/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file ground_vehicle.cpp Implementation of GroundVehicle. */ #include "stdafx.h" #include "train.h" #include "roadveh.h" #include "depot_map.h" #include "tunnel_base.h" #include "slope_type.h" #include "company_func.h" #include "vehicle_func.h" #include "safeguards.h" /** * Recalculates the cached total power of a vehicle. Should be called when the consist is changed. */ template void GroundVehicle::PowerChanged() { assert(this->First() == this); const T *v = T::From(this); uint32_t total_power = 0; uint32_t max_te = 0; uint32_t number_of_parts = 0; uint16_t max_track_speed = this->vcache.cached_max_speed; // Max track speed in internal units. this->CalculatePower(total_power, max_te, false); for (const T *u = v; u != nullptr; u = u->Next()) { number_of_parts++; /* Get minimum max speed for this track. */ uint16_t track_speed = u->GetMaxTrackSpeed(); if (track_speed > 0) max_track_speed = std::min(max_track_speed, track_speed); } uint8_t air_drag; uint8_t air_drag_value = v->GetAirDrag(); /* If air drag is set to zero (default), the resulting air drag coefficient is dependent on max speed. */ if (air_drag_value == 0) { uint16_t max_speed = v->GetDisplayMaxSpeed(); /* Simplification of the method used in TTDPatch. It uses <= 10 to change more steadily from 128 to 196. */ air_drag = (max_speed <= 10) ? 192 : std::max(2048 / max_speed, 1); } else { /* According to the specs, a value of 0x01 in the air drag property means "no air drag". */ air_drag = (air_drag_value == 1) ? 0 : air_drag_value; } this->gcache.cached_air_drag = air_drag + 3 * air_drag * number_of_parts / 20; if (this->gcache.cached_power != total_power || this->gcache.cached_max_te != max_te) { /* Stop the vehicle if it has no power. */ if (total_power == 0) this->vehstatus |= VS_STOPPED; this->gcache.cached_power = total_power; this->gcache.cached_max_te = max_te; SetWindowDirty(WC_VEHICLE_DETAILS, this->index); SetWindowWidgetDirty(WC_VEHICLE_VIEW, this->index, WID_VV_START_STOP); } this->gcache.cached_max_track_speed = max_track_speed; } template void GroundVehicle::CalculatePower(uint32_t &total_power, uint32_t &max_te, bool breakdowns) const { total_power = 0; max_te = 0; const T *v = T::From(this); for (const T *u = v; u != nullptr; u = u->Next()) { uint32_t current_power = u->GetPower() + u->GetPoweredPartPower(u); if (breakdowns && u->breakdown_ctr == 1 && u->breakdown_type == BREAKDOWN_LOW_POWER) { current_power = current_power * u->breakdown_severity / 256; } total_power += current_power; /* Only powered parts add tractive effort. */ if (current_power > 0) max_te += u->GetWeight() * u->GetTractiveEffort(); } max_te *= GROUND_ACCELERATION; // Tractive effort in (tonnes * 1000 * 9.8 =) N. max_te /= 256; // Tractive effort is a [0-255] coefficient. } /** * Recalculates the cached weight of a vehicle and its parts. Should be called each time the cargo on * the consist changes. */ template void GroundVehicle::CargoChanged() { assert(this->First() == this); uint32_t weight = 0; uint64_t mass_offset = 0; uint32_t veh_offset = 0; uint16_t articulated_weight = 0; for (T *u = T::From(this); u != nullptr; u = u->Next()) { uint32_t current_weight = u->GetCargoWeight(); if (u->IsArticulatedPart()) { current_weight += articulated_weight; } else { uint16_t engine_weight = u->GetWeightWithoutCargo(); uint part_count = u->GetEnginePartsCount(); articulated_weight = engine_weight / part_count; current_weight += articulated_weight + (engine_weight % part_count); } if (Type == VEH_TRAIN) { Train::From(u)->tcache.cached_veh_weight = current_weight; mass_offset += current_weight * (veh_offset + (Train::From(u)->gcache.cached_veh_length / 2)); veh_offset += Train::From(u)->gcache.cached_veh_length; } weight += current_weight; /* Slope steepness is in percent, result in N. */ u->gcache.cached_slope_resistance = current_weight * u->GetSlopeSteepness() * 100; u->InvalidateImageCache(); } ClrBit(this->vcache.cached_veh_flags, VCF_GV_ZERO_SLOPE_RESIST); if (Type == VEH_TRAIN) { Train::From(this)->tcache.cached_centre_mass = (weight != 0) ? (mass_offset / weight) : (this->gcache.cached_total_length / 2); } /* Store consist weight in cache. */ this->gcache.cached_weight = std::max(1u, weight); /* Friction in bearings and other mechanical parts is 0.1% of the weight (result in N). */ this->gcache.cached_axle_resistance = 10 * weight; /* Now update vehicle power (tractive effort is dependent on weight). */ this->PowerChanged(); } /** * Calculates the acceleration of the vehicle under its current conditions. * @return Current upper and lower bounds of acceleration of the vehicle. */ template GroundVehicleAcceleration GroundVehicle::GetAcceleration() { /* Templated class used for function calls for performance reasons. */ const T *v = T::From(this); /* Speed is used squared later on, so U16 * U16, and then multiplied by other values. */ int64_t speed = v->GetCurrentSpeed(); // [km/h-ish] /* Weight is stored in tonnes. */ int32_t mass = this->gcache.cached_weight; /* Power is stored in HP, we need it in watts. * Each vehicle can have U16 power, 128 vehicles, HP -> watt * and km/h to m/s conversion below result in a maximum of * about 1.1E11, way more than 4.3E9 of int32. */ int64_t power = this->gcache.cached_power * 746ll; /* This is constructed from: * - axle resistance: U16 power * 10 for 128 vehicles. * * 8.3E7 * - rolling friction: U16 power * 144 for 128 vehicles. * * 1.2E9 * - slope resistance: U16 weight * 100 * 10 (steepness) for 128 vehicles. * * 8.4E9 * - air drag: 28 * (U8 drag + 3 * U8 drag * 128 vehicles / 20) * U16 speed * U16 speed * * 6.2E14 before dividing by 1000 * Sum is 6.3E11, more than 4.3E9 of int32_t, so int64_t is needed. */ int64_t resistance = 0; int acceleration_type = v->GetAccelerationType(); bool maglev = (acceleration_type == 2); const int area = v->GetAirDragArea(); if (!maglev) { /* Static resistance plus rolling friction. */ resistance = this->gcache.cached_axle_resistance; resistance += mass * v->GetRollingFriction(); } /* Air drag; the air drag coefficient is in an arbitrary NewGRF-unit, * so we need some magic conversion factor. */ resistance += static_cast(area) * this->gcache.cached_air_drag * speed * speed / 1000; resistance += this->GetSlopeResistance(); /* This value allows to know if the vehicle is accelerating or braking. */ AccelStatus mode = v->GetAccelerationStatus(); int braking_power = power; /* handle breakdown power reduction */ uint32_t max_te = this->gcache.cached_max_te; // [N] if (Type == VEH_TRAIN && mode == AS_ACCEL && HasBit(Train::From(this)->flags, VRF_BREAKDOWN_POWER)) { /* We'd like to cache this, but changing cached_power has too many unwanted side-effects */ uint32_t power_temp; this->CalculatePower(power_temp, max_te, true); power = power_temp * 746ll; } /* Constructued from power, with need to multiply by 18 and assuming * low speed, it needs to be a 64 bit integer too. */ int64_t force; int64_t braking_force; if (speed > 0) { if (!maglev) { /* Conversion factor from km/h to m/s is 5/18 to get [N] in the end. */ force = power * 18 / (speed * 5); braking_force = force; if (mode == AS_ACCEL && force > (int)max_te) force = max_te; } else { force = power / 25; braking_force = force; } } else { /* "Kickoff" acceleration. */ force = (mode == AS_ACCEL && !maglev) ? std::min(max_te, power) : power; force = std::max(force, (mass * 8) + resistance); braking_force = force; } if (Type == VEH_TRAIN && Train::From(this)->UsingRealisticBraking()) { braking_power += (Train::From(this)->tcache.cached_braking_length * (int64_t)RBC_BRAKE_POWER_PER_LENGTH); } /* If power is 0 because of a breakdown, we make the force 0 if accelerating */ if (Type == VEH_TRAIN && mode == AS_ACCEL && HasBit(Train::From(this)->flags, VRF_BREAKDOWN_POWER) && power == 0) { force = 0; } if (power != braking_power) { if (!maglev && speed > 0) { /* Conversion factor from km/h to m/s is 5/18 to get [N] in the end. */ braking_force = braking_power * 18 / (speed * 5); } else { braking_force = braking_power / 25; } } /* Calculate the breakdown chance */ if (_settings_game.vehicle.improved_breakdowns) { assert(this->gcache.cached_max_track_speed > 0); /** First, calculate (resistance / force * current speed / max speed) << 16. * This yields a number x on a 0-1 scale, but shifted 16 bits to the left. * We then calculate 64 + 128x, clamped to 0-255, but still shifted 16 bits to the left. * Then we apply a correction for multiengine trains, and in the end we shift it 16 bits to the right to get a 0-255 number. * @note A seperate correction for multiheaded engines is done in CheckVehicleBreakdown. We can't do that here because it would affect the whole consist. */ uint64_t breakdown_factor = (uint64_t)abs(resistance) * (uint64_t)(this->cur_speed << 16); breakdown_factor /= (std::max(force, (int64_t)100) * this->gcache.cached_max_track_speed); breakdown_factor = std::min((64 << 16) + (breakdown_factor * 128), 255 << 16); if (Type == VEH_TRAIN && Train::From(this)->tcache.cached_num_engines > 1) { /* For multiengine trains, breakdown chance is multiplied by 3 / (num_engines + 2) */ breakdown_factor *= 3; breakdown_factor /= (Train::From(this)->tcache.cached_num_engines + 2); } /* breakdown_chance is at least 5 (5 / 128 = ~4% of the normal chance) */ this->breakdown_chance_factor = Clamp(breakdown_factor >> 16, 5, 255); } int braking_accel; if (Type == VEH_TRAIN && Train::From(this)->UsingRealisticBraking()) { /* Assume that every part of a train is braked, not just the engine. * Exceptionally heavy freight trains should still have a sensible braking distance. * The total braking force is generally larger than the total tractive force. */ braking_accel = ClampTo((-braking_force - resistance - (Train::From(this)->tcache.cached_braking_length * (int64_t)RBC_BRAKE_FORCE_PER_LENGTH)) / (mass * 4)); /* Defensive driving: prevent ridiculously fast deceleration. * -130 corresponds to a braking distance of about 6.2 tiles from 160 km/h. */ braking_accel = std::max(braking_accel, -(GetTrainRealisticBrakingTargetDecelerationLimit(acceleration_type) + 10)); } else { braking_accel = ClampTo(std::min(-braking_force - resistance, -10000) / mass); } if (mode == AS_ACCEL) { /* Easy way out when there is no acceleration. */ if (force == resistance) return { 0, braking_accel }; /* When we accelerate, make sure we always keep doing that, even when * the excess force is more than the mass. Otherwise a vehicle going * down hill will never slow down enough, and a vehicle that came up * a hill will never speed up enough to (eventually) get back to the * same (maximum) speed. */ int accel = ClampTo((force - resistance) / (mass * 4)); accel = force < resistance ? std::min(-1, accel) : std::max(1, accel); if (this->type == VEH_TRAIN) { if (_settings_game.vehicle.train_acceleration_model == AM_ORIGINAL && HasBit(Train::From(this)->flags, VRF_BREAKDOWN_POWER)) { /* We need to apply the power reducation for non-realistic acceleration here */ uint32_t power; CalculatePower(power, max_te, true); accel = accel * power / this->gcache.cached_power; accel -= this->acceleration >> 1; } if (this->cur_speed < 3 && accel < 5 && this->IsFrontEngine() && !(this->current_order_time & 0x3FF) && !(this->current_order.IsType(OT_LOADING)) && !(Train::From(this)->flags & (VRF_IS_BROKEN | (1 << VRF_TRAIN_STUCK))) && this->owner == _local_company) { ShowTrainTooHeavyAdviceMessage(this); } if (Train::From(this)->UsingRealisticBraking() && _settings_game.vehicle.limit_train_acceleration) { accel = std::min(accel, 250); } } return { accel, braking_accel }; } else { return { braking_accel, braking_accel }; } } /** * Check whether the whole vehicle chain is in the depot. * @return true if and only if the whole chain is in the depot. */ template bool GroundVehicle::IsChainInDepot() const { const T *v = this->First(); /* Is the front engine stationary in the depot? */ static_assert((int)TRANSPORT_RAIL == (int)VEH_TRAIN); static_assert((int)TRANSPORT_ROAD == (int)VEH_ROAD); if (!IsDepotTypeTile(v->tile, (TransportType)Type) || v->cur_speed != 0) return false; /* Check whether the rest is also already trying to enter the depot. */ for (; v != nullptr; v = v->Next()) { if (!v->T::IsInDepot() || v->tile != this->tile) return false; } return true; } /** * Updates vehicle's Z inclination inside a wormhole, where applicable. */ template void GroundVehicle::UpdateZPositionInWormhole() { if (!IsTunnel(this->tile)) return; const Tunnel *t = Tunnel::GetByTile(this->tile); if (!t->is_chunnel) return; TileIndex pos_tile = TileVirtXY(this->x_pos, this->y_pos); ClrBit(this->gv_flags, GVF_GOINGUP_BIT); ClrBit(this->gv_flags, GVF_GOINGDOWN_BIT); if (pos_tile == t->tile_n || pos_tile == t->tile_s) { this->z_pos = 0; return; } int north_coord, south_coord, pos_coord; bool going_north; Slope slope_north; if (t->tile_s - t->tile_n > MapMaxX()) { // tunnel extends along Y axis (DIAGDIR_SE from north end), has same X values north_coord = TileY(t->tile_n); south_coord = TileY(t->tile_s); pos_coord = TileY(pos_tile); going_north = (this->direction == DIR_NW); slope_north = SLOPE_NW; } else { // tunnel extends along X axis (DIAGDIR_SW from north end), has same Y values north_coord = TileX(t->tile_n); south_coord = TileX(t->tile_s); pos_coord = TileX(pos_tile); going_north = (this->direction == DIR_NE); slope_north = SLOPE_NE; } Slope slope = SLOPE_FLAT; int delta; if ((delta = pos_coord - north_coord) <= 3) { this->z_pos = TILE_HEIGHT * (delta == 3 ? -2 : -1); if (delta != 2) { slope = slope_north; SetBit(this->gv_flags, going_north ? GVF_GOINGUP_BIT : GVF_GOINGDOWN_BIT); ClrBit(this->First()->vcache.cached_veh_flags, VCF_GV_ZERO_SLOPE_RESIST); } } else if ((delta = south_coord - pos_coord) <= 3) { this->z_pos = TILE_HEIGHT * (delta == 3 ? -2 : -1); if (delta != 2) { slope = SLOPE_ELEVATED ^ slope_north; SetBit(this->gv_flags, going_north ? GVF_GOINGDOWN_BIT : GVF_GOINGUP_BIT); ClrBit(this->First()->vcache.cached_veh_flags, VCF_GV_ZERO_SLOPE_RESIST); } } if (slope != SLOPE_FLAT) this->z_pos += GetPartialPixelZ(this->x_pos & 0xF, this->y_pos & 0xF, slope); } /* Instantiation for Train */ template struct GroundVehicle; /* Instantiation for RoadVehicle */ template struct GroundVehicle;