enable = false; GrfSpecFeature GetGrfSpecFeatureForParentScope(GrfSpecFeature feature) { switch (feature) { case GSF_STATIONS: case GSF_BRIDGES: case GSF_HOUSES: case GSF_INDUSTRIES: case GSF_OBJECTS: case GSF_ROADSTOPS: return GSF_FAKE_TOWNS; case GSF_INDUSTRYTILES: return GSF_INDUSTRIES; default: return feature; } } /** * ResolverObject (re)entry point. * This cannot be made a call to a virtual function because virtual functions * do not like nullptr and checking for nullptr *everywhere* is more cumbersome than * this little helper function. * @param group the group to resolve for * @param object information needed to resolve the group * @param top_level true if this is a top-level SpriteGroup, false if used nested in another SpriteGroup. * @return the resolved group */ /* static */ const SpriteGroup *SpriteGroup::Resolve(const SpriteGroup *group, ResolverObject &object, bool top_level) { if (group == nullptr) return nullptr; const GRFFile *grf = object.grffile; auto profiler = std::find_if(_newgrf_profilers.begin(), _newgrf_profilers.end(), [&](const NewGRFProfiler &pr) { return pr.grffile == grf; }); if (profiler == _newgrf_profilers.end() || !profiler->active) { if (top_level) _temp_store.ClearChanges(); return group->Resolve(object); } else if (top_level) { profiler->BeginResolve(object); _temp_store.ClearChanges(); const SpriteGroup *result = group->Resolve(object); profiler->EndResolve(result); return result; } else { profiler->RecursiveResolve(); return group->Resolve(object); } } static inline uint32_t GetVariable(const ResolverObject &object, ScopeResolver *scope, uint16_t variable, uint32_t parameter, GetVariableExtra *extra) { uint32_t value; switch (variable) { case 0x0C: return object.callback; case 0x10: return object.callback_param1; case 0x18: return object.callback_param2; case 0x1A: return UINT_MAX; case 0x1C: return object.last_value; case 0x5F: return (scope->GetRandomBits() << 8) | scope->GetTriggers(); case 0x7D: return _temp_store.GetValue(parameter); case 0x7F: if (object.grffile == nullptr) return 0; return object.grffile->GetParam(parameter); default: /* First handle variables common with Action7/9/D */ if (variable < 0x40 && GetGlobalVariable(variable, &value, object.grffile)) return value; /* Not a common variable, so evaluate the feature specific variables */ return scope->GetVariable(variable, parameter, extra); } } /** * Get a few random bits. Default implementation has no random bits. * @return Random bits. */ /* virtual */ uint32_t ScopeResolver::GetRandomBits() const { return 0; } /** * Get the triggers. Base class returns \c 0 to prevent trouble. * @return The triggers. */ /* virtual */ uint32_t ScopeResolver::GetTriggers() const { return 0; } /** * Get a variable value. Default implementation has no available variables. * @param variable Variable to read * @param parameter Parameter for 60+x variables * @param[out] available Set to false, in case the variable does not exist. * @return Value */ /* virtual */ uint32_t ScopeResolver::GetVariable(uint16_t variable, uint32_t parameter, GetVariableExtra *extra) const { DEBUG(grf, 1, "Unhandled scope variable 0x%X", variable); extra->available = false; return UINT_MAX; } /** * Store a value into the persistent storage area (PSA). Default implementation does nothing (for newgrf classes without storage). */ /* virtual */ void ScopeResolver::StorePSA(uint reg, int32_t value) {} /** * Get the real sprites of the grf. * @param group Group to get. * @return The available sprite group. */ /* virtual */ const SpriteGroup *ResolverObject::ResolveReal(const RealSpriteGroup *group) const { if (!group->loaded.empty()) return group->loaded[0]; if (!group->loading.empty()) return group->loading[0]; return nullptr; } /** * Get a resolver for the \a scope. * @return The resolver for the requested scope. */ /* virtual */ ScopeResolver *ResolverObject::GetScope(VarSpriteGroupScope scope, VarSpriteGroupScopeOffset relative) { return &this->default_scope; } /* Evaluate an adjustment for a variable of the given size. * U is the unsigned type and S is the signed type to use. */ template static U EvalAdjustT(const DeterministicSpriteGroupAdjust &adjust, ScopeResolver *scope, U last_value, uint32_t value, const DeterministicSpriteGroupAdjust **adjust_iter = nullptr) { value >>= adjust.shift_num; value &= adjust.and_mask; switch (adjust.type) { case DSGA_TYPE_DIV: value = ((S)value + (S)adjust.add_val) / (S)adjust.divmod_val; break; case DSGA_TYPE_MOD: value = ((S)value + (S)adjust.add_val) % (S)adjust.divmod_val; break; case DSGA_TYPE_EQ: value = (value == adjust.add_val) ? 1 : 0; break; case DSGA_TYPE_NEQ: value = (value != adjust.add_val) ? 1 : 0; break; case DSGA_TYPE_NONE: break; } auto handle_jump = [&](bool jump, U jump_return_value) -> U { if (jump && adjust_iter != nullptr) { /* Jump */ (*adjust_iter) += adjust.jump; return jump_return_value; } else { /* Don't jump */ return last_value; } }; switch (adjust.operation) { case DSGA_OP_ADD: return last_value + value; case DSGA_OP_SUB: return last_value - value; case DSGA_OP_SMIN: return std::min(last_value, value); case DSGA_OP_SMAX: return std::max(last_value, value); case DSGA_OP_UMIN: return std::min(last_value, value); case DSGA_OP_UMAX: return std::max(last_value, value); case DSGA_OP_SDIV: return value == 0 ? (S)last_value : (S)last_value / (S)value; case DSGA_OP_SMOD: return value == 0 ? (S)last_value : (S)last_value % (S)value; case DSGA_OP_UDIV: return value == 0 ? (U)last_value : (U)last_value / (U)value; case DSGA_OP_UMOD: return value == 0 ? (U)last_value : (U)last_value % (U)value; case DSGA_OP_MUL: return last_value * value; case DSGA_OP_AND: return last_value & value; case DSGA_OP_OR: return last_value | value; case DSGA_OP_XOR: return last_value ^ value; case DSGA_OP_STO: _temp_store.StoreValue((U)value, (S)last_value); return last_value; case DSGA_OP_RST: return value; case DSGA_OP_STOP: scope->StorePSA((U)value, (S)last_value); return last_value; case DSGA_OP_ROR: return std::rotr((U)last_value, (U)value & 0x1F); // mask 'value' to 5 bits, which should behave the same on all architectures. case DSGA_OP_SCMP: return ((S)last_value == (S)value) ? 1 : ((S)last_value < (S)value ? 0 : 2); case DSGA_OP_UCMP: return ((U)last_value == (U)value) ? 1 : ((U)last_value < (U)value ? 0 : 2); case DSGA_OP_SHL: return (uint32_t)(U)last_value << ((U)value & 0x1F); // Same behaviour as in ParamSet, mask 'value' to 5 bits, which should behave the same on all architectures. case DSGA_OP_SHR: return (uint32_t)(U)last_value >> ((U)value & 0x1F); case DSGA_OP_SAR: return (int32_t)(S)last_value >> ((U)value & 0x1F); case DSGA_OP_TERNARY: return (last_value != 0) ? value : adjust.add_val; case DSGA_OP_EQ: return (last_value == value) ? 1 : 0; case DSGA_OP_SLT: return ((S)last_value < (S)value) ? 1 : 0; case DSGA_OP_SGE: return ((S)last_value >= (S)value) ? 1 : 0; case DSGA_OP_SLE: return ((S)last_value <= (S)value) ? 1 : 0; case DSGA_OP_SGT: return ((S)last_value > (S)value) ? 1 : 0; case DSGA_OP_RSUB: return value - last_value; case DSGA_OP_STO_NC: _temp_store.StoreValue(adjust.divmod_val, (S)value); return last_value; case DSGA_OP_ABS: return ((S)last_value < 0) ? -((S)last_value) : (S)last_value; case DSGA_OP_JZ: return handle_jump(value == 0, value); case DSGA_OP_JNZ: return handle_jump(value != 0, value); case DSGA_OP_JZ_LV: return handle_jump(last_value == 0, last_value); case DSGA_OP_JNZ_LV: return handle_jump(last_value != 0, last_value); case DSGA_OP_NOOP: return last_value; default: return value; } } uint32_t EvaluateDeterministicSpriteGroupAdjust(DeterministicSpriteGroupSize size, const DeterministicSpriteGroupAdjust &adjust, ScopeResolver *scope, uint32_t last_value, uint32_t value) { switch (size) { case DSG_SIZE_BYTE: return EvalAdjustT (adjust, scope, last_value, value); break; case DSG_SIZE_WORD: return EvalAdjustT(adjust, scope, last_value, value); break; case DSG_SIZE_DWORD: return EvalAdjustT(adjust, scope, last_value, value); break; default: NOT_REACHED(); } } static bool RangeHighComparator(const DeterministicSpriteGroupRange &range, uint32_t value) { return range.high < value; } const SpriteGroup *DeterministicSpriteGroup::Resolve(ResolverObject &object) const { if ((this->sg_flags & SGF_SKIP_CB) != 0 && object.callback > 1) { static CallbackResultSpriteGroup cbfail(CALLBACK_FAILED); return &cbfail; } uint32_t last_value = 0; uint32_t value = 0; ScopeResolver *scope = object.GetScope(this->var_scope, this->var_scope_count); const DeterministicSpriteGroupAdjust *end = this->adjusts.data() + this->adjusts.size(); for (const DeterministicSpriteGroupAdjust *iter = this->adjusts.data(); iter != end; ++iter) { const DeterministicSpriteGroupAdjust &adjust = *iter; if ((adjust.adjust_flags & DSGAF_SKIP_ON_ZERO) && (last_value == 0)) continue; if ((adjust.adjust_flags & DSGAF_SKIP_ON_LSB_SET) && (last_value & 1) != 0) continue; /* Try to get the variable. We shall assume it is available, unless told otherwise. */ GetVariableExtra extra(adjust.and_mask << adjust.shift_num); if (adjust.variable == 0x7E) { const Vehicle *relative_scope_vehicle = nullptr; VarSpriteGroupScopeOffset relative_scope_cached_count = 0; if (this->var_scope == VSG_SCOPE_RELATIVE) { /* Save relative scope vehicle in case it will be changed during the procedure */ VehicleResolverObject *veh_object = dynamic_cast(&object); if (veh_object != nullptr) { relative_scope_vehicle = veh_object->relative_scope.v; relative_scope_cached_count = veh_object->cached_relative_count; } } const SpriteGroup *subgroup = SpriteGroup::Resolve(adjust.subroutine, object, false); if (subgroup == nullptr) { value = CALLBACK_FAILED; } else { value = subgroup->GetCallbackResult(); } if (relative_scope_vehicle != nullptr) { /* Reset relative scope vehicle in case it was changed during the procedure */ VehicleResolverObject *veh_object = static_cast(&object); veh_object->relative_scope.v = relative_scope_vehicle; veh_object->cached_relative_count = relative_scope_cached_count; } /* Note: 'last_value' and 'reseed' are shared between the main chain and the procedure */ } else if (adjust.variable == 0x7B) { _sprite_group_resolve_check_veh_check = false; value = GetVariable(object, scope, adjust.parameter, last_value, &extra); } else { value = GetVariable(object, scope, adjust.variable, adjust.parameter, &extra); } if (!extra.available) { /* Unsupported variable: skip further processing and return either * the group from the first range or the default group. */ return SpriteGroup::Resolve(this->error_group, object, false); } switch (this->size) { case DSG_SIZE_BYTE: value = EvalAdjustT (adjust, scope, last_value, value, &iter); break; case DSG_SIZE_WORD: value = EvalAdjustT(adjust, scope, last_value, value, &iter); break; case DSG_SIZE_DWORD: value = EvalAdjustT(adjust, scope, last_value, value, &iter); break; default: NOT_REACHED(); } last_value = value; } object.last_value = last_value; if (this->calculated_result) { /* nvar == 0 is a special case -- we turn our value into a callback result */ if (value != CALLBACK_FAILED) value = GB(value, 0, 15); static CallbackResultSpriteGroup nvarzero(0); nvarzero.result = value; return &nvarzero; } if (this->ranges.size() > 4) { const auto &lower = std::lower_bound(this->ranges.begin(), this->ranges.end(), value, RangeHighComparator); if (lower != this->ranges.end() && lower->low <= value) { assert(lower->low <= value && value <= lower->high); return SpriteGroup::Resolve(lower->group, object, false); } } else { for (const auto &range : this->ranges) { if (range.low <= value && value <= range.high) { return SpriteGroup::Resolve(range.group, object, false); } } } return SpriteGroup::Resolve(this->default_group, object, false); } bool DeterministicSpriteGroup::GroupMayBeBypassed() const { if (this->calculated_result) return false; if (this->adjusts.size() == 0) return true; if ((this->adjusts.size() == 1 && this->adjusts[0].variable == 0x1A && (this->adjusts[0].operation == DSGA_OP_ADD || this->adjusts[0].operation == DSGA_OP_RST))) return true; return false; } const SpriteGroup *RandomizedSpriteGroup::Resolve(ResolverObject &object) const { ScopeResolver *scope = object.GetScope(this->var_scope, this->var_scope_count); if (object.callback == CBID_RANDOM_TRIGGER) { /* Handle triggers */ uint8_t match = this->triggers & object.waiting_triggers; bool res = (this->cmp_mode == RSG_CMP_ANY) ? (match != 0) : (match == this->triggers); if (res) { object.used_triggers |= match; object.reseed[this->var_scope] |= (this->groups.size() - 1) << this->lowest_randbit; } } uint32_t mask = ((uint)this->groups.size() - 1) << this->lowest_randbit; uint8_t index = (scope->GetRandomBits() & mask) >> this->lowest_randbit; return SpriteGroup::Resolve(this->groups[index], object, false); } const SpriteGroup *RealSpriteGroup::Resolve(ResolverObject &object) const { return object.ResolveReal(this); } /** * Process registers and the construction stage into the sprite layout. * The passed construction stage might get reset to zero, if it gets incorporated into the layout * during the preprocessing. * @param[in,out] stage Construction stage (0-3), or nullptr if not applicable. * @return sprite layout to draw. */ const DrawTileSprites *TileLayoutSpriteGroup::ProcessRegisters(uint8_t *stage) const { if (!this->dts.NeedsPreprocessing()) { if (stage != nullptr && this->dts.consistent_max_offset > 0) *stage = GetConstructionStageOffset(*stage, this->dts.consistent_max_offset); return &this->dts; } static DrawTileSprites result; uint8_t actual_stage = stage != nullptr ? *stage : 0; this->dts.PrepareLayout(0, 0, 0, actual_stage, false); this->dts.ProcessRegisters(0, 0, false); result.seq = this->dts.GetLayout(&result.ground); /* Stage has been processed by PrepareLayout(), set it to zero. */ if (stage != nullptr) *stage = 0; return &result; } static const char *_dsg_op_names[] { "ADD", "SUB", "SMIN", "SMAX", "UMIN", "UMAX", "SDIV", "SMOD", "UDIV", "UMOD", "MUL", "AND", "OR", "XOR", "STO", "RST", "STOP", "ROR", "SCMP", "UCMP", "SHL", "SHR", "SAR", }; static_assert(lengthof(_dsg_op_names) == DSGA_OP_END); static const char *_dsg_op_special_names[] { "TERNARY", "EQ", "SLT", "SGE", "SLE", "SGT", "RSUB", "STO_NC", "ABS", "JZ", "JNZ", "JZ_LV", "JNZ_LV", "NOOP", }; static_assert(lengthof(_dsg_op_special_names) == DSGA_OP_SPECIAL_END - DSGA_OP_TERNARY); static const char *_sg_scope_names[] { "SELF", "PARENT", "RELATIVE", }; static_assert(lengthof(_sg_scope_names) == VSG_END); static const char *_sg_size_names[] { "BYTE", "WORD", "DWORD", }; static const char *_sg_relative_scope_modes[] { "BACKWARD_SELF", "FORWARD_SELF", "BACKWARD_ENGINE", "BACKWARD_SAMEID", }; static_assert(lengthof(_sg_relative_scope_modes) == VSGSRM_END); static char *GetAdjustOperationName(char *str, const char *last, DeterministicSpriteGroupAdjustOperation operation) { if (operation < DSGA_OP_END) return strecat(str, _dsg_op_names[operation], last); if (operation >= DSGA_OP_TERNARY && operation < DSGA_OP_SPECIAL_END) return strecat(str, _dsg_op_special_names[operation - DSGA_OP_TERNARY], last); return str + seprintf(str, last, "\?\?\?(0x%X)", operation); } char *SpriteGroupDumper::DumpSpriteGroupAdjust(char *p, const char *last, const DeterministicSpriteGroupAdjust &adjust, const char *padding, uint32_t &highlight_tag, uint &conditional_indent) { if (adjust.variable == 0x7D) { /* Temp storage load */ highlight_tag = (1 << 16) | (adjust.parameter & 0xFFFF); } if (adjust.variable == 0x7C) { /* Perm storage load */ highlight_tag = (2 << 16) | (adjust.parameter & 0xFFFF); } p += seprintf(p, last, "%s", padding); for (uint i = 0; i < conditional_indent; i++) { p += seprintf(p, last, "> "); } auto append_flags = [&]() { if (adjust.adjust_flags & DSGAF_SKIP_ON_ZERO) { p += seprintf(p, last, ", skip on zero"); } if (adjust.adjust_flags & DSGAF_SKIP_ON_LSB_SET) { p += seprintf(p, last, ", skip on LSB set"); } if (adjust.adjust_flags & DSGAF_LAST_VAR_READ && this->more_details) { p += seprintf(p, last, ", last var read"); } if (adjust.adjust_flags & DSGAF_JUMP_INS_HINT && this->more_details) { p += seprintf(p, last, ", jump ins hint"); } if (adjust.adjust_flags & DSGAF_END_BLOCK) { p += seprintf(p, last, ", end block (%u)", adjust.jump); } }; auto append_extended_var = [&](int var_id) { const char *name = GetExtendedVariableNameById(var_id); if (name != nullptr) { p += seprintf(p, last, " (%s)", name); } }; if (IsEvalAdjustJumpOperation(adjust.operation)) { conditional_indent++; } if (adjust.adjust_flags & DSGAF_END_BLOCK) { conditional_indent -= adjust.jump; } if (adjust.operation == DSGA_OP_TERNARY) { p += seprintf(p, last, "TERNARY: true: %X, false: %X", adjust.and_mask, adjust.add_val); append_flags(); return p; } if (adjust.operation == DSGA_OP_ABS) { p += seprintf(p, last, "ABS"); append_flags(); return p; } if (adjust.operation == DSGA_OP_NOOP) { p += seprintf(p, last, "NOOP"); append_flags(); return p; } if (adjust.operation == DSGA_OP_JZ_LV || adjust.operation == DSGA_OP_JNZ_LV) { p = GetAdjustOperationName(p, last, adjust.operation); p += seprintf(p, last, " +%u", adjust.jump); append_flags(); return p; } if (adjust.operation == DSGA_OP_STO && adjust.type == DSGA_TYPE_NONE && adjust.variable == 0x1A && adjust.shift_num == 0) { /* Temp storage store */ highlight_tag = (1 << 16) | (adjust.and_mask & 0xFFFF); } if (adjust.operation == DSGA_OP_STOP && adjust.type == DSGA_TYPE_NONE && adjust.variable == 0x1A && adjust.shift_num == 0) { /* Perm storage store */ highlight_tag = (2 << 16) | (adjust.and_mask & 0xFFFF); } p += seprintf(p, last, "var: %X", adjust.variable); if (adjust.variable >= 0x100) { append_extended_var(adjust.variable); } if (adjust.variable == 0x7B && adjust.parameter >= 0x100) { p += seprintf(p, last, " (parameter: %X", adjust.parameter); append_extended_var(adjust.parameter); p += seprintf(p, last, ")"); } else if ((adjust.variable >= 0x60 && adjust.variable <= 0x7F && adjust.variable != 0x7E) || adjust.parameter != 0) { p += seprintf(p, last, " (parameter: %X)", adjust.parameter); } p += seprintf(p, last, ", shift: %X, and: %X", adjust.shift_num, adjust.and_mask); switch (adjust.type) { case DSGA_TYPE_DIV: p += seprintf(p, last, ", add: %X, div: %X", adjust.add_val, adjust.divmod_val); break; case DSGA_TYPE_MOD: p += seprintf(p, last, ", add: %X, mod: %X", adjust.add_val, adjust.divmod_val); break; case DSGA_TYPE_EQ: p += seprintf(p, last, ", eq: %X", adjust.add_val); break; case DSGA_TYPE_NEQ: p += seprintf(p, last, ", neq: %X", adjust.add_val); break; case DSGA_TYPE_NONE: break; } if (adjust.operation == DSGA_OP_STO_NC) { p += seprintf(p, last, ", store to: %X", adjust.divmod_val); highlight_tag = (1 << 16) | adjust.divmod_val; } p += seprintf(p, last, ", op: "); p = GetAdjustOperationName(p, last, adjust.operation); if (IsEvalAdjustJumpOperation(adjust.operation)) { p += seprintf(p, last, " +%u", adjust.jump); } append_flags(); return p; } void SpriteGroupDumper::DumpSpriteGroup(const SpriteGroup *sg, const char *padding, uint flags) { uint32_t highlight_tag = 0; auto print = [&]() { this->print_fn(sg, DSGPO_PRINT, highlight_tag, this->buffer); highlight_tag = 0; }; if (sg == nullptr) { seprintf(this->buffer, lastof(this->buffer), "%sNULL GROUP", padding); print(); return; } if (sg->nfo_line != 0) this->print_fn(sg, DSGPO_NFO_LINE, sg->nfo_line, nullptr); bool start_emitted = false; auto emit_start = [&]() { this->print_fn(sg, DSGPO_START, 0, nullptr); start_emitted = true; }; auto guard = scope_guard([&]() { if (start_emitted) { this->print_fn(sg, DSGPO_END, 0, padding); } }); char extra_info[64] = ""; if (sg->sg_flags & SGF_ACTION6) strecat(extra_info, " (action 6 modified)", lastof(extra_info)); if (sg->sg_flags & SGF_SKIP_CB) strecat(extra_info, " (skip CB)", lastof(extra_info)); if (this->more_details) { if (sg->sg_flags & SGF_INLINING) strecat(extra_info, " (inlining)", lastof(extra_info)); } char scope_buffer[64] = ""; auto get_scope_name = [&](VarSpriteGroupScope var_scope, VarSpriteGroupScopeOffset var_scope_count) -> const char * { if (var_scope == VSG_SCOPE_RELATIVE) { char *b = scope_buffer; b += seprintf(b, lastof(scope_buffer), "%s[%s, ", _sg_scope_names[var_scope], _sg_relative_scope_modes[GB(var_scope_count, 8, 2)]); uint8_t offset = GB(var_scope_count, 0, 8); if (HasBit(var_scope_count, 15)) { b += seprintf(b, lastof(scope_buffer), "var 0x100]"); } else { b += seprintf(b, lastof(scope_buffer), "%u]", offset); } return scope_buffer; } else { return _sg_scope_names[var_scope]; } }; switch (sg->type) { case SGT_REAL: { const RealSpriteGroup *rsg = (const RealSpriteGroup*)sg; seprintf(this->buffer, lastof(this->buffer), "%sReal (loaded: %u, loading: %u)%s [%u]", padding, (uint)rsg->loaded.size(), (uint)rsg->loading.size(), extra_info, sg->nfo_line); print(); emit_start(); std::string sub_padding(padding); sub_padding += " "; for (size_t i = 0; i < rsg->loaded.size(); i++) { seprintf(this->buffer, lastof(this->buffer), "%s Loaded %u", padding, (uint)i); print(); this->DumpSpriteGroup(rsg->loaded[i], sub_padding.c_str(), 0); } for (size_t i = 0; i < rsg->loading.size(); i++) { seprintf(this->buffer, lastof(this->buffer), "%s Loading %u", padding, (uint)i); print(); this->DumpSpriteGroup(rsg->loading[i], sub_padding.c_str(), 0); } break; } case SGT_DETERMINISTIC: { const DeterministicSpriteGroup *dsg = (const DeterministicSpriteGroup*)sg; const SpriteGroup *default_group = dsg->default_group; const std::vector *adjusts = &(dsg->adjusts); const std::vector *ranges = &(dsg->ranges); bool calculated_result = dsg->calculated_result; if (this->use_shadows) { auto iter = _deterministic_sg_shadows.find(dsg); if (iter != _deterministic_sg_shadows.end()) { default_group = iter->second.default_group; adjusts = &(iter->second.adjusts); ranges = &(iter->second.ranges); calculated_result = iter->second.calculated_result; } } bool is_callback_group = false; if (adjusts->size() == 1 && !calculated_result) { const DeterministicSpriteGroupAdjust &adjust = (*adjusts)[0]; if (adjust.variable == 0xC && (adjust.operation == DSGA_OP_ADD || adjust.operation == DSGA_OP_RST) && adjust.shift_num == 0 && (adjust.and_mask & 0xFF) == 0xFF && adjust.type == DSGA_TYPE_NONE) { is_callback_group = true; if (*padding == 0 && !calculated_result && ranges->size() > 0) { const DeterministicSpriteGroupRange &first_range = (*ranges)[0]; if (first_range.low == 0 && first_range.high == 0 && first_range.group != nullptr) { this->top_graphics_group = first_range.group; } } } } if (*padding == 0 && !calculated_result && default_group != nullptr) { this->top_default_group = default_group; } if (dsg == this->top_default_group && !((flags & SGDF_DEFAULT) && strlen(padding) == 2)) { seprintf(this->buffer, lastof(this->buffer), "%sTOP LEVEL DEFAULT GROUP: Deterministic (%s, %s), [%u]", padding, get_scope_name(dsg->var_scope, dsg->var_scope_count), _sg_size_names[dsg->size], dsg->nfo_line); print(); return; } if (dsg == this->top_graphics_group && !((flags & SGDF_RANGE) && strlen(padding) == 2)) { seprintf(this->buffer, lastof(this->buffer), "%sTOP LEVEL GRAPHICS GROUP: Deterministic (%s, %s), [%u]", padding, get_scope_name(dsg->var_scope, dsg->var_scope_count), _sg_size_names[dsg->size], dsg->nfo_line); print(); return; } auto res = this->seen_dsgs.insert(dsg); if (!res.second) { seprintf(this->buffer, lastof(this->buffer), "%sGROUP SEEN ABOVE: Deterministic (%s, %s), [%u]", padding, get_scope_name(dsg->var_scope, dsg->var_scope_count), _sg_size_names[dsg->size], dsg->nfo_line); print(); return; } char *p = this->buffer; p += seprintf(p, lastof(this->buffer), "%sDeterministic (%s, %s)%s [%u]", padding, get_scope_name(dsg->var_scope, dsg->var_scope_count), _sg_size_names[dsg->size], extra_info, dsg->nfo_line); if (this->more_details) { if (dsg->dsg_flags & DSGF_NO_DSE) p += seprintf(p, lastof(this->buffer), ", NO_DSE"); if (dsg->dsg_flags & DSGF_VAR_TRACKING_PENDING) p += seprintf(p, lastof(this->buffer), ", VAR_PENDING"); if (dsg->dsg_flags & DSGF_REQUIRES_VAR1C) p += seprintf(p, lastof(this->buffer), ", REQ_1C"); if (dsg->dsg_flags & DSGF_CHECK_EXPENSIVE_VARS) p += seprintf(p, lastof(this->buffer), ", CHECK_EXP_VAR"); if (dsg->dsg_flags & DSGF_CHECK_INSERT_JUMP) p += seprintf(p, lastof(this->buffer), ", CHECK_INS_JMP"); if (dsg->dsg_flags & DSGF_CB_RESULT) p += seprintf(p, lastof(this->buffer), ", CB_RESULT"); if (dsg->dsg_flags & DSGF_CB_HANDLER) p += seprintf(p, lastof(this->buffer), ", CB_HANDLER"); if (dsg->dsg_flags & DSGF_INLINE_CANDIDATE) p += seprintf(p, lastof(this->buffer), ", INLINE_CANDIDATE"); } print(); emit_start(); std::string sub_padding(padding); sub_padding += " "; uint conditional_indent = 0; for (const auto &adjust : (*adjusts)) { this->DumpSpriteGroupAdjust(this->buffer, lastof(this->buffer), adjust, sub_padding.c_str(), highlight_tag, conditional_indent); print(); if (adjust.variable == 0x7E && adjust.subroutine != nullptr) { std::string subroutine_padding(sub_padding); for (uint i = 0; i < conditional_indent; i++) { subroutine_padding += "> "; } subroutine_padding += " | "; this->DumpSpriteGroup(adjust.subroutine, subroutine_padding.c_str(), 0); } } if (calculated_result) { seprintf(this->buffer, lastof(this->buffer), "%scalculated_result", padding); print(); } else { std::string subgroup_padding(padding); subgroup_padding += " "; bool found_error_group = false; for (const auto &range : (*ranges)) { char *p = this->buffer; p += seprintf(p, lastof(this->buffer), "%srange: %X -> %X", padding, range.low, range.high); if (range.low == range.high && is_callback_group) { const char *cb_name = GetNewGRFCallbackName((CallbackID)range.low); if (cb_name != nullptr) { p += seprintf(p, lastof(this->buffer), " (%s)", cb_name); } } if (this->more_details && range.group == dsg->error_group) { p += seprintf(p, lastof(this->buffer), " (error_group)"); } print(); this->DumpSpriteGroup(range.group, subgroup_padding.c_str(), SGDF_RANGE); if (range.group == dsg->error_group) found_error_group = true; } if (default_group != nullptr) { char *p = this->buffer; p += seprintf(p, lastof(this->buffer), "%sdefault", padding); if (this->more_details && default_group == dsg->error_group) { p += seprintf(p, lastof(this->buffer), " (error_group)"); } print(); this->DumpSpriteGroup(default_group, subgroup_padding.c_str(), SGDF_DEFAULT); if (default_group == dsg->error_group) found_error_group = true; } if (this->more_details && !found_error_group && dsg->error_group != nullptr) { char *p = this->buffer; p += seprintf(p, lastof(this->buffer), "%sunreachable error group", padding); print(); this->DumpSpriteGroup(dsg->error_group, subgroup_padding.c_str(), SGDF_DEFAULT); } } break; } case SGT_RANDOMIZED: { const RandomizedSpriteGroup *rsg = (const RandomizedSpriteGroup*)sg; const std::vector *groups = &(rsg->groups); if (this->use_shadows) { auto iter = _randomized_sg_shadows.find(rsg); if (iter != _randomized_sg_shadows.end()) { groups = &(iter->second.groups); } } seprintf(this->buffer, lastof(this->buffer), "%sRandom (%s, %s, triggers: %X, lowest_randbit: %X, groups: %u)%s [%u]", padding, get_scope_name(rsg->var_scope, rsg->var_scope_count), rsg->cmp_mode == RSG_CMP_ANY ? "ANY" : "ALL", rsg->triggers, rsg->lowest_randbit, (uint)rsg->groups.size(), extra_info, rsg->nfo_line); print(); emit_start(); std::string sub_padding(padding); sub_padding += " "; std::string sub_padding_indent(sub_padding); sub_padding_indent += " "; auto end = groups->end(); for (auto iter = groups->begin(); iter != end;) { uint count = 1; const SpriteGroup *group = *iter; while (true) { ++iter; if (iter == end) break; if (*iter != group) break; count++; } if (count > 1) { seprintf(this->buffer, lastof(this->buffer), "%s%u x:", sub_padding.c_str(), count); print(); this->DumpSpriteGroup(group, sub_padding_indent.c_str(), 0); } else { this->DumpSpriteGroup(group, sub_padding.c_str(), 0); } } break; } case SGT_CALLBACK: seprintf(this->buffer, lastof(this->buffer), "%sCallback Result: %X", padding, ((const CallbackResultSpriteGroup *) sg)->result); print(); break; case SGT_RESULT: seprintf(this->buffer, lastof(this->buffer), "%sSprite Result: SpriteID: %u, num: %u", padding, ((const ResultSpriteGroup *) sg)->sprite, ((const ResultSpriteGroup *) sg)->num_sprites); print(); break; case SGT_TILELAYOUT: { const TileLayoutSpriteGroup *tlsg = (const TileLayoutSpriteGroup*)sg; seprintf(this->buffer, lastof(this->buffer), "%sTile Layout%s [%u]", padding, extra_info, sg->nfo_line); print(); emit_start(); const TileLayoutRegisters *registers = tlsg->dts.registers; auto print_reg_info = [&](char *b, uint i, bool is_parent) { if (registers == nullptr) { print(); return; } const TileLayoutRegisters *reg = registers + i; if (reg->flags == 0) { print(); return; } seprintf(b, lastof(this->buffer), ", register flags: %X", reg->flags); print(); auto log_reg = [&](TileLayoutFlags flag, const char *name, uint8_t flag_reg) { if (reg->flags & flag) { highlight_tag = (1 << 16) | flag_reg; seprintf(this->buffer, lastof(this->buffer), "%s %s reg: %X", padding, name, flag_reg); print(); } }; log_reg(TLF_DODRAW, "TLF_DODRAW", reg->dodraw); log_reg(TLF_SPRITE, "TLF_SPRITE", reg->sprite); log_reg(TLF_PALETTE, "TLF_PALETTE", reg->palette); if (is_parent) { log_reg(TLF_BB_XY_OFFSET, "TLF_BB_XY_OFFSET x", reg->delta.parent[0]); log_reg(TLF_BB_XY_OFFSET, "TLF_BB_XY_OFFSET y", reg->delta.parent[1]); log_reg(TLF_BB_Z_OFFSET, "TLF_BB_Z_OFFSET", reg->delta.parent[2]); } else { log_reg(TLF_CHILD_X_OFFSET, "TLF_CHILD_X_OFFSET", reg->delta.child[0]); log_reg(TLF_CHILD_Y_OFFSET, "TLF_CHILD_Y_OFFSET", reg->delta.child[1]); } if (reg->flags & TLF_SPRITE_VAR10) { seprintf(this->buffer, lastof(this->buffer), "%s TLF_SPRITE_VAR10 value: %X", padding, reg->sprite_var10); print(); } if (reg->flags & TLF_PALETTE_VAR10) { seprintf(this->buffer, lastof(this->buffer), "%s TLF_PALETTE_VAR10 value: %X", padding, reg->palette_var10); print(); } }; char *b = this->buffer + seprintf(this->buffer, lastof(this->buffer), "%s ground: (%X, %X)", padding, tlsg->dts.ground.sprite, tlsg->dts.ground.pal); print_reg_info(b, 0, false); uint offset = 0; // offset 0 is the ground sprite const DrawTileSeqStruct *element; foreach_draw_tile_seq(element, tlsg->dts.seq) { offset++; char *b = this->buffer; if (element->IsParentSprite()) { b += seprintf(this->buffer, lastof(this->buffer), "%s section: %X, image: (%X, %X), d: (%d, %d, %d), s: (%d, %d, %d)", padding, offset, element->image.sprite, element->image.pal, element->delta_x, element->delta_y, element->delta_z, element->size_x, element->size_y, element->size_z); } else { b += seprintf(this->buffer, lastof(this->buffer), "%s section: %X, image: (%X, %X), d: (%d, %d)", padding, offset, element->image.sprite, element->image.pal, element->delta_x, element->delta_y); } print_reg_info(b, offset, element->IsParentSprite()); } break; } case SGT_INDUSTRY_PRODUCTION: { const IndustryProductionSpriteGroup *ipsg = (const IndustryProductionSpriteGroup*)sg; seprintf(this->buffer, lastof(this->buffer), "%sIndustry Production (version %X) [%u]", padding, ipsg->version, ipsg->nfo_line); print(); emit_start(); auto log_io = [&](const char *prefix, int i, int quantity, CargoID cargo) { if (ipsg->version >= 1) highlight_tag = (1 << 16) | quantity; if (ipsg->version >= 2) { seprintf(this->buffer, lastof(this->buffer), "%s %s %X: reg %X, cargo ID: %X", padding, prefix, i, quantity, cargo); print(); } else { const char *type = (ipsg->version >= 1) ? "reg" : "value"; seprintf(this->buffer, lastof(this->buffer), "%s %s %X: %s %X", padding, prefix, i, type, quantity); print(); } }; for (int i = 0; i < ipsg->num_input; i++) { log_io("Subtract input", i, ipsg->subtract_input[i], ipsg->cargo_input[i]); } for (int i = 0; i < ipsg->num_output; i++) { log_io("Add input", i, ipsg->add_output[i], ipsg->cargo_output[i]); } if (ipsg->version >= 1) highlight_tag = (1 << 16) | ipsg->again; seprintf(this->buffer, lastof(this->buffer), "%s Again: %s %X", padding, (ipsg->version >= 1) ? "reg" : "value", ipsg->again); print(); break; } } }