Feature: Region-based pathfinder for ships (#10543)

pull/642/head
Kuhnovic 4 months ago committed by GitHub
parent 9a7c4dda52
commit f1e999ec59
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -35,6 +35,7 @@
#include "string_func.h"
#include "thread.h"
#include "tgp.h"
#include "pathfinder/water_regions.h"
#include "safeguards.h"
@ -174,6 +175,8 @@ static void _GenerateWorld()
}
}
InitializeWaterRegions();
BasePersistentStorageArray::SwitchMode(PSM_LEAVE_GAMELOOP);
ResetObjectToPlace();

@ -5,4 +5,6 @@ add_files(
follow_track.hpp
pathfinder_func.h
pathfinder_type.h
water_regions.h
water_regions.cpp
)

@ -0,0 +1,379 @@
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file water_regions.cpp Handles dividing the water in the map into square regions to assist pathfinding. */
#include "stdafx.h"
#include "map_func.h"
#include "water_regions.h"
#include "map_func.h"
#include "tilearea_type.h"
#include "track_func.h"
#include "transport_type.h"
#include "landscape.h"
#include "tunnelbridge_map.h"
#include "follow_track.hpp"
#include "ship.h"
using TWaterRegionTraversabilityBits = uint16_t;
constexpr TWaterRegionPatchLabel FIRST_REGION_LABEL = 1;
constexpr TWaterRegionPatchLabel INVALID_WATER_REGION_PATCH = 0;
static_assert(sizeof(TWaterRegionTraversabilityBits) * 8 == WATER_REGION_EDGE_LENGTH);
static inline TrackBits GetWaterTracks(TileIndex tile) { return TrackStatusToTrackBits(GetTileTrackStatus(tile, TRANSPORT_WATER, 0)); }
static inline bool IsAqueductTile(TileIndex tile) { return IsBridgeTile(tile) && GetTunnelBridgeTransportType(tile) == TRANSPORT_WATER; }
static inline int GetWaterRegionX(TileIndex tile) { return TileX(tile) / WATER_REGION_EDGE_LENGTH; }
static inline int GetWaterRegionY(TileIndex tile) { return TileY(tile) / WATER_REGION_EDGE_LENGTH; }
static inline int GetWaterRegionMapSizeX() { return Map::SizeX() / WATER_REGION_EDGE_LENGTH; }
static inline int GetWaterRegionMapSizeY() { return Map::SizeY() / WATER_REGION_EDGE_LENGTH; }
static inline TWaterRegionIndex GetWaterRegionIndex(int region_x, int region_y) { return GetWaterRegionMapSizeX() * region_y + region_x; }
static inline TWaterRegionIndex GetWaterRegionIndex(TileIndex tile) { return GetWaterRegionIndex(GetWaterRegionX(tile), GetWaterRegionY(tile)); }
/**
* Represents a square section of the map of a fixed size. Within this square individual unconnected patches of water are
* identified using a Connected Component Labeling (CCL) algorithm. Note that all information stored in this class applies
* only to tiles within the square section, there is no knowledge about the rest of the map. This makes it easy to invalidate
* and update a water region if any changes are made to it, such as construction or terraforming.
*/
class WaterRegion
{
private:
std::array<TWaterRegionTraversabilityBits, DIAGDIR_END> edge_traversability_bits{};
bool has_cross_region_aqueducts = false;
TWaterRegionPatchLabel number_of_patches = 0; // 0 = no water, 1 = one single patch of water, etc...
const OrthogonalTileArea tile_area;
std::array<TWaterRegionPatchLabel, WATER_REGION_NUMBER_OF_TILES> tile_patch_labels{};
bool initialized = false;
/**
* Returns the local index of the tile within the region. The N corner represents 0,
* the x direction is positive in the SW direction, and Y is positive in the SE direction.
* @param tile Tile within the water region.
* @returns The local index.
*/
inline int GetLocalIndex(TileIndex tile) const
{
assert(this->tile_area.Contains(tile));
return (TileX(tile) - TileX(this->tile_area.tile)) + WATER_REGION_EDGE_LENGTH * (TileY(tile) - TileY(this->tile_area.tile));
}
public:
WaterRegion(int region_x, int region_y)
: tile_area(TileXY(region_x * WATER_REGION_EDGE_LENGTH, region_y * WATER_REGION_EDGE_LENGTH), WATER_REGION_EDGE_LENGTH, WATER_REGION_EDGE_LENGTH)
{}
OrthogonalTileIterator begin() const { return this->tile_area.begin(); }
OrthogonalTileIterator end() const { return this->tile_area.end(); }
bool IsInitialized() const { return this->initialized; }
void Invalidate() { this->initialized = false; }
/**
* Returns a set of bits indicating whether an edge tile on a particular side is traversable or not. These
* values can be used to determine whether a ship can enter/leave the region through a particular edge tile.
* @see GetLocalIndex() for a description of the coordinate system used.
* @param side Which side of the region we want to know the edge traversability of.
* @returns A value holding the edge traversability bits.
*/
TWaterRegionTraversabilityBits GetEdgeTraversabilityBits(DiagDirection side) const { return edge_traversability_bits[side]; }
/**
* @returns The amount of individual water patches present within the water region. A value of
* 0 means there is no water present in the water region at all.
*/
int NumberOfPatches() const { return this->number_of_patches; }
/**
* @returns Whether the water region contains aqueducts that cross the region boundaries.
*/
bool HasCrossRegionAqueducts() const { return this->has_cross_region_aqueducts; }
/**
* Returns the patch label that was assigned to the tile.
* @param tile The tile of which we want to retrieve the label.
* @returns The label assigned to the tile.
*/
TWaterRegionPatchLabel GetLabel(TileIndex tile) const
{
assert(this->tile_area.Contains(tile));
return this->tile_patch_labels[GetLocalIndex(tile)];
}
/**
* Performs the connected component labeling and other data gathering.
* @see WaterRegion
*/
void ForceUpdate()
{
this->has_cross_region_aqueducts = false;
this->tile_patch_labels.fill(INVALID_WATER_REGION_PATCH);
for (const TileIndex tile : this->tile_area) {
if (IsAqueductTile(tile)) {
const TileIndex other_aqueduct_end = GetOtherBridgeEnd(tile);
if (!tile_area.Contains(other_aqueduct_end)) {
this->has_cross_region_aqueducts = true;
break;
}
}
}
TWaterRegionPatchLabel current_label = 1;
TWaterRegionPatchLabel highest_assigned_label = 0;
/* Perform connected component labeling. This uses a flooding algorithm that expands until no
* additional tiles can be added. Only tiles inside the water region are considered. */
for (const TileIndex start_tile : tile_area) {
static std::vector<TileIndex> tiles_to_check;
tiles_to_check.clear();
tiles_to_check.push_back(start_tile);
bool increase_label = false;
while (!tiles_to_check.empty()) {
const TileIndex tile = tiles_to_check.back();
tiles_to_check.pop_back();
const TrackdirBits valid_dirs = TrackBitsToTrackdirBits(GetWaterTracks(tile));
if (valid_dirs == TRACKDIR_BIT_NONE) continue;
if (this->tile_patch_labels[GetLocalIndex(tile)] != INVALID_WATER_REGION_PATCH) continue;
this->tile_patch_labels[GetLocalIndex(tile)] = current_label;
highest_assigned_label = current_label;
increase_label = true;
for (const Trackdir dir : SetTrackdirBitIterator(valid_dirs)) {
/* By using a TrackFollower we "play by the same rules" as the actual ship pathfinder */
CFollowTrackWater ft;
if (ft.Follow(tile, dir) && this->tile_area.Contains(ft.m_new_tile)) tiles_to_check.push_back(ft.m_new_tile);
}
}
if (increase_label) current_label++;
}
this->number_of_patches = highest_assigned_label;
this->initialized = true;
/* Calculate the traversability (whether the tile can be entered / exited) for all edges. Note that
* we always follow the same X and Y scanning direction, this is important for comparisons later on! */
this->edge_traversability_bits.fill(0);
const int top_x = TileX(tile_area.tile);
const int top_y = TileY(tile_area.tile);
for (int i = 0; i < WATER_REGION_EDGE_LENGTH; ++i) {
if (GetWaterTracks(TileXY(top_x + i, top_y)) & TRACK_BIT_3WAY_NW) SetBit(this->edge_traversability_bits[DIAGDIR_NW], i); // NW edge
if (GetWaterTracks(TileXY(top_x + i, top_y + WATER_REGION_EDGE_LENGTH - 1)) & TRACK_BIT_3WAY_SE) SetBit(this->edge_traversability_bits[DIAGDIR_SE], i); // SE edge
if (GetWaterTracks(TileXY(top_x, top_y + i)) & TRACK_BIT_3WAY_NE) SetBit(this->edge_traversability_bits[DIAGDIR_NE], i); // NE edge
if (GetWaterTracks(TileXY(top_x + WATER_REGION_EDGE_LENGTH - 1, top_y + i)) & TRACK_BIT_3WAY_SW) SetBit(this->edge_traversability_bits[DIAGDIR_SW], i); // SW edge
}
}
/**
* Updates the patch labels and other data, but only if the region is not yet initialized.
*/
inline void UpdateIfNotInitialized()
{
if (!this->initialized) ForceUpdate();
}
};
std::vector<WaterRegion> _water_regions;
TileIndex GetTileIndexFromLocalCoordinate(int region_x, int region_y, int local_x, int local_y)
{
assert(local_x >= 0 && local_y < WATER_REGION_EDGE_LENGTH);
assert(local_y >= 0 && local_y < WATER_REGION_EDGE_LENGTH);
return TileXY(WATER_REGION_EDGE_LENGTH * region_x + local_x, WATER_REGION_EDGE_LENGTH * region_y + local_y);
}
TileIndex GetEdgeTileCoordinate(int region_x, int region_y, DiagDirection side, int x_or_y)
{
assert(x_or_y >= 0 && x_or_y < WATER_REGION_EDGE_LENGTH);
switch (side) {
case DIAGDIR_NE: return GetTileIndexFromLocalCoordinate(region_x, region_y, 0, x_or_y);
case DIAGDIR_SW: return GetTileIndexFromLocalCoordinate(region_x, region_y, WATER_REGION_EDGE_LENGTH - 1, x_or_y);
case DIAGDIR_NW: return GetTileIndexFromLocalCoordinate(region_x, region_y, x_or_y, 0);
case DIAGDIR_SE: return GetTileIndexFromLocalCoordinate(region_x, region_y, x_or_y, WATER_REGION_EDGE_LENGTH - 1);
default: NOT_REACHED();
}
}
WaterRegion &GetUpdatedWaterRegion(uint16_t region_x, uint16_t region_y)
{
WaterRegion &result = _water_regions[GetWaterRegionIndex(region_x, region_y)];
result.UpdateIfNotInitialized();
return result;
}
WaterRegion &GetUpdatedWaterRegion(TileIndex tile)
{
WaterRegion &result = _water_regions[GetWaterRegionIndex(tile)];
result.UpdateIfNotInitialized();
return result;
}
/**
* Returns the index of the water region
* @param water_region The Water region to return the index for
*/
TWaterRegionIndex GetWaterRegionIndex(const WaterRegionDesc &water_region)
{
return GetWaterRegionIndex(water_region.x, water_region.y);
}
/**
* Returns the center tile of a particular water region.
* @param water_region The water region to find the center tile for.
* @returns The center tile of the water region.
*/
TileIndex GetWaterRegionCenterTile(const WaterRegionDesc &water_region)
{
return TileXY(water_region.x * WATER_REGION_EDGE_LENGTH + (WATER_REGION_EDGE_LENGTH / 2), water_region.y * WATER_REGION_EDGE_LENGTH + (WATER_REGION_EDGE_LENGTH / 2));
}
/**
* Returns basic water region information for the provided tile.
* @param tile The tile for which the information will be calculated.
*/
WaterRegionDesc GetWaterRegionInfo(TileIndex tile)
{
return WaterRegionDesc{ GetWaterRegionX(tile), GetWaterRegionY(tile) };
}
/**
* Returns basic water region patch information for the provided tile.
* @param tile The tile for which the information will be calculated.
*/
WaterRegionPatchDesc GetWaterRegionPatchInfo(TileIndex tile)
{
WaterRegion &region = GetUpdatedWaterRegion(tile);
return WaterRegionPatchDesc{ GetWaterRegionX(tile), GetWaterRegionY(tile), region.GetLabel(tile)};
}
/**
* Marks the water region that tile is part of as invalid.
* @param tile Tile within the water region that we wish to invalidate.
*/
void InvalidateWaterRegion(TileIndex tile)
{
const int index = GetWaterRegionIndex(tile);
if (index > static_cast<int>(_water_regions.size())) return;
_water_regions[index].Invalidate();
}
/**
* Calls the provided callback function for all water region patches
* accessible from one particular side of the starting patch.
* @param water_region_patch Water patch within the water region to start searching from
* @param side Side of the water region to look for neigboring patches of water
* @param callback The function that will be called for each neighbor that is found
*/
static inline void VisitAdjacentWaterRegionPatchNeighbors(const WaterRegionPatchDesc &water_region_patch, DiagDirection side, TVisitWaterRegionPatchCallBack &func)
{
const WaterRegion &current_region = GetUpdatedWaterRegion(water_region_patch.x, water_region_patch.y);
const TileIndexDiffC offset = TileIndexDiffCByDiagDir(side);
const int nx = water_region_patch.x + offset.x;
const int ny = water_region_patch.y + offset.y;
if (nx < 0 || ny < 0 || nx >= GetWaterRegionMapSizeX() || ny >= GetWaterRegionMapSizeY()) return;
const WaterRegion &neighboring_region = GetUpdatedWaterRegion(nx, ny);
const DiagDirection opposite_side = ReverseDiagDir(side);
/* Indicates via which local x or y coordinates (depends on the "side" parameter) we can cross over into the adjacent region. */
const TWaterRegionTraversabilityBits traversability_bits = current_region.GetEdgeTraversabilityBits(side)
& neighboring_region.GetEdgeTraversabilityBits(opposite_side);
if (traversability_bits == 0) return;
if (current_region.NumberOfPatches() == 1 && neighboring_region.NumberOfPatches() == 1) {
func(WaterRegionPatchDesc{ nx, ny, FIRST_REGION_LABEL }); // No further checks needed because we know there is just one patch for both adjacent regions
return;
}
/* Multiple water patches can be reached from the current patch. Check each edge tile individually. */
static std::vector<TWaterRegionPatchLabel> unique_labels; // static and vector-instead-of-map for performance reasons
unique_labels.clear();
for (int x_or_y = 0; x_or_y < WATER_REGION_EDGE_LENGTH; ++x_or_y) {
if (!HasBit(traversability_bits, x_or_y)) continue;
const TileIndex current_edge_tile = GetEdgeTileCoordinate(water_region_patch.x, water_region_patch.y, side, x_or_y);
const TWaterRegionPatchLabel current_label = current_region.GetLabel(current_edge_tile);
if (current_label != water_region_patch.label) continue;
const TileIndex neighbor_edge_tile = GetEdgeTileCoordinate(nx, ny, opposite_side, x_or_y);
const TWaterRegionPatchLabel neighbor_label = neighboring_region.GetLabel(neighbor_edge_tile);
if (std::find(unique_labels.begin(), unique_labels.end(), neighbor_label) == unique_labels.end()) unique_labels.push_back(neighbor_label);
}
for (TWaterRegionPatchLabel unique_label : unique_labels) func(WaterRegionPatchDesc{ nx, ny, unique_label });
}
/**
* Calls the provided callback function on all accessible water region patches in
* each cardinal direction, plus any others that are reachable via aqueducts.
* @param water_region_patch Water patch within the water region to start searching from
* @param callback The function that will be called for each accessible water patch that is found
*/
void VisitWaterRegionPatchNeighbors(const WaterRegionPatchDesc &water_region_patch, TVisitWaterRegionPatchCallBack &callback)
{
const WaterRegion &current_region = GetUpdatedWaterRegion(water_region_patch.x, water_region_patch.y);
/* Visit adjacent water region patches in each cardinal direction */
for (DiagDirection side = DIAGDIR_BEGIN; side < DIAGDIR_END; side++) VisitAdjacentWaterRegionPatchNeighbors(water_region_patch, side, callback);
/* Visit neigboring water patches accessible via cross-region aqueducts */
if (current_region.HasCrossRegionAqueducts()) {
for (const TileIndex tile : current_region) {
if (GetWaterRegionPatchInfo(tile) == water_region_patch && IsAqueductTile(tile)) {
const TileIndex other_end_tile = GetOtherBridgeEnd(tile);
if (GetWaterRegionIndex(tile) != GetWaterRegionIndex(other_end_tile)) callback(GetWaterRegionPatchInfo(other_end_tile));
}
}
}
}
std::vector<WaterRegionSaveLoadInfo> GetWaterRegionSaveLoadInfo()
{
std::vector<WaterRegionSaveLoadInfo> result;
for (WaterRegion &region : _water_regions) result.push_back({ region.IsInitialized() });
return result;
}
void LoadWaterRegions(const std::vector<WaterRegionSaveLoadInfo> &save_load_info)
{
_water_regions.clear();
_water_regions.reserve(save_load_info.size());
TWaterRegionIndex index = 0;
for (const auto &loaded_region_info : save_load_info) {
const int region_x = index % GetWaterRegionMapSizeX();
const int region_y = index / GetWaterRegionMapSizeX();
WaterRegion &region = _water_regions.emplace_back(region_x, region_y);
if (loaded_region_info.initialized) region.ForceUpdate();
index++;
}
}
/**
* Initializes all water regions. All water tiles will be scanned and interconnected water patches within regions will be identified.
*/
void InitializeWaterRegions()
{
_water_regions.clear();
_water_regions.reserve(static_cast<size_t>(GetWaterRegionMapSizeX()) * GetWaterRegionMapSizeY());
for (int region_y = 0; region_y < GetWaterRegionMapSizeY(); region_y++) {
for (int region_x = 0; region_x < GetWaterRegionMapSizeX(); region_x++) {
_water_regions.emplace_back(region_x, region_y).ForceUpdate();
}
}
}

@ -0,0 +1,73 @@
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file water_regions.h Handles dividing the water in the map into regions to assist pathfinding. */
#ifndef WATER_REGIONS_H
#define WATER_REGIONS_H
#include "tile_type.h"
#include "map_func.h"
using TWaterRegionPatchLabel = uint8_t;
using TWaterRegionIndex = uint;
constexpr int WATER_REGION_EDGE_LENGTH = 16;
constexpr int WATER_REGION_NUMBER_OF_TILES = WATER_REGION_EDGE_LENGTH * WATER_REGION_EDGE_LENGTH;
/**
* Describes a single interconnected patch of water within a particular water region.
*/
struct WaterRegionPatchDesc
{
int x; ///< The X coordinate of the water region, i.e. X=2 is the 3rd water region along the X-axis
int y; ///< The Y coordinate of the water region, i.e. Y=2 is the 3rd water region along the Y-axis
TWaterRegionPatchLabel label; ///< Unique label identifying the patch within the region
bool operator==(const WaterRegionPatchDesc &other) const { return x == other.x && y == other.y && label == other.label; }
bool operator!=(const WaterRegionPatchDesc &other) const { return !(*this == other); }
};
/**
* Describes a single square water region.
*/
struct WaterRegionDesc
{
int x; ///< The X coordinate of the water region, i.e. X=2 is the 3rd water region along the X-axis
int y; ///< The Y coordinate of the water region, i.e. Y=2 is the 3rd water region along the Y-axis
WaterRegionDesc(const int x, const int y) : x(x), y(y) {}
WaterRegionDesc(const WaterRegionPatchDesc &water_region_patch) : x(water_region_patch.x), y(water_region_patch.y) {}
bool operator==(const WaterRegionDesc &other) const { return x == other.x && y == other.y; }
bool operator!=(const WaterRegionDesc &other) const { return !(*this == other); }
};
TWaterRegionIndex GetWaterRegionIndex(const WaterRegionDesc &water_region);
TileIndex GetWaterRegionCenterTile(const WaterRegionDesc &water_region);
WaterRegionDesc GetWaterRegionInfo(TileIndex tile);
WaterRegionPatchDesc GetWaterRegionPatchInfo(TileIndex tile);
void InvalidateWaterRegion(TileIndex tile);
using TVisitWaterRegionPatchCallBack = std::function<void(const WaterRegionPatchDesc &)>;
void VisitWaterRegionPatchNeighbors(const WaterRegionPatchDesc &water_region_patch, TVisitWaterRegionPatchCallBack &callback);
void InitializeWaterRegions();
struct WaterRegionSaveLoadInfo
{
bool initialized;
};
std::vector<WaterRegionSaveLoadInfo> GetWaterRegionSaveLoadInfo();
void LoadWaterRegions(const std::vector<WaterRegionSaveLoadInfo> &save_load_info);
#endif /* WATER_REGIONS_H */

@ -16,5 +16,7 @@ add_files(
yapf_rail.cpp
yapf_road.cpp
yapf_ship.cpp
yapf_ship_regions.h
yapf_ship_regions.cpp
yapf_type.hpp
)

@ -14,46 +14,64 @@
#include "yapf.hpp"
#include "yapf_node_ship.hpp"
#include "yapf_ship_regions.h"
#include "../water_regions.h"
#include "../../safeguards.h"
constexpr int NUMBER_OR_WATER_REGIONS_LOOKAHEAD = 4;
constexpr int MAX_SHIP_PF_NODES = (NUMBER_OR_WATER_REGIONS_LOOKAHEAD + 1) * WATER_REGION_NUMBER_OF_TILES * 4; // 4 possible exit dirs per tile.
constexpr int SHIP_LOST_PATH_LENGTH = 8; // The length of the (aimless) path assigned when a ship is lost.
template <class Types>
class CYapfDestinationTileWaterT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class).
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
typedef typename Types::NodeList::Titem Node; ///< this will be our node type.
typedef typename Node::Key Key; ///< key to hash tables.
protected:
TileIndex m_destTile;
TrackdirBits m_destTrackdirs;
StationID m_destStation;
bool m_has_intermediate_dest = false;
TileIndex m_intermediate_dest_tile;
WaterRegionPatchDesc m_intermediate_dest_region_patch;
public:
void SetDestination(const Ship *v)
{
if (v->current_order.IsType(OT_GOTO_STATION)) {
m_destStation = v->current_order.GetDestination();
m_destTile = CalcClosestStationTile(m_destStation, v->tile, STATION_DOCK);
m_destStation = v->current_order.GetDestination();
m_destTile = CalcClosestStationTile(m_destStation, v->tile, STATION_DOCK);
m_destTrackdirs = INVALID_TRACKDIR_BIT;
} else {
m_destStation = INVALID_STATION;
m_destTile = v->dest_tile;
m_destStation = INVALID_STATION;
m_destTile = v->dest_tile;
m_destTrackdirs = TrackStatusToTrackdirBits(GetTileTrackStatus(v->dest_tile, TRANSPORT_WATER, 0));
}
}
void SetIntermediateDestination(const WaterRegionPatchDesc &water_region_patch)
{
m_has_intermediate_dest = true;
m_intermediate_dest_tile = GetWaterRegionCenterTile(water_region_patch);
m_intermediate_dest_region_patch = water_region_patch;
}
protected:
/** to access inherited path finder */
inline Tpf &Yapf()
/** To access inherited path finder. */
inline Tpf& Yapf()
{
return *static_cast<Tpf*>(this);
}
public:
/** Called by YAPF to detect if node ends in the desired destination */
/** Called by YAPF to detect if node ends in the desired destination. */
inline bool PfDetectDestination(Node &n)
{
return PfDetectDestinationTile(n.m_segment_last_tile, n.m_segment_last_td);
@ -61,21 +79,27 @@ public:
inline bool PfDetectDestinationTile(TileIndex tile, Trackdir trackdir)
{
if (m_destStation != INVALID_STATION) {
return IsDockingTile(tile) && IsShipDestinationTile(tile, m_destStation);
if (m_has_intermediate_dest) {
/* GetWaterRegionInfo is much faster than GetWaterRegionPatchInfo so we try that first. */
if (GetWaterRegionInfo(tile) != m_intermediate_dest_region_patch) return false;
return GetWaterRegionPatchInfo(tile) == m_intermediate_dest_region_patch;
}
if (m_destStation != INVALID_STATION) return IsDockingTile(tile) && IsShipDestinationTile(tile, m_destStation);
return tile == m_destTile && ((m_destTrackdirs & TrackdirToTrackdirBits(trackdir)) != TRACKDIR_BIT_NONE);
}
/**
* Called by YAPF to calculate cost estimate. Calculates distance to the destination
* adds it to the actual cost from origin and stores the sum to the Node::m_estimate
* adds it to the actual cost from origin and stores the sum to the Node::m_estimate.
*/
inline bool PfCalcEstimate(Node &n)
{
static const int dg_dir_to_x_offs[] = {-1, 0, 1, 0};
static const int dg_dir_to_y_offs[] = {0, 1, 0, -1};
const TileIndex destination_tile = m_has_intermediate_dest ? m_intermediate_dest_tile : m_destTile;
static const int dg_dir_to_x_offs[] = { -1, 0, 1, 0 };
static const int dg_dir_to_y_offs[] = { 0, 1, 0, -1 };
if (PfDetectDestination(n)) {
n.m_estimate = n.m_cost;
return true;
@ -85,8 +109,8 @@ public:
DiagDirection exitdir = TrackdirToExitdir(n.m_segment_last_td);
int x1 = 2 * TileX(tile) + dg_dir_to_x_offs[(int)exitdir];
int y1 = 2 * TileY(tile) + dg_dir_to_y_offs[(int)exitdir];
int x2 = 2 * TileX(m_destTile);
int y2 = 2 * TileY(m_destTile);
int x2 = 2 * TileX(destination_tile);
int y2 = 2 * TileY(destination_tile);
int dx = abs(x1 - x2);
int dy = abs(y1 - y2);
int dmin = std::min(dx, dy);
@ -98,24 +122,25 @@ public:
}
};
/** Node Follower module of YAPF for ships */
template <class Types>
class CYapfFollowShipT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class).
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
typedef typename Types::NodeList::Titem Node; ///< this will be our node type.
typedef typename Node::Key Key; ///< key to hash tables.
protected:
/** to access inherited path finder */
inline Tpf &Yapf()
{
return *static_cast<Tpf *>(this);
return *static_cast<Tpf*>(this);
}
std::vector<WaterRegionDesc> m_water_region_corridor;
public:
/**
* Called by YAPF to move from the given node to the next tile. For each
@ -126,23 +151,57 @@ public:
{
TrackFollower F(Yapf().GetVehicle());
if (F.Follow(old_node.m_key.m_tile, old_node.m_key.m_td)) {
Yapf().AddMultipleNodes(&old_node, F);
if (m_water_region_corridor.empty()
|| std::find(m_water_region_corridor.begin(), m_water_region_corridor.end(),
GetWaterRegionInfo(F.m_new_tile)) != m_water_region_corridor.end()) {
Yapf().AddMultipleNodes(&old_node, F);
}
}
}
/** return debug report character to identify the transportation type */
/** Restricts the search by creating corridor or water regions through which the ship is allowed to travel. */
inline void RestrictSearch(const std::vector<WaterRegionPatchDesc> &path)
{
m_water_region_corridor.clear();
for (const WaterRegionPatchDesc &path_entry : path) m_water_region_corridor.push_back(path_entry);
}
/** Return debug report character to identify the transportation type. */
inline char TransportTypeChar() const
{
return 'w';
}
/** Creates a random path, avoids 90 degree turns. */
static Trackdir CreateRandomPath(const Ship *v, TileIndex tile, Trackdir dir, ShipPathCache &path_cache, int path_length)
{
for (int i = 0; i < path_length; ++i) {
TrackFollower F(v);
if (F.Follow(tile, dir)) {
tile = F.m_new_tile;
TrackdirBits dirs = F.m_new_td_bits & ~TrackdirCrossesTrackdirs(dir);
const int strip_amount = _random.Next(CountBits(dirs));
for (int s = 0; s < strip_amount; ++s) RemoveFirstTrackdir(&dirs);
dir = FindFirstTrackdir(dirs);
if (dir == INVALID_TRACKDIR) break;
path_cache.push_back(dir);
}
}
if (path_cache.empty()) return INVALID_TRACKDIR;
const Trackdir result = path_cache.front();
path_cache.pop_front();
return result;
}
static Trackdir ChooseShipTrack(const Ship *v, TileIndex tile, DiagDirection enterdir, TrackBits tracks, bool &path_found, ShipPathCache &path_cache)
{
/* handle special case - when next tile is destination tile */
/* Handle special case - when next tile is destination tile. */
if (tile == v->dest_tile) {
/* convert tracks to trackdirs */
/* Convert tracks to trackdirs */
TrackdirBits trackdirs = TrackBitsToTrackdirBits(tracks);
/* limit to trackdirs reachable from enterdir */
/* Limit to trackdirs reachable from enterdir. */
trackdirs &= DiagdirReachesTrackdirs(enterdir);
/* use vehicle's current direction if that's possible, otherwise use first usable one. */
@ -150,68 +209,91 @@ public:
return (HasTrackdir(trackdirs, veh_dir)) ? veh_dir : (Trackdir)FindFirstBit2x64(trackdirs);
}
/* move back to the old tile/trackdir (where ship is coming from) */
/* Move back to the old tile/trackdir (where ship is coming from). */
TileIndex src_tile = TileAddByDiagDir(tile, ReverseDiagDir(enterdir));
Trackdir trackdir = v->GetVehicleTrackdir();
assert(IsValidTrackdir(trackdir));
/* convert origin trackdir to TrackdirBits */
/* Convert origin trackdir to TrackdirBits. */
TrackdirBits trackdirs = TrackdirToTrackdirBits(trackdir);
/* create pathfinder instance */
Tpf pf;
/* set origin and destination nodes */
pf.SetOrigin(src_tile, trackdirs);
pf.SetDestination(v);
/* find best path */
path_found = pf.FindPath(v);
Trackdir next_trackdir = INVALID_TRACKDIR; // this would mean "path not found"
const std::vector<WaterRegionPatchDesc> high_level_path = YapfShipFindWaterRegionPath(v, tile, NUMBER_OR_WATER_REGIONS_LOOKAHEAD + 1);
if (high_level_path.empty()) {
path_found = false;
/* Make the ship move around aimlessly. This prevents repeated pathfinder calls and clearly indicates that the ship is lost. */
return CreateRandomPath(v, src_tile, trackdir, path_cache, SHIP_LOST_PATH_LENGTH);
}
Node *pNode = pf.GetBestNode();
if (pNode != nullptr) {
uint steps = 0;
for (Node *n = pNode; n->m_parent != nullptr; n = n->m_parent) steps++;
uint skip = 0;
if (path_found) skip = YAPF_SHIP_PATH_CACHE_LENGTH / 2;
/* walk through the path back to the origin */
Node *pPrevNode = nullptr;
while (pNode->m_parent != nullptr) {
steps--;
/* Skip tiles at end of path near destination. */
if (skip > 0) skip--;
if (skip == 0 && steps > 0 && steps < YAPF_SHIP_PATH_CACHE_LENGTH) {
path_cache.push_front(pNode->GetTrackdir());
/* Try one time without restricting the search area, which generally results in better and more natural looking paths.
* However the pathfinder can hit the node limit in certain situations such as long aqueducts or maze-like terrain.
* If that happens we run the pathfinder again, but restricted only to the regions provided by the region pathfinder. */
for (int attempt = 0; attempt < 2; ++attempt) {
Tpf pf(MAX_SHIP_PF_NODES);
/* Set origin and destination nodes */
pf.SetOrigin(src_tile, trackdirs);
pf.SetDestination(v);
const bool is_intermediate_destination = static_cast<int>(high_level_path.size()) >= NUMBER_OR_WATER_REGIONS_LOOKAHEAD + 1;
if (is_intermediate_destination) pf.SetIntermediateDestination(high_level_path.back());
/* Restrict the search area to prevent the low level pathfinder from expanding too many nodes. This can happen
* when the terrain is very "maze-like" or when the high level path "teleports" via a very long aqueduct. */
if (attempt > 0) pf.RestrictSearch(high_level_path);
/* Find best path. */
path_found = pf.FindPath(v);
Node *node = pf.GetBestNode();
if (attempt == 0 && !path_found) continue; // Try again with restricted search area.
if (!path_found || !node) return INVALID_TRACKDIR;
/* Return only the path within the current water region if an intermediate destination was returned. If not, cache the entire path
* to the final destination tile. The low-level pathfinder might actually prefer a different docking tile in a nearby region. Without
* caching the full path the ship can get stuck in a loop. */
const WaterRegionPatchDesc end_water_patch = GetWaterRegionPatchInfo(node->GetTile());
const WaterRegionPatchDesc start_water_patch = GetWaterRegionPatchInfo(tile);
while (node->m_parent) {
const WaterRegionPatchDesc node_water_patch = GetWaterRegionPatchInfo(node->GetTile());
if (node_water_patch == start_water_patch || (!is_intermediate_destination && node_water_patch != end_water_patch)) {
path_cache.push_front(node->GetTrackdir());
}
pPrevNode = pNode;
pNode = pNode->m_parent;
node = node->m_parent;
}
/* return trackdir from the best next node (direct child of origin) */
Node &best_next_node = *pPrevNode;
assert(best_next_node.GetTile() == tile);
next_trackdir = best_next_node.GetTrackdir();
/* remove last element for the special case when tile == dest_tile */
if (path_found && !path_cache.empty()) path_cache.pop_back();
assert(!path_cache.empty());
/* Take out the last trackdir as the result. */
const Trackdir result = path_cache.front();
path_cache.pop_front();
/* Clear path cache when in final water region patch. This is to allow ships to spread over different docking tiles dynamically. */
if (start_water_patch == end_water_patch) path_cache.clear();
return result;
}
return next_trackdir;
return INVALID_TRACKDIR;
}
/**
* Check whether a ship should reverse to reach its destination.
* Called when leaving depot.
* @param v Ship
* @param tile Current position
* @param td1 Forward direction
* @param td2 Reverse direction
* @param trackdir [out] the best of all possible reversed trackdirs
* @return true if the reverse direction is better
* @param v Ship.
* @param tile Current position.
* @param td1 Forward direction.
* @param td2 Reverse direction.
* @param trackdir [out] the best of all possible reversed trackdirs.
* @return true if the reverse direction is better.
*/
static bool CheckShipReverse(const Ship *v, TileIndex tile, Trackdir td1, Trackdir td2, Trackdir *trackdir)
{
/* create pathfinder instance */
Tpf pf;
/* set origin and destination nodes */
const std::vector<WaterRegionPatchDesc> high_level_path = YapfShipFindWaterRegionPath(v, tile, NUMBER_OR_WATER_REGIONS_LOOKAHEAD + 1);
if (high_level_path.empty()) {
if (trackdir) *trackdir = INVALID_TRACKDIR;
return false;
}
/* Create pathfinder instance. */
Tpf pf(MAX_SHIP_PF_NODES);
/* Set origin and destination nodes. */
if (trackdir == nullptr) {
pf.SetOrigin(tile, TrackdirToTrackdirBits(td1) | TrackdirToTrackdirBits(td2));
} else {
@ -220,14 +302,16 @@ public:
pf.SetOrigin(tile, rtds);
}
pf.SetDestination(v);
/* find best path */
if (high_level_path.size() > 1) pf.SetIntermediateDestination(high_level_path.back());
pf.RestrictSearch(high_level_path);
/* Find best path. */
if (!pf.FindPath(v)) return false;
Node *pNode = pf.GetBestNode();
if (pNode == nullptr) return false;
/* path was found
* walk through the path back to the origin */
/* Path was found, walk through the path back to the origin. */
while (pNode->m_parent != nullptr) {
pNode = pNode->m_parent;
}
@ -242,21 +326,20 @@ public:
}
};
/** Cost Provider module of YAPF for ships */
/** Cost Provider module of YAPF for ships. */
template <class Types>
class CYapfCostShipT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class).
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
typedef typename Types::NodeList::Titem Node; ///< this will be our node type.
typedef typename Node::Key Key; ///< key to hash tables.
protected:
/** to access inherited path finder */
Tpf &Yapf()
{
return *static_cast<Tpf *>(this);
return *static_cast<Tpf*>(this);
}
public:
@ -266,10 +349,10 @@ public:
assert(IsValidTrackdir(td2));
if (HasTrackdir(TrackdirCrossesTrackdirs(td1), td2)) {
/* 90-deg curve penalty */
/* 90-deg curve penalty. */
return Yapf().PfGetSettings().ship_curve90_penalty;
} else if (td2 != NextTrackdir(td1)) {
/* 45-deg curve penalty */
/* 45-deg curve penalty. */
return Yapf().PfGetSettings().ship_curve45_penalty;
}
return 0;
@ -277,7 +360,7 @@ public:
static Vehicle *CountShipProc(Vehicle *v, void *data)
{
uint *count = (uint *)data;
uint *count = (uint*)data;
/* Ignore other vehicles (aircraft) and ships inside depot. */
if (v->type == VEH_SHIP && (v->vehstatus & VS_HIDDEN) == 0) (*count)++;
@ -286,18 +369,18 @@ public:
/**
* Called by YAPF to calculate the cost from the origin to the given node.
* Calculates only the cost of given node, adds it to the parent node cost
* and stores the result into Node::m_cost member
* Calculates only the cost of given node, adds it to the parent node cost
* and stores the result into Node::m_cost member.
*/
inline bool PfCalcCost(Node &n, const TrackFollower *tf)
{
/* base tile cost depending on distance */
/* Base tile cost depending on distance. */
int c = IsDiagonalTrackdir(n.GetTrackdir()) ? YAPF_TILE_LENGTH : YAPF_TILE_CORNER_LENGTH;
/* additional penalty for curves */
/* Additional penalty for curves. */
c += CurveCost(n.m_parent->GetTrackdir(), n.GetTrackdir());
if (IsDockingTile(n.GetTile())) {
/* Check docking tile for occupancy */
/* Check docking tile for occupancy. */
uint count = 0;
HasVehicleOnPos(n.GetTile(), &count, &CountShipProc);
c += count * 3 * YAPF_TILE_LENGTH;
@ -311,7 +394,7 @@ public:
byte speed_frac = (GetEffectiveWaterClass(n.GetTile()) == WATER_CLASS_SEA) ? svi->ocean_speed_frac : svi->canal_speed_frac;
if (speed_frac > 0) c += YAPF_TILE_LENGTH * (1 + tf->m_tiles_skipped) * speed_frac / (256 - speed_frac);
/* apply it */
/* Apply it. */
n.m_cost = n.m_parent->m_cost + c;
return true;
}
@ -319,48 +402,35 @@ public:
/**
* Config struct of YAPF for ships.
* Defines all 6 base YAPF modules as classes providing services for CYapfBaseT.
* Defines all 6 base YAPF modules as classes providing services for CYapfBaseT.
*/
template <class Tpf_, class Ttrack_follower, class Tnode_list>
struct CYapfShip_TypesT
{
/** Types - shortcut for this struct type */
typedef CYapfShip_TypesT<Tpf_, Ttrack_follower, Tnode_list> Types;
/** Tpf - pathfinder type */
typedef Tpf_ Tpf;
/** track follower helper class */
typedef Ttrack_follower TrackFollower;
/** node list type */
typedef Tnode_list NodeList;
typedef Ship VehicleType;
/** pathfinder components (modules) */
typedef CYapfBaseT<Types> PfBase; // base pathfinder class
typedef CYapfFollowShipT<Types> PfFollow; // node follower
typedef CYapfOriginTileT<Types> PfOrigin; // origin provider
typedef CYapfDestinationTileWaterT<Types> PfDestination; // destination/distance provider
typedef CYapfSegmentCostCacheNoneT<Types> PfCache; // segment cost cache provider
typedef CYapfCostShipT<Types> PfCost; // cost provider
typedef CYapfShip_TypesT<Tpf_, Ttrack_follower, Tnode_list> Types; ///< Shortcut for this struct type.
typedef Tpf_ Tpf; ///< Pathfinder type.
typedef Ttrack_follower TrackFollower; ///< Track follower helper class.
typedef Tnode_list NodeList;
typedef Ship VehicleType;
/** Pathfinder components (modules). */
typedef CYapfBaseT<Types> PfBase; ///< Base pathfinder class.
typedef CYapfFollowShipT<Types> PfFollow; ///< Node follower.
typedef CYapfOriginTileT<Types> PfOrigin; ///< Origin provider.
typedef CYapfDestinationTileWaterT<Types> PfDestination; ///< Destination/distance provider.
typedef CYapfSegmentCostCacheNoneT<Types> PfCache; ///< Segment cost cache provider.
typedef CYapfCostShipT<Types> PfCost; ///< Cost provider.
};
/* YAPF type 1 - uses TileIndex/Trackdir as Node key */
struct CYapfShip1 : CYapfT<CYapfShip_TypesT<CYapfShip1, CFollowTrackWater , CShipNodeListTrackDir> > {};
/* YAPF type 2 - uses TileIndex/DiagDirection as Node key */
struct CYapfShip2 : CYapfT<CYapfShip_TypesT<CYapfShip2, CFollowTrackWater , CShipNodeListExitDir > > {};
struct CYapfShip : CYapfT<CYapfShip_TypesT<CYapfShip, CFollowTrackWater, CShipNodeListExitDir > >
{
explicit CYapfShip(int max_nodes) { m_max_search_nodes = max_nodes; }
};
/** Ship controller helper - path finder invoker */
/** Ship controller helper - path finder invoker. */
Track YapfShipChooseTrack(const Ship *v, TileIndex tile, DiagDirection enterdir, TrackBits tracks, bool &path_found, ShipPathCache &path_cache)
{
/* default is YAPF type 2 */
typedef Trackdir (*PfnChooseShipTrack)(const Ship*, TileIndex, DiagDirection, TrackBits, bool &path_found, ShipPathCache &path_cache);
PfnChooseShipTrack pfnChooseShipTrack = CYapfShip2::ChooseShipTrack; // default: ExitDir
/* check if non-default YAPF type needed */
if (_settings_game.pf.yapf.disable_node_optimization) {
pfnChooseShipTrack = &CYapfShip1::ChooseShipTrack; // Trackdir
}
Trackdir td_ret = pfnChooseShipTrack(v, tile, enterdir, tracks, path_found, path_cache);
Trackdir td_ret = CYapfShip::ChooseShipTrack(v, tile, enterdir, tracks, path_found, path_cache);
return (td_ret != INVALID_TRACKDIR) ? TrackdirToTrack(td_ret) : INVALID_TRACK;
}
@ -369,16 +439,5 @@ bool YapfShipCheckReverse(const Ship *v, Trackdir *trackdir)
Trackdir td = v->GetVehicleTrackdir();
Trackdir td_rev = ReverseTrackdir(td);
TileIndex tile = v->tile;
typedef bool (*PfnCheckReverseShip)(const Ship*, TileIndex, Trackdir, Trackdir, Trackdir*);
PfnCheckReverseShip pfnCheckReverseShip = CYapfShip2::CheckShipReverse; // default: ExitDir
/* check if non-default YAPF type needed */
if (_settings_game.pf.yapf.disable_node_optimization) {
pfnCheckReverseShip = &CYapfShip1::CheckShipReverse; // Trackdir
}
bool reverse = pfnCheckReverseShip(v, tile, td, td_rev, trackdir);
return reverse;
return CYapfShip::CheckShipReverse(v, tile, td, td_rev, trackdir);
}

@ -0,0 +1,314 @@
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_ship_regions.cpp Implementation of YAPF for water regions, which are used for finding intermediate ship destinations. */
#include "../../stdafx.h"
#include "../../ship.h"
#include "yapf.hpp"
#include "yapf_ship_regions.h"
#include "../water_regions.h"
#include "../../safeguards.h"
constexpr int DIRECT_NEIGHBOR_COST = 100;
constexpr int NODES_PER_REGION = 4;
constexpr int MAX_NUMBER_OF_NODES = 65536;
/** Yapf Node Key that represents a single patch of interconnected water within a water region. */
struct CYapfRegionPatchNodeKey {
WaterRegionPatchDesc m_water_region_patch;
static_assert(sizeof(TWaterRegionPatchLabel) == sizeof(byte)); // Important for the hash calculation.
inline void Set(const WaterRegionPatchDesc &water_region_patch)
{
m_water_region_patch = water_region_patch;
}
inline int CalcHash() const { return m_water_region_patch.label | GetWaterRegionIndex(m_water_region_patch) << 8; }
inline bool operator==(const CYapfRegionPatchNodeKey &other) const { return CalcHash() == other.CalcHash(); }
};
inline uint ManhattanDistance(const CYapfRegionPatchNodeKey &a, const CYapfRegionPatchNodeKey &b)
{
return (std::abs(a.m_water_region_patch.x - b.m_water_region_patch.x) + std::abs(a.m_water_region_patch.y - b.m_water_region_patch.y)) * DIRECT_NEIGHBOR_COST;
}
/** Yapf Node for water regions. */
template <class Tkey_>
struct CYapfRegionNodeT {
typedef Tkey_ Key;
typedef CYapfRegionNodeT<Tkey_> Node;
Tkey_ m_key;
Node *m_hash_next;
Node *m_parent;
int m_cost;
int m_estimate;
inline void Set(Node *parent, const WaterRegionPatchDesc &water_region_patch)
{
m_key.Set(water_region_patch);
m_hash_next = nullptr;
m_parent = parent;
m_cost = 0;
m_estimate = 0;
}
inline void Set(Node *parent, const Key &key)
{
Set(parent, key.m_water_region_patch);
}
DiagDirection GetDiagDirFromParent() const
{
if (!m_parent) return INVALID_DIAGDIR;
const int dx = m_key.m_water_region_patch.x - m_parent->m_key.m_water_region_patch.x;
const int dy = m_key.m_water_region_patch.y - m_parent->m_key.m_water_region_patch.y;
if (dx > 0 && dy == 0) return DIAGDIR_SW;
if (dx < 0 && dy == 0) return DIAGDIR_NE;
if (dx == 0 && dy > 0) return DIAGDIR_SE;
if (dx == 0 && dy < 0) return DIAGDIR_NW;
return INVALID_DIAGDIR;
}
inline Node *GetHashNext() { return m_hash_next; }
inline void SetHashNext(Node *pNext) { m_hash_next = pNext; }
inline const Tkey_ &GetKey() const { return m_key; }
inline int GetCost() { return m_cost; }
inline int GetCostEstimate() { return m_estimate; }
inline bool operator<(const Node &other) const { return m_estimate < other.m_estimate; }
};
/** YAPF origin for water regions. */
template <class Types>
class CYapfOriginRegionT
{
public:
typedef typename Types::Tpf Tpf; ///< The pathfinder class (derived from THIS class).
typedef typename Types::NodeList::Titem Node; ///< This will be our node type.
typedef typename Node::Key Key; ///< Key to hash tables.
protected:
inline Tpf &Yapf() { return *static_cast<Tpf*>(this); }
private:
std::vector<CYapfRegionPatchNodeKey> m_origin_keys;
public:
void AddOrigin(const WaterRegionPatchDesc &water_region_patch)
{
if (!HasOrigin(water_region_patch)) m_origin_keys.push_back(CYapfRegionPatchNodeKey{ water_region_patch });
}
bool HasOrigin(const WaterRegionPatchDesc &water_region_patch)
{
return std::find(m_origin_keys.begin(), m_origin_keys.end(), CYapfRegionPatchNodeKey{ water_region_patch }) != m_origin_keys.end();
}
void PfSetStartupNodes()
{
for (const CYapfRegionPatchNodeKey &origin_key : m_origin_keys) {
Node &node = Yapf().CreateNewNode();
node.Set(nullptr, origin_key);
Yapf().AddStartupNode(node);
}
}
};
/** YAPF destination provider for water regions. */
template <class Types>
class CYapfDestinationRegionT
{
public:
typedef typename Types::Tpf Tpf; ///< The pathfinder class (derived from THIS class).
typedef typename Types::NodeList::Titem Node; ///< This will be our node type.
typedef typename Node::Key Key; ///< Key to hash tables.
protected:
Key m_dest;
public:
void SetDestination(const WaterRegionPatchDesc &water_region_patch)
{
m_dest.Set(water_region_patch);
}
protected:
Tpf &Yapf() { return *static_cast<Tpf*>(this); }
public:
inline bool PfDetectDestination(Node &n) const
{
return n.m_key == m_dest;
}
inline bool PfCalcEstimate(Node &n)
{
if (PfDetectDestination(n)) {
n.m_estimate = n.m_cost;
return true;
}
n.m_estimate = n.m_cost + ManhattanDistance(n.m_key, m_dest);
return true;
}
};
/** YAPF node following for water region pathfinding. */
template <class Types>
class CYapfFollowRegionT
{
public:
typedef typename Types::Tpf Tpf; ///< The pathfinder class (derived from THIS class).
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< This will be our node type.
typedef typename Node::Key Key; ///< Key to hash tables.
protected:
inline Tpf &Yapf() { return *static_cast<Tpf*>(this); }
public:
inline void PfFollowNode(Node &old_node)
{
TVisitWaterRegionPatchCallBack visitFunc = [&](const WaterRegionPatchDesc &water_region_patch)
{
Node &node = Yapf().CreateNewNode();
node.Set(&old_node, water_region_patch);
Yapf().AddNewNode(node, TrackFollower{});
};
VisitWaterRegionPatchNeighbors(old_node.m_key.m_water_region_patch, visitFunc);
}
inline char TransportTypeChar() const { return '^'; }
static std::vector<WaterRegionPatchDesc> FindWaterRegionPath(const Ship *v, TileIndex start_tile, int max_returned_path_length)
{
const WaterRegionPatchDesc start_water_region_patch = GetWaterRegionPatchInfo(start_tile);
/* We reserve 4 nodes (patches) per water region. The vast majority of water regions have 1 or 2 regions so this should be a pretty
* safe limit. We cap the limit at 65536 which is at a region size of 16x16 is equivalent to one node per region for a 4096x4096 map. */
Tpf pf(std::min(static_cast<int>(Map::Size() * NODES_PER_REGION) / WATER_REGION_NUMBER_OF_TILES, MAX_NUMBER_OF_NODES));
pf.SetDestination(start_water_region_patch);
if (v->current_order.IsType(OT_GOTO_STATION)) {
DestinationID station_id = v->current_order.GetDestination();
const BaseStation *station = BaseStation::Get(station_id);
TileArea tile_area;
station->GetTileArea(&tile_area, STATION_DOCK);
for (const auto &tile : tile_area) {
if (IsDockingTile(tile) && IsShipDestinationTile(tile, station_id)) {
pf.AddOrigin(GetWaterRegionPatchInfo(tile));
}
}
} else {
TileIndex tile = v->dest_tile;
pf.AddOrigin(GetWaterRegionPatchInfo(tile));
}
/* If origin and destination are the same we simply return that water patch. */
std::vector<WaterRegionPatchDesc> path = { start_water_region_patch };
path.reserve(max_returned_path_length);
if (pf.HasOrigin(start_water_region_patch)) return path;
/* Find best path. */
if (!pf.FindPath(v)) return {}; // Path not found.
Node *node = pf.GetBestNode();
for (int i = 0; i < max_returned_path_length - 1; ++i) {
if (node != nullptr) {
node = node->m_parent;
if (node != nullptr) path.push_back(node->m_key.m_water_region_patch);
}
}
assert(!path.empty());
return path;
}
};
/** Cost Provider of YAPF for water regions. */
template <class Types>
class CYapfCostRegionT
{
public:
typedef typename Types::Tpf Tpf; ///< The pathfinder class (derived from THIS class).
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< This will be our node type.
typedef typename Node::Key Key; ///< Key to hash tables.
protected:
/** To access inherited path finder. */
Tpf &Yapf() { return *static_cast<Tpf*>(this); }
public:
/**
* Called by YAPF to calculate the cost from the origin to the given node.
* Calculates only the cost of given node, adds it to the parent node cost
* and stores the result into Node::m_cost member.
*/
inline bool PfCalcCost(Node &n, const TrackFollower *)
{
n.m_cost = n.m_parent->m_cost + ManhattanDistance(n.m_key, n.m_parent->m_key);
/* Incentivise zigzagging by adding a slight penalty when the search continues in the same direction. */
Node *grandparent = n.m_parent->m_parent;
if (grandparent != nullptr) {
const DiagDirDiff dir_diff = DiagDirDifference(n.m_parent->GetDiagDirFromParent(), n.GetDiagDirFromParent());
if (dir_diff != DIAGDIRDIFF_90LEFT && dir_diff != DIAGDIRDIFF_90RIGHT) n.m_cost += 1;
}
return true;
}
};
/* We don't need a follower but YAPF requires one. */
struct DummyFollower : public CFollowTrackWater {};
/**
* Config struct of YAPF for route planning.
* Defines all 6 base YAPF modules as classes providing services for CYapfBaseT.
*/
template <class Tpf_, class Tnode_list>
struct CYapfRegion_TypesT
{
typedef CYapfRegion_TypesT<Tpf_, Tnode_list> Types; ///< Shortcut for this struct type.
typedef Tpf_ Tpf; ///< Pathfinder type.
typedef DummyFollower TrackFollower; ///< Track follower helper class
typedef Tnode_list NodeList;
typedef Ship VehicleType;
/** Pathfinder components (modules). */
typedef CYapfBaseT<Types> PfBase; ///< Base pathfinder class.
typedef CYapfFollowRegionT<Types> PfFollow; ///< Node follower.
typedef CYapfOriginRegionT<Types> PfOrigin; ///< Origin provider.
typedef CYapfDestinationRegionT<Types> PfDestination; ///< Destination/distance provider.
typedef CYapfSegmentCostCacheNoneT<Types> PfCache; ///< Segment cost cache provider.
typedef CYapfCostRegionT<Types> PfCost; ///< Cost provider.
};
typedef CNodeList_HashTableT<CYapfRegionNodeT<CYapfRegionPatchNodeKey>, 12, 12> CRegionNodeListWater;
struct CYapfRegionWater : CYapfT<CYapfRegion_TypesT<CYapfRegionWater, CRegionNodeListWater>>
{
explicit CYapfRegionWater(int max_nodes) { m_max_search_nodes = max_nodes; }
};
/**
* Finds a path at the water region level. Note that the starting region is always included if the path was found.
* @param v The ship to find a path for.
* @param start_tile The tile to start searching from.
* @param max_returned_path_length The maximum length of the path that will be returned.
* @returns A path of water region patches, or an empty vector if no path was found.
*/
std::vector<WaterRegionPatchDesc> YapfShipFindWaterRegionPath(const Ship *v, TileIndex start_tile, int max_returned_path_length)
{
return CYapfRegionWater::FindWaterRegionPath(v, start_tile, max_returned_path_length);
}

@ -0,0 +1,21 @@
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file yapf_ship_regions.h Implementation of YAPF for water regions, which are used for finding intermediate ship destinations. */
#ifndef YAPF_SHIP_REGIONS_H
#define YAPF_SHIP_REGIONS_H
#include "../../stdafx.h"
#include "../../tile_type.h"
#include "../water_regions.h"
struct Ship;
std::vector<WaterRegionPatchDesc> YapfShipFindWaterRegionPath(const Ship *v, TileIndex start_tile, int max_returned_path_length);
#endif /* YAPF_SHIP_REGIONS_H */

@ -44,4 +44,5 @@ add_files(
town_sl.cpp
vehicle_sl.cpp
waypoint_sl.cpp
water_regions_sl.cpp
)

@ -61,6 +61,7 @@
#include "../timer/timer.h"
#include "../timer/timer_game_calendar.h"
#include "../timer/timer_game_tick.h"
#include "../pathfinder/water_regions.h"
#include "saveload_internal.h"
@ -3296,6 +3297,8 @@ bool AfterLoadGame()
}
}
if (IsSavegameVersionBefore(SLV_WATER_REGIONS)) InitializeWaterRegions();
return true;
}

@ -249,6 +249,7 @@ static const std::vector<ChunkHandlerRef> &ChunkHandlers()
extern const ChunkHandlerTable _airport_chunk_handlers;
extern const ChunkHandlerTable _object_chunk_handlers;
extern const ChunkHandlerTable _persistent_storage_chunk_handlers;
extern const ChunkHandlerTable _water_region_chunk_handlers;
/** List of all chunks in a savegame. */
static const ChunkHandlerTable _chunk_handler_tables[] = {
@ -286,6 +287,7 @@ static const std::vector<ChunkHandlerRef> &ChunkHandlers()
_airport_chunk_handlers,
_object_chunk_handlers,
_persistent_storage_chunk_handlers,
_water_region_chunk_handlers,
};
static std::vector<ChunkHandlerRef> _chunk_handlers;

@ -366,6 +366,7 @@ enum SaveLoadVersion : uint16_t {
SLV_TIMETABLE_START_TICKS, ///< 321 PR#11468 Convert timetable start from a date to ticks.
SLV_TIMETABLE_START_TICKS_FIX, ///< 322 PR#11557 Fix for missing convert timetable start from a date to ticks.
SLV_TIMETABLE_TICKS_TYPE, ///< 323 PR#11435 Convert timetable current order time to ticks.
SLV_WATER_REGIONS, ///< 324 PR#10543 Water Regions for ship pathfinder.
SL_MAX_VERSION, ///< Highest possible saveload version
};

@ -0,0 +1,54 @@
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file water_regions_sl.cpp Handles saving and loading of water region data */
#include "../stdafx.h"
#include "saveload.h"
#include "pathfinder/water_regions.h"
#include "../safeguards.h"
static const SaveLoad _water_region_desc[] = {
SLE_VAR(WaterRegionSaveLoadInfo, initialized, SLE_BOOL),
};
struct WRGNChunkHandler : ChunkHandler {
WRGNChunkHandler() : ChunkHandler('WRGN', CH_TABLE) {}
void Save() const override
{
SlTableHeader(_water_region_desc);
int index = 0;
for (WaterRegionSaveLoadInfo &region : GetWaterRegionSaveLoadInfo()) {
SlSetArrayIndex(index++);
SlObject(&region, _water_region_desc);
}
}
void Load() const override
{
const std::vector<SaveLoad> slt = SlTableHeader(_water_region_desc);
int index;
std::vector<WaterRegionSaveLoadInfo> loaded_info;
while ((index = SlIterateArray()) != -1) {
WaterRegionSaveLoadInfo region_info;
SlObject(&region_info, slt);
loaded_info.push_back(std::move(region_info));
}
LoadWaterRegions(loaded_info);
}
};
static const WRGNChunkHandler WRGN;
static const ChunkHandlerRef water_region_chunk_handlers[] = { WRGN };
extern const ChunkHandlerTable _water_region_chunk_handlers(water_region_chunk_handlers);

@ -16,6 +16,7 @@
#include "slope_func.h"
using SetTrackBitIterator = SetBitIterator<Track, TrackBits>;
using SetTrackdirBitIterator = SetBitIterator<Trackdir, TrackdirBits>;
/**
* Checks if a Track is valid.

@ -86,6 +86,9 @@ enum Trackdir : byte {
INVALID_TRACKDIR = 0xFF, ///< Flag for an invalid trackdir
};
/** Allow incrementing of Trackdir variables */
DECLARE_POSTFIX_INCREMENT(Trackdir)
/**
* Enumeration of bitmasks for the TrackDirs
*

@ -20,6 +20,7 @@
#include "ship.h"
#include "roadveh.h"
#include "pathfinder/yapf/yapf_cache.h"
#include "pathfinder/water_regions.h"
#include "newgrf_sound.h"
#include "autoslope.h"
#include "tunnelbridge_map.h"
@ -561,6 +562,8 @@ CommandCost CmdBuildBridge(DoCommandFlag flags, TileIndex tile_end, TileIndex ti
MakeAqueductBridgeRamp(tile_end, owner, ReverseDiagDir(dir));
CheckForDockingTile(tile_start);
CheckForDockingTile(tile_end);
InvalidateWaterRegion(tile_start);
InvalidateWaterRegion(tile_end);
break;
default:

@ -39,6 +39,7 @@
#include "industry.h"
#include "water_cmd.h"
#include "landscape_cmd.h"
#include "pathfinder/water_regions.h"
#include "table/strings.h"
@ -133,6 +134,9 @@ CommandCost CmdBuildShipDepot(DoCommandFlag flags, TileIndex tile, Axis axis)
}
if (flags & DC_EXEC) {
InvalidateWaterRegion(tile);
InvalidateWaterRegion(tile2);
Depot *depot = new Depot(tile);
depot->build_date = TimerGameCalendar::date;
@ -243,6 +247,7 @@ void MakeWaterKeepingClass(TileIndex tile, Owner o)
/* Zero map array and terminate animation */
DoClearSquare(tile);
InvalidateWaterRegion(tile);
/* Maybe change to water */
switch (wc) {
@ -340,6 +345,10 @@ static CommandCost DoBuildLock(TileIndex tile, DiagDirection dir, DoCommandFlag
}
if (flags & DC_EXEC) {
InvalidateWaterRegion(tile);
InvalidateWaterRegion(tile + delta);
InvalidateWaterRegion(tile - delta);
/* Update company infrastructure counts. */
Company *c = Company::GetIfValid(_current_company);
if (c != nullptr) {
@ -482,6 +491,8 @@ CommandCost CmdBuildCanal(DoCommandFlag flags, TileIndex tile, TileIndex start_t
if (!water) cost.AddCost(ret);
if (flags & DC_EXEC) {
InvalidateWaterRegion(current_tile);
if (IsTileType(current_tile, MP_WATER) && IsCanal(current_tile)) {
Owner owner = GetTileOwner(current_tile);
if (Company::IsValidID(owner)) {
@ -529,8 +540,11 @@ CommandCost CmdBuildCanal(DoCommandFlag flags, TileIndex tile, TileIndex start_t
}
}
static CommandCost ClearTile_Water(TileIndex tile, DoCommandFlag flags)
{
if (flags & DC_EXEC) InvalidateWaterRegion(tile);
switch (GetWaterTileType(tile)) {
case WATER_TILE_CLEAR: {
if (flags & DC_NO_WATER) return_cmd_error(STR_ERROR_CAN_T_BUILD_ON_WATER);
@ -1161,6 +1175,8 @@ void DoFloodTile(TileIndex target)
}
if (flooded) {
InvalidateWaterRegion(target);
/* Mark surrounding canal tiles dirty too to avoid glitches */
MarkCanalsAndRiversAroundDirty(target);

@ -15,6 +15,7 @@
#include "town.h"
#include "waypoint_base.h"
#include "pathfinder/yapf/yapf_cache.h"
#include "pathfinder/water_regions.h"
#include "strings_func.h"
#include "viewport_func.h"
#include "viewport_kdtree.h"
@ -346,6 +347,7 @@ CommandCost CmdBuildBuoy(DoCommandFlag flags, TileIndex tile)
if (wp->town == nullptr) MakeDefaultName(wp);
MakeBuoy(tile, wp->index, GetWaterClass(tile));
InvalidateWaterRegion(tile);
CheckForDockingTile(tile);
MarkTileDirtyByTile(tile);

Loading…
Cancel
Save