(svn r15128) -Remove: remove WrightAI and AI Libraries from SVN, as they are now available via the content service

replace/41b28d7194a279bdc17475d4fbe2ea6ec885a466
truebrain 16 years ago
parent 3a13b75e37
commit ee1310af71

@ -1,14 +0,0 @@
/* $Id$ */
class AyStar extends AILibrary {
function GetAuthor() { return "OpenTTD NoAI Developers Team"; }
function GetName() { return "AyStar"; }
function GetShortName() { return "GRA*"; }
function GetDescription() { return "An implementation of AyStar"; }
function GetVersion() { return 4; }
function GetDate() { return "2008-06-11"; }
function CreateInstance() { return "AyStar"; }
function GetCategory() { return "Graph"; }
}
RegisterLibrary(AyStar());

@ -1,238 +0,0 @@
/* $Id$ */
/**
* An AyStar implementation.
* It solves graphs by finding the fastest route from one point to the other.
*/
class AyStar
{
_queue_class = import("queue.binary_heap", "", 1);
_cost_callback = null;
_estimate_callback = null;
_neighbours_callback = null;
_check_direction_callback = null;
_cost_callback_param = null;
_estimate_callback_param = null;
_neighbours_callback_param = null;
_check_direction_callback_param = null;
_open = null;
_closed = null;
_goals = null;
/**
* @param cost_callback A function that returns the cost of a path. It
* should accept four parameters, old_path, new_tile, new_direction and
* cost_callback_param. old_path is an instance of AyStar.Path, and
* new_node is the new node that is added to that path. It should return
* the cost of the path including new_node.
* @param estimate_callback A function that returns an estimate from a node
* to the goal node. It should accept four parameters, tile, direction,
* goal_nodes and estimate_callback_param. It should return an estimate to
* the cost from the lowest cost between node and any node out of goal_nodes.
* Note that this estimate is not allowed to be higher than the real cost
* between node and any of goal_nodes. A lower value is fine, however the
* closer it is to the real value, the better the performance.
* @param neighbours_callback A function that returns all neighbouring nodes
* from a given node. It should accept three parameters, current_path, node
* and neighbours_callback_param. It should return an array containing all
* neighbouring nodes, which are an array in the form [tile, direction].
* @param check_direction_callback A function that returns either false or
* true. It should accept four parameters, tile, existing_direction,
* new_direction and check_direction_callback_param. It should check
* if both directions can go together on a single tile.
* @param cost_callback_param This parameters will be passed to cost_callback
* as fourth parameter. Useful to send is an instance of an object.
* @param estimate_callback_param This parameters will be passed to
* estimate_callback as fourth parameter. Useful to send is an instance of an
* object.
* @param neighbours_callback_param This parameters will be passed to
* neighbours_callback as third parameter. Useful to send is an instance of
* an object.
* @param check_direction_callback_param This parameters will be passed to
* check_direction_callback as fourth parameter. Useful to send is an
* instance of an object.
*/
constructor(cost_callback, estimate_callback, neighbours_callback, check_direction_callback, cost_callback_param = null,
estimate_callback_param = null, neighbours_callback_param = null, check_direction_callback_param = null)
{
if (typeof(cost_callback) != "function") throw("'cost_callback' has to be a function-pointer.");
if (typeof(estimate_callback) != "function") throw("'estimate_callback' has to be a function-pointer.");
if (typeof(neighbours_callback) != "function") throw("'neighbours_callback' has to be a function-pointer.");
if (typeof(check_direction_callback) != "function") throw("'check_direction_callback' has to be a function-pointer.");
this._cost_callback = cost_callback;
this._estimate_callback = estimate_callback;
this._neighbours_callback = neighbours_callback;
this._check_direction_callback = check_direction_callback;
this._cost_callback_param = cost_callback_param;
this._estimate_callback_param = estimate_callback_param;
this._neighbours_callback_param = neighbours_callback_param;
this._check_direction_callback_param = check_direction_callback_param;
}
/**
* Initialize a path search between sources and goals.
* @param sources The source nodes. This can an array of either [tile, direction]-pairs or AyStar.Path-instances.
* @param goals The target tiles. This can be an array of either tiles or [tile, next_tile]-pairs.
* @param ignored_tiles An array of tiles that cannot occur in the final path.
*/
function InitializePath(sources, goals, ignored_tiles = []);
/**
* Try to find the path as indicated with InitializePath with the lowest cost.
* @param iterations After how many iterations it should abort for a moment.
* This value should either be -1 for infinite, or > 0. Any other value
* aborts immediatly and will never find a path.
* @return A route if one was found, or false if the amount of iterations was
* reached, or null if no path was found.
* You can call this function over and over as long as it returns false,
* which is an indication it is not yet done looking for a route.
*/
function FindPath(iterations);
};
function AyStar::InitializePath(sources, goals, ignored_tiles = [])
{
if (typeof(sources) != "array" || sources.len() == 0) throw("sources has be a non-empty array.");
if (typeof(goals) != "array" || goals.len() == 0) throw("goals has be a non-empty array.");
this._open = this._queue_class();
this._closed = AIList();
foreach (node in sources) {
if (typeof(node) == "array") {
if (node[1] <= 0) throw("directional value should never be zero or negative.");
local new_path = this.Path(null, node[0], node[1], this._cost_callback, this._cost_callback_param);
this._open.Insert(new_path, new_path.GetCost() + this._estimate_callback(node[0], node[1], goals, this._estimate_callback_param));
} else {
this._open.Insert(node, node.GetCost());
}
}
this._goals = goals;
foreach (tile in ignored_tiles) {
this._closed.AddItem(tile, ~0);
}
}
function AyStar::FindPath(iterations)
{
if (this._open == null) throw("can't execute over an uninitialized path");
while (this._open.Count() > 0 && (iterations == -1 || iterations-- > 0)) {
/* Get the path with the best score so far */
local path = this._open.Pop();
local cur_tile = path.GetTile();
/* Make sure we didn't already passed it */
if (this._closed.HasItem(cur_tile)) {
/* If the direction is already on the list, skip this entry */
if ((this._closed.GetValue(cur_tile) & path.GetDirection()) != 0) continue;
/* Scan the path for a possible collision */
local scan_path = path.GetParent();
local mismatch = false;
while (scan_path != null) {
if (scan_path.GetTile() == cur_tile) {
if (!this._check_direction_callback(cur_tile, scan_path.GetDirection(), path.GetDirection(), this._check_direction_callback_param)) {
mismatch = true;
break;
}
}
scan_path = scan_path.GetParent();
}
if (mismatch) continue;
/* Add the new direction */
this._closed.SetValue(cur_tile, this._closed.GetValue(cur_tile) | path.GetDirection());
} else {
/* New entry, make sure we don't check it again */
this._closed.AddItem(cur_tile, path.GetDirection());
}
/* Check if we found the end */
foreach (goal in this._goals) {
if (typeof(goal) == "array") {
if (cur_tile == goal[0]) {
local neighbours = this._neighbours_callback(path, cur_tile, this._neighbours_callback_param);
foreach (node in neighbours) {
if (node[0] == goal[1]) {
this._CleanPath();
return path;
}
}
continue;
}
} else {
if (cur_tile == goal) {
this._CleanPath();
return path;
}
}
}
/* Scan all neighbours */
local neighbours = this._neighbours_callback(path, cur_tile, this._neighbours_callback_param);
foreach (node in neighbours) {
if (node[1] <= 0) throw("directional value should never be zero or negative.");
if ((this._closed.GetValue(node[0]) & node[1]) != 0) continue;
/* Calculate the new paths and add them to the open list */
local new_path = this.Path(path, node[0], node[1], this._cost_callback, this._cost_callback_param);
this._open.Insert(new_path, new_path.GetCost() + this._estimate_callback(node[0], node[1], this._goals, this._estimate_callback_param));
}
}
if (this._open.Count() > 0) return false;
this._CleanPath();
return null;
}
function AyStar::_CleanPath()
{
this._closed = null;
this._open = null;
this._goals = null;
}
/**
* The path of the AyStar algorithm.
* It is reversed, that is, the first entry is more close to the goal-nodes
* than his GetParent(). You can walk this list to find the whole path.
* The last entry has a GetParent() of null.
*/
class AyStar.Path
{
_prev = null;
_tile = null;
_direction = null;
_cost = null;
constructor(old_path, new_tile, new_direction, cost_callback, cost_callback_param)
{
this._prev = old_path;
this._tile = new_tile;
this._direction = new_direction;
this._cost = cost_callback(old_path, new_tile, new_direction, cost_callback_param);
};
/**
* Return the tile where this (partial-)path ends.
*/
function GetTile() { return this._tile; }
/**
* Return the direction from which we entered the tile in this (partial-)path.
*/
function GetDirection() { return this._direction; }
/**
* Return an instance of this class leading to the previous node.
*/
function GetParent() { return this._prev; }
/**
* Return the cost of this (partial-)path from the beginning up to this node.
*/
function GetCost() { return this._cost; }
};

@ -1,14 +0,0 @@
/* $Id$ */
class Rail extends AILibrary {
function GetAuthor() { return "OpenTTD NoAI Developers Team"; }
function GetName() { return "Rail"; }
function GetShortName() { return "PFRL"; }
function GetDescription() { return "An implementation of a rail pathfinder"; }
function GetVersion() { return 1; }
function GetDate() { return "2008-09-22"; }
function CreateInstance() { return "Rail"; }
function GetCategory() { return "Pathfinder"; }
}
RegisterLibrary(Rail());

@ -1,389 +0,0 @@
/* $Id$ */
/**
* A Rail Pathfinder.
*/
class Rail
{
_aystar_class = import("graph.aystar", "", 4);
_max_cost = null; ///< The maximum cost for a route.
_cost_tile = null; ///< The cost for a single tile.
_cost_diagonal_tile = null; ///< The cost for a diagonal tile.
_cost_turn = null; ///< The cost that is added to _cost_tile if the direction changes.
_cost_slope = null; ///< The extra cost if a rail tile is sloped.
_cost_bridge_per_tile = null; ///< The cost per tile of a new bridge, this is added to _cost_tile.
_cost_tunnel_per_tile = null; ///< The cost per tile of a new tunnel, this is added to _cost_tile.
_cost_coast = null; ///< The extra cost for a coast tile.
_pathfinder = null; ///< A reference to the used AyStar object.
_max_bridge_length = null; ///< The maximum length of a bridge that will be build.
_max_tunnel_length = null; ///< The maximum length of a tunnel that will be build.
cost = null; ///< Used to change the costs.
_running = null;
_goals = null;
constructor()
{
this._max_cost = 10000000;
this._cost_tile = 100;
this._cost_diagonal_tile = 70;
this._cost_turn = 50;
this._cost_slope = 100;
this._cost_bridge_per_tile = 150;
this._cost_tunnel_per_tile = 120;
this._cost_coast = 20;
this._max_bridge_length = 6;
this._max_tunnel_length = 6;
this._pathfinder = this._aystar_class(this._Cost, this._Estimate, this._Neighbours, this._CheckDirection, this, this, this, this);
this.cost = this.Cost(this);
this._running = false;
}
/**
* Initialize a path search between sources and goals.
* @param sources The source tiles.
* @param goals The target tiles.
* @param ignored_tiles An array of tiles that cannot occur in the final path.
* @see AyStar::InitializePath()
*/
function InitializePath(sources, goals, ignored_tiles = []) {
local nsources = [];
foreach (node in sources) {
local path = this._pathfinder.Path(null, node[1], 0xFF, this._Cost, this);
path = this._pathfinder.Path(path, node[0], 0xFF, this._Cost, this);
nsources.push(path);
}
this._goals = goals;
this._pathfinder.InitializePath(nsources, goals, ignored_tiles);
}
/**
* Try to find the path as indicated with InitializePath with the lowest cost.
* @param iterations After how many iterations it should abort for a moment.
* This value should either be -1 for infinite, or > 0. Any other value
* aborts immediatly and will never find a path.
* @return A route if one was found, or false if the amount of iterations was
* reached, or null if no path was found.
* You can call this function over and over as long as it returns false,
* which is an indication it is not yet done looking for a route.
* @see AyStar::FindPath()
*/
function FindPath(iterations);
};
class Rail.Cost
{
_main = null;
function _set(idx, val)
{
if (this._main._running) throw("You are not allowed to change parameters of a running pathfinder.");
switch (idx) {
case "max_cost": this._main._max_cost = val; break;
case "tile": this._main._cost_tile = val; break;
case "diagonal_tile": this._cost_diagonal_tile = val; break;
case "turn": this._main._cost_turn = val; break;
case "slope": this._main._cost_slope = val; break;
case "bridge_per_tile": this._main._cost_bridge_per_tile = val; break;
case "tunnel_per_tile": this._main._cost_tunnel_per_tile = val; break;
case "coast": this._main._cost_coast = val; break;
case "max_bridge_length": this._main._max_bridge_length = val; break;
case "max_tunnel_length": this._main._max_tunnel_length = val; break;
default: throw("the index '" + idx + "' does not exist");
}
return val;
}
function _get(idx)
{
switch (idx) {
case "max_cost": return this._main._max_cost;
case "tile": return this._main._cost_tile;
case "diagonal_tile": return this._cost_diagonal_tile;
case "turn": return this._main._cost_turn;
case "slope": return this._main._cost_slope;
case "bridge_per_tile": return this._main._cost_bridge_per_tile;
case "tunnel_per_tile": return this._main._cost_tunnel_per_tile;
case "coast": return this._main._cost_coast;
case "max_bridge_length": return this._main._max_bridge_length;
case "max_tunnel_length": return this._main._max_tunnel_length;
default: throw("the index '" + idx + "' does not exist");
}
}
constructor(main)
{
this._main = main;
}
};
function Rail::FindPath(iterations)
{
local test_mode = AITestMode();
local ret = this._pathfinder.FindPath(iterations);
this._running = (ret == false) ? true : false;
if (!this._running && ret != null) {
foreach (goal in this._goals) {
if (goal[0] == ret.GetTile()) {
return this._pathfinder.Path(ret, goal[1], 0, this._Cost, this);
}
}
}
return ret;
}
function Rail::_GetBridgeNumSlopes(end_a, end_b)
{
local slopes = 0;
local direction = (end_b - end_a) / AIMap.DistanceManhattan(end_a, end_b);
local slope = AITile.GetSlope(end_a);
if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) ||
(slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) ||
slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) {
slopes++;
}
local slope = AITile.GetSlope(end_b);
direction = -direction;
if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) ||
(slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) ||
slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) {
slopes++;
}
return slopes;
}
function Rail::_nonzero(a, b)
{
return a != 0 ? a : b;
}
function Rail::_Cost(path, new_tile, new_direction, self)
{
/* path == null means this is the first node of a path, so the cost is 0. */
if (path == null) return 0;
local prev_tile = path.GetTile();
/* If the new tile is a bridge / tunnel tile, check whether we came from the other
* end of the bridge / tunnel or if we just entered the bridge / tunnel. */
if (AIBridge.IsBridgeTile(new_tile)) {
if (AIBridge.GetOtherBridgeEnd(new_tile) != prev_tile) {
local cost = path.GetCost() + self._cost_tile;
if (path.GetParent() != null && path.GetParent().GetTile() - prev_tile != prev_tile - new_tile) cost += self._cost_turn;
return cost;
}
return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope;
}
if (AITunnel.IsTunnelTile(new_tile)) {
if (AITunnel.GetOtherTunnelEnd(new_tile) != prev_tile) {
local cost = path.GetCost() + self._cost_tile;
if (path.GetParent() != null && path.GetParent().GetTile() - prev_tile != prev_tile - new_tile) cost += self._cost_turn;
return cost;
}
return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile;
}
/* If the two tiles are more then 1 tile apart, the pathfinder wants a bridge or tunnel
* to be build. It isn't an existing bridge / tunnel, as that case is already handled. */
if (AIMap.DistanceManhattan(new_tile, prev_tile) > 1) {
/* Check if we should build a bridge or a tunnel. */
local cost = path.GetCost();
if (AITunnel.GetOtherTunnelEnd(new_tile) == prev_tile) {
cost += AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_tunnel_per_tile);
} else {
cost += AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_bridge_per_tile) + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope;
}
if (path.GetParent() != null && path.GetParent().GetParent() != null &&
path.GetParent().GetParent().GetTile() - path.GetParent().GetTile() != max(AIMap.GetTileX(prev_tile) - AIMap.GetTileX(new_tile), AIMap.GetTileY(prev_tile) - AIMap.GetTileY(new_tile)) / AIMap.DistanceManhattan(new_tile, prev_tile)) {
cost += self._cost_turn;
}
return cost;
}
/* Check for a turn. We do this by substracting the TileID of the current
* node from the TileID of the previous node and comparing that to the
* difference between the tile before the previous node and the node before
* that. */
local cost = self._cost_tile;
if (path.GetParent() != null && AIMap.DistanceManhattan(path.GetParent().GetTile(), prev_tile) == 1 && path.GetParent().GetTile() - prev_tile != prev_tile - new_tile) cost = self._cost_diagonal_tile;
if (path.GetParent() != null && path.GetParent().GetParent() != null &&
AIMap.DistanceManhattan(new_tile, path.GetParent().GetParent().GetTile()) == 3 &&
path.GetParent().GetParent().GetTile() - path.GetParent().GetTile() != prev_tile - new_tile) {
cost += self._cost_turn;
}
/* Check if the new tile is a coast tile. */
if (AITile.IsCoastTile(new_tile)) {
cost += self._cost_coast;
}
/* Check if the last tile was sloped. */
if (path.GetParent() != null && !AIBridge.IsBridgeTile(prev_tile) && !AITunnel.IsTunnelTile(prev_tile) &&
self._IsSlopedRail(path.GetParent().GetTile(), prev_tile, new_tile)) {
cost += self._cost_slope;
}
/* We don't use already existing rail, so the following code is unused. It
* assigns if no rail exists along the route. */
/*
if (path.GetParent() != null && !AIRail.AreTilesConnected(path.GetParent().GetTile(), prev_tile, new_tile)) {
cost += self._cost_no_existing_rail;
}
*/
return path.GetCost() + cost;
}
function Rail::_Estimate(cur_tile, cur_direction, goal_tiles, self)
{
local min_cost = self._max_cost;
/* As estimate we multiply the lowest possible cost for a single tile with
* with the minimum number of tiles we need to traverse. */
foreach (tile in goal_tiles) {
local dx = abs(AIMap.GetTileX(cur_tile) - AIMap.GetTileX(tile[0]));
local dy = abs(AIMap.GetTileY(cur_tile) - AIMap.GetTileY(tile[0]));
min_cost = min(min_cost, min(dx, dy) * self._cost_diagonal_tile * 2 + (max(dx, dy) - min(dx, dy)) * self._cost_tile);
}
return min_cost;
}
function Rail::_Neighbours(path, cur_node, self)
{
if (AITile.HasTransportType(cur_node, AITile.TRANSPORT_RAIL)) return [];
/* self._max_cost is the maximum path cost, if we go over it, the path isn't valid. */
if (path.GetCost() >= self._max_cost) return [];
local tiles = [];
local offsets = [AIMap.GetTileIndex(0, 1), AIMap.GetTileIndex(0, -1),
AIMap.GetTileIndex(1, 0), AIMap.GetTileIndex(-1, 0)];
/* Check if the current tile is part of a bridge or tunnel. */
if (AIBridge.IsBridgeTile(cur_node) || AITunnel.IsTunnelTile(cur_node)) {
/* We don't use existing rails, so neither existing bridges / tunnels. */
} else if (path.GetParent() != null && AIMap.DistanceManhattan(cur_node, path.GetParent().GetTile()) > 1) {
local other_end = path.GetParent().GetTile();
local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end);
foreach (offset in offsets) {
if (AIRail.BuildRail(cur_node, next_tile, next_tile + offset)) {
tiles.push([next_tile, self._GetDirection(other_end, cur_node, next_tile, true)]);
}
}
} else {
/* Check all tiles adjacent to the current tile. */
foreach (offset in offsets) {
local next_tile = cur_node + offset;
/* Don't turn back */
if (path.GetParent() != null && next_tile == path.GetParent().GetTile()) continue;
/* Disallow 90 degree turns */
if (path.GetParent() != null && path.GetParent().GetParent() != null &&
next_tile - cur_node == path.GetParent().GetParent().GetTile() - path.GetParent().GetTile()) continue;
/* We add them to the to the neighbours-list if we can build a rail to
* them and no rail exists there. */
if ((path.GetParent() == null || AIRail.BuildRail(path.GetParent().GetTile(), cur_node, next_tile))) {
if (path.GetParent() != null) {
tiles.push([next_tile, self._GetDirection(path.GetParent().GetTile(), cur_node, next_tile, false)]);
} else {
tiles.push([next_tile, self._GetDirection(null, cur_node, next_tile, false)]);
}
}
}
if (path.GetParent() != null && path.GetParent().GetParent() != null) {
local bridges = self._GetTunnelsBridges(path.GetParent().GetTile(), cur_node, self._GetDirection(path.GetParent().GetParent().GetTile(), path.GetParent().GetTile(), cur_node, true));
foreach (tile in bridges) {
tiles.push(tile);
}
}
}
return tiles;
}
function Rail::_CheckDirection(tile, existing_direction, new_direction, self)
{
return false;
}
function Rail::_dir(from, to)
{
if (from - to == 1) return 0;
if (from - to == -1) return 1;
if (from - to == AIMap.GetMapSizeX()) return 2;
if (from - to == -AIMap.GetMapSizeX()) return 3;
throw("Shouldn't come here in _dir");
}
function Rail::_GetDirection(pre_from, from, to, is_bridge)
{
if (is_bridge) {
if (from - to == 1) return 1;
if (from - to == -1) return 2;
if (from - to == AIMap.GetMapSizeX()) return 4;
if (from - to == -AIMap.GetMapSizeX()) return 8;
}
return 1 << (4 + (pre_from == null ? 0 : 4 * this._dir(pre_from, from)) + this._dir(from, to));
}
/**
* Get a list of all bridges and tunnels that can be build from the
* current tile. Bridges will only be build starting on non-flat tiles
* for performance reasons. Tunnels will only be build if no terraforming
* is needed on both ends.
*/
function Rail::_GetTunnelsBridges(last_node, cur_node, bridge_dir)
{
local slope = AITile.GetSlope(cur_node);
if (slope == AITile.SLOPE_FLAT && AITile.IsBuildable(cur_node + (cur_node - last_node))) return [];
local tiles = [];
for (local i = 2; i < this._max_bridge_length; i++) {
local bridge_list = AIBridgeList_Length(i + 1);
local target = cur_node + i * (cur_node - last_node);
if (!bridge_list.IsEmpty() && AIBridge.BuildBridge(AIVehicle.VT_RAIL, bridge_list.Begin(), cur_node, target)) {
tiles.push([target, bridge_dir]);
}
}
if (slope != AITile.SLOPE_SW && slope != AITile.SLOPE_NW && slope != AITile.SLOPE_SE && slope != AITile.SLOPE_NE) return tiles;
local other_tunnel_end = AITunnel.GetOtherTunnelEnd(cur_node);
if (!AIMap.IsValidTile(other_tunnel_end)) return tiles;
local tunnel_length = AIMap.DistanceManhattan(cur_node, other_tunnel_end);
local prev_tile = cur_node + (cur_node - other_tunnel_end) / tunnel_length;
if (AITunnel.GetOtherTunnelEnd(other_tunnel_end) == cur_node && tunnel_length >= 2 &&
prev_tile == last_node && tunnel_length < _max_tunnel_length && AITunnel.BuildTunnel(AIVehicle.VT_RAIL, cur_node)) {
tiles.push([other_tunnel_end, bridge_dir]);
}
return tiles;
}
function Rail::_IsSlopedRail(start, middle, end)
{
local NW = 0; // Set to true if we want to build a rail to / from the north-west
local NE = 0; // Set to true if we want to build a rail to / from the north-east
local SW = 0; // Set to true if we want to build a rail to / from the south-west
local SE = 0; // Set to true if we want to build a rail to / from the south-east
if (middle - AIMap.GetMapSizeX() == start || middle - AIMap.GetMapSizeX() == end) NW = 1;
if (middle - 1 == start || middle - 1 == end) NE = 1;
if (middle + AIMap.GetMapSizeX() == start || middle + AIMap.GetMapSizeX() == end) SE = 1;
if (middle + 1 == start || middle + 1 == end) SW = 1;
/* If there is a turn in the current tile, it can't be sloped. */
if ((NW || SE) && (NE || SW)) return false;
local slope = AITile.GetSlope(middle);
/* A rail on a steep slope is always sloped. */
if (AITile.IsSteepSlope(slope)) return true;
/* If only one corner is raised, the rail is sloped. */
if (slope == AITile.SLOPE_N || slope == AITile.SLOPE_W) return true;
if (slope == AITile.SLOPE_S || slope == AITile.SLOPE_E) return true;
if (NW && (slope == AITile.SLOPE_NW || slope == AITile.SLOPE_SE)) return true;
if (NE && (slope == AITile.SLOPE_NE || slope == AITile.SLOPE_SW)) return true;
return false;
}

@ -1,14 +0,0 @@
/* $Id$ */
class Road extends AILibrary {
function GetAuthor() { return "OpenTTD NoAI Developers Team"; }
function GetName() { return "Road"; }
function GetShortName() { return "PFRO"; }
function GetDescription() { return "An implementation of a road pathfinder"; }
function GetVersion() { return 3; }
function GetDate() { return "2008-06-18"; }
function CreateInstance() { return "Road"; }
function GetCategory() { return "Pathfinder"; }
}
RegisterLibrary(Road());

@ -1,363 +0,0 @@
/* $Id$ */
/**
* A Road Pathfinder.
* This road pathfinder tries to find a buildable / existing route for
* road vehicles. You can changes the costs below using for example
* roadpf.cost.turn = 30. Note that it's not allowed to change the cost
* between consecutive calls to FindPath. You can change the cost before
* the first call to FindPath and after FindPath has returned an actual
* route. To use only existing roads, set cost.no_existing_road to
* cost.max_cost.
*/
class Road
{
_aystar_class = import("graph.aystar", "", 4);
_max_cost = null; ///< The maximum cost for a route.
_cost_tile = null; ///< The cost for a single tile.
_cost_no_existing_road = null; ///< The cost that is added to _cost_tile if no road exists yet.
_cost_turn = null; ///< The cost that is added to _cost_tile if the direction changes.
_cost_slope = null; ///< The extra cost if a road tile is sloped.
_cost_bridge_per_tile = null; ///< The cost per tile of a new bridge, this is added to _cost_tile.
_cost_tunnel_per_tile = null; ///< The cost per tile of a new tunnel, this is added to _cost_tile.
_cost_coast = null; ///< The extra cost for a coast tile.
_pathfinder = null; ///< A reference to the used AyStar object.
_max_bridge_length = null; ///< The maximum length of a bridge that will be build.
_max_tunnel_length = null; ///< The maximum length of a tunnel that will be build.
cost = null; ///< Used to change the costs.
_running = null;
constructor()
{
this._max_cost = 10000000;
this._cost_tile = 100;
this._cost_no_existing_road = 40;
this._cost_turn = 100;
this._cost_slope = 200;
this._cost_bridge_per_tile = 150;
this._cost_tunnel_per_tile = 120;
this._cost_coast = 20;
this._max_bridge_length = 10;
this._max_tunnel_length = 20;
this._pathfinder = this._aystar_class(this._Cost, this._Estimate, this._Neighbours, this._CheckDirection, this, this, this, this);
this.cost = this.Cost(this);
this._running = false;
}
/**
* Initialize a path search between sources and goals.
* @param sources The source tiles.
* @param goals The target tiles.
* @see AyStar::InitializePath()
*/
function InitializePath(sources, goals) {
local nsources = [];
foreach (node in sources) {
nsources.push([node, 0xFF]);
}
this._pathfinder.InitializePath(nsources, goals);
}
/**
* Try to find the path as indicated with InitializePath with the lowest cost.
* @param iterations After how many iterations it should abort for a moment.
* This value should either be -1 for infinite, or > 0. Any other value
* aborts immediatly and will never find a path.
* @return A route if one was found, or false if the amount of iterations was
* reached, or null if no path was found.
* You can call this function over and over as long as it returns false,
* which is an indication it is not yet done looking for a route.
* @see AyStar::FindPath()
*/
function FindPath(iterations);
};
class Road.Cost
{
_main = null;
function _set(idx, val)
{
if (this._main._running) throw("You are not allowed to change parameters of a running pathfinder.");
switch (idx) {
case "max_cost": this._main._max_cost = val; break;
case "tile": this._main._cost_tile = val; break;
case "no_existing_road": this._main._cost_no_existing_road = val; break;
case "turn": this._main._cost_turn = val; break;
case "slope": this._main._cost_slope = val; break;
case "bridge_per_tile": this._main._cost_bridge_per_tile = val; break;
case "tunnel_per_tile": this._main._cost_tunnel_per_tile = val; break;
case "coast": this._main._cost_coast = val; break;
case "max_bridge_length": this._main._max_bridge_length = val; break;
case "max_tunnel_length": this._main._max_tunnel_length = val; break;
default: throw("the index '" + idx + "' does not exist");
}
return val;
}
function _get(idx)
{
switch (idx) {
case "max_cost": return this._main._max_cost;
case "tile": return this._main._cost_tile;
case "no_existing_road": return this._main._cost_no_existing_road;
case "turn": return this._main._cost_turn;
case "slope": return this._main._cost_slope;
case "bridge_per_tile": return this._main._cost_bridge_per_tile;
case "tunnel_per_tile": return this._main._cost_tunnel_per_tile;
case "coast": return this._main._cost_coast;
case "max_bridge_length": return this._main._max_bridge_length;
case "max_tunnel_length": return this._main._max_tunnel_length;
default: throw("the index '" + idx + "' does not exist");
}
}
constructor(main)
{
this._main = main;
}
};
function Road::FindPath(iterations)
{
local test_mode = AITestMode();
local ret = this._pathfinder.FindPath(iterations);
this._running = (ret == false) ? true : false;
return ret;
}
function Road::_GetBridgeNumSlopes(end_a, end_b)
{
local slopes = 0;
local direction = (end_b - end_a) / AIMap.DistanceManhattan(end_a, end_b);
local slope = AITile.GetSlope(end_a);
if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) ||
(slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) ||
slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) {
slopes++;
}
local slope = AITile.GetSlope(end_b);
direction = -direction;
if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) ||
(slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) ||
slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) {
slopes++;
}
return slopes;
}
function Road::_Cost(path, new_tile, new_direction, self)
{
/* path == null means this is the first node of a path, so the cost is 0. */
if (path == null) return 0;
local prev_tile = path.GetTile();
/* If the new tile is a bridge / tunnel tile, check whether we came from the other
* end of the bridge / tunnel or if we just entered the bridge / tunnel. */
if (AIBridge.IsBridgeTile(new_tile)) {
if (AIBridge.GetOtherBridgeEnd(new_tile) != prev_tile) return path.GetCost() + self._cost_tile;
return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope;
}
if (AITunnel.IsTunnelTile(new_tile)) {
if (AITunnel.GetOtherTunnelEnd(new_tile) != prev_tile) return path.GetCost() + self._cost_tile;
return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile;
}
/* If the two tiles are more then 1 tile apart, the pathfinder wants a bridge or tunnel
* to be build. It isn't an existing bridge / tunnel, as that case is already handled. */
if (AIMap.DistanceManhattan(new_tile, prev_tile) > 1) {
/* Check if we should build a bridge or a tunnel. */
if (AITunnel.GetOtherTunnelEnd(new_tile) == prev_tile) {
return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_tunnel_per_tile);
} else {
return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_bridge_per_tile) + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope;
}
}
/* Check for a turn. We do this by substracting the TileID of the current node from
* the TileID of the previous node and comparing that to the difference between the
* previous node and the node before that. */
local cost = self._cost_tile;
if (path.GetParent() != null && (prev_tile - path.GetParent().GetTile()) != (new_tile - prev_tile) &&
AIMap.DistanceManhattan(path.GetParent().GetTile(), prev_tile) == 1) {
cost += self._cost_turn;
}
/* Check if the new tile is a coast tile. */
if (AITile.IsCoastTile(new_tile)) {
cost += self._cost_coast;
}
/* Check if the last tile was sloped. */
if (path.GetParent() != null && !AIBridge.IsBridgeTile(prev_tile) && !AITunnel.IsTunnelTile(prev_tile) &&
self._IsSlopedRoad(path.GetParent().GetTile(), prev_tile, new_tile)) {
cost += self._cost_slope;
}
if (!AIRoad.AreRoadTilesConnected(prev_tile, new_tile)) {
cost += self._cost_no_existing_road;
}
return path.GetCost() + cost;
}
function Road::_Estimate(cur_tile, cur_direction, goal_tiles, self)
{
local min_cost = self._max_cost;
/* As estimate we multiply the lowest possible cost for a single tile with
* with the minimum number of tiles we need to traverse. */
foreach (tile in goal_tiles) {
min_cost = min(AIMap.DistanceManhattan(cur_tile, tile) * self._cost_tile, min_cost);
}
return min_cost;
}
function Road::_Neighbours(path, cur_node, self)
{
/* self._max_cost is the maximum path cost, if we go over it, the path isn't valid. */
if (path.GetCost() >= self._max_cost) return [];
local tiles = [];
/* Check if the current tile is part of a bridge or tunnel. */
if ((AIBridge.IsBridgeTile(cur_node) || AITunnel.IsTunnelTile(cur_node)) &&
AITile.HasTransportType(cur_node, AITile.TRANSPORT_ROAD)) {
local other_end = AIBridge.IsBridgeTile(cur_node) ? AIBridge.GetOtherBridgeEnd(cur_node) : AITunnel.GetOtherTunnelEnd(cur_node);
local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end);
if (AIRoad.AreRoadTilesConnected(cur_node, next_tile) || AITile.IsBuildable(next_tile) || AIRoad.IsRoadTile(next_tile)) {
tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]);
}
/* The other end of the bridge / tunnel is a neighbour. */
tiles.push([other_end, self._GetDirection(next_tile, cur_node, true) << 4]);
} else if (path.GetParent() != null && AIMap.DistanceManhattan(cur_node, path.GetParent().GetTile()) > 1) {
local other_end = path.GetParent().GetTile();
local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end);
if (AIRoad.AreRoadTilesConnected(cur_node, next_tile) || AIRoad.BuildRoad(cur_node, next_tile)) {
tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]);
}
} else {
local offsets = [AIMap.GetTileIndex(0, 1), AIMap.GetTileIndex(0, -1),
AIMap.GetTileIndex(1, 0), AIMap.GetTileIndex(-1, 0)];
/* Check all tiles adjacent to the current tile. */
foreach (offset in offsets) {
local next_tile = cur_node + offset;
/* We add them to the to the neighbours-list if one of the following applies:
* 1) There already is a connections between the current tile and the next tile.
* 2) We can build a road to the next tile.
* 3) The next tile is the entrance of a tunnel / bridge in the correct direction. */
if (AIRoad.AreRoadTilesConnected(cur_node, next_tile)) {
tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]);
} else if ((AITile.IsBuildable(next_tile) || AIRoad.IsRoadTile(next_tile)) &&
(path.GetParent() == null || AIRoad.CanBuildConnectedRoadPartsHere(cur_node, path.GetParent().GetTile(), next_tile)) &&
AIRoad.BuildRoad(cur_node, next_tile)) {
tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]);
} else if (self._CheckTunnelBridge(cur_node, next_tile)) {
tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]);
}
}
if (path.GetParent() != null) {
local bridges = self._GetTunnelsBridges(path.GetParent().GetTile(), cur_node, self._GetDirection(path.GetParent().GetTile(), cur_node, true) << 4);
foreach (tile in bridges) {
tiles.push(tile);
}
}
}
return tiles;
}
function Road::_CheckDirection(tile, existing_direction, new_direction, self)
{
return false;
}
function Road::_GetDirection(from, to, is_bridge)
{
if (!is_bridge && AITile.GetSlope(to) == AITile.SLOPE_FLAT) return 0xFF;
if (from - to == 1) return 1;
if (from - to == -1) return 2;
if (from - to == AIMap.GetMapSizeX()) return 4;
if (from - to == -AIMap.GetMapSizeX()) return 8;
}
/**
* Get a list of all bridges and tunnels that can be build from the
* current tile. Bridges will only be build starting on non-flat tiles
* for performance reasons. Tunnels will only be build if no terraforming
* is needed on both ends.
*/
function Road::_GetTunnelsBridges(last_node, cur_node, bridge_dir)
{
local slope = AITile.GetSlope(cur_node);
if (slope == AITile.SLOPE_FLAT) return [];
local tiles = [];
for (local i = 2; i < this._max_bridge_length; i++) {
local bridge_list = AIBridgeList_Length(i + 1);
local target = cur_node + i * (cur_node - last_node);
if (!bridge_list.IsEmpty() && AIBridge.BuildBridge(AIVehicle.VT_ROAD, bridge_list.Begin(), cur_node, target)) {
tiles.push([target, bridge_dir]);
}
}
if (slope != AITile.SLOPE_SW && slope != AITile.SLOPE_NW && slope != AITile.SLOPE_SE && slope != AITile.SLOPE_NE) return tiles;
local other_tunnel_end = AITunnel.GetOtherTunnelEnd(cur_node);
if (!AIMap.IsValidTile(other_tunnel_end)) return tiles;
local tunnel_length = AIMap.DistanceManhattan(cur_node, other_tunnel_end);
local prev_tile = cur_node + (cur_node - other_tunnel_end) / tunnel_length;
if (AITunnel.GetOtherTunnelEnd(other_tunnel_end) == cur_node && tunnel_length >= 2 &&
prev_tile == last_node && tunnel_length < _max_tunnel_length && AITunnel.BuildTunnel(AIVehicle.VT_ROAD, cur_node)) {
tiles.push([other_tunnel_end, bridge_dir]);
}
return tiles;
}
function Road::_IsSlopedRoad(start, middle, end)
{
local NW = 0; //Set to true if we want to build a road to / from the north-west
local NE = 0; //Set to true if we want to build a road to / from the north-east
local SW = 0; //Set to true if we want to build a road to / from the south-west
local SE = 0; //Set to true if we want to build a road to / from the south-east
if (middle - AIMap.GetMapSizeX() == start || middle - AIMap.GetMapSizeX() == end) NW = 1;
if (middle - 1 == start || middle - 1 == end) NE = 1;
if (middle + AIMap.GetMapSizeX() == start || middle + AIMap.GetMapSizeX() == end) SE = 1;
if (middle + 1 == start || middle + 1 == end) SW = 1;
/* If there is a turn in the current tile, it can't be sloped. */
if ((NW || SE) && (NE || SW)) return false;
local slope = AITile.GetSlope(middle);
/* A road on a steep slope is always sloped. */
if (AITile.IsSteepSlope(slope)) return true;
/* If only one corner is raised, the road is sloped. */
if (slope == AITile.SLOPE_N || slope == AITile.SLOPE_W) return true;
if (slope == AITile.SLOPE_S || slope == AITile.SLOPE_E) return true;
if (NW && (slope == AITile.SLOPE_NW || slope == AITile.SLOPE_SE)) return true;
if (NE && (slope == AITile.SLOPE_NE || slope == AITile.SLOPE_SW)) return true;
return false;
}
function Road::_CheckTunnelBridge(current_tile, new_tile)
{
if (!AIBridge.IsBridgeTile(new_tile) && !AITunnel.IsTunnelTile(new_tile)) return false;
local dir = new_tile - current_tile;
local other_end = AIBridge.IsBridgeTile(new_tile) ? AIBridge.GetOtherBridgeEnd(new_tile) : AITunnel.GetOtherTunnelEnd(new_tile);
local dir2 = other_end - new_tile;
if ((dir < 0 && dir2 > 0) || (dir > 0 && dir2 < 0)) return false;
dir = abs(dir);
dir2 = abs(dir2);
if ((dir >= AIMap.GetMapSizeX() && dir2 < AIMap.GetMapSizeX()) ||
(dir < AIMap.GetMapSizeX() && dir2 >= AIMap.GetMapSizeX())) return false;
return true;
}

@ -1,14 +0,0 @@
/* $Id$ */
class Binary_Heap extends AILibrary {
function GetAuthor() { return "OpenTTD NoAI Developers Team"; }
function GetName() { return "Binary Heap"; }
function GetShortName() { return "QUBH"; }
function GetDescription() { return "An implementation of a Binary Heap"; }
function GetVersion() { return 1; }
function GetDate() { return "2008-06-10"; }
function CreateInstance() { return "Binary_Heap"; }
function GetCategory() { return "Queue"; }
}
RegisterLibrary(Binary_Heap());

@ -1,131 +0,0 @@
/* $Id$ */
/**
* Binary Heap.
* Peek and Pop always return the current lowest value in the list.
* Sort is done on insertion and on deletion.
*/
class Binary_Heap
{
_queue = null;
_count = 0;
constructor()
{
_queue = [];
}
/**
* Insert a new entry in the list.
* The complexity of this operation is O(ln n).
* @param item The item to add to the list.
* @param priority The priority this item has.
*/
function Insert(item, priority);
/**
* Pop the first entry of the list.
* This is always the item with the lowest priority.
* The complexity of this operation is O(ln n).
* @return The item of the entry with the lowest priority.
*/
function Pop();
/**
* Peek the first entry of the list.
* This is always the item with the lowest priority.
* The complexity of this operation is O(1).
* @return The item of the entry with the lowest priority.
*/
function Peek();
/**
* Get the amount of current items in the list.
* The complexity of this operation is O(1).
* @return The amount of items currently in the list.
*/
function Count();
/**
* Check if an item exists in the list.
* The complexity of this operation is O(n).
* @param item The item to check for.
* @return True if the item is already in the list.
*/
function Exists(item);
};
function Binary_Heap::Insert(item, priority)
{
/* Append dummy entry */
_queue.append(0);
_count++;
local hole;
/* Find the point of insertion */
for (hole = _count - 1; hole > 0 && priority <= _queue[hole / 2][1]; hole /= 2)
_queue[hole] = _queue[hole / 2];
/* Insert new pair */
_queue[hole] = [item, priority];
return true;
}
function Binary_Heap::Pop()
{
if (_count == 0) return null;
local node = _queue[0];
/* Remove the item from the list by putting the last value on top */
_queue[0] = _queue[_count - 1];
_queue.pop();
_count--;
/* Bubble down the last value to correct the tree again */
_BubbleDown();
return node[0];
}
function Binary_Heap::Peek()
{
if (_count == 0) return null;
return _queue[0][0];
}
function Binary_Heap::Count()
{
return _count;
}
function Binary_Heap::Exists(item)
{
/* Brute-force find the item (there is no faster way, as we don't have the priority number) */
foreach (node in _queue) {
if (node[0] == item) return true;
}
return false;
}
function Binary_Heap::_BubbleDown()
{
if (_count == 0) return;
local hole = 1;
local tmp = _queue[0];
/* Start switching parent and child until the tree is restored */
while (hole * 2 < _count + 1) {
local child = hole * 2;
if (child != _count && _queue[child][1] <= _queue[child - 1][1]) child++;
if (_queue[child - 1][1] > tmp[1]) break;
_queue[hole - 1] = _queue[child - 1];
hole = child;
}
/* The top value is now at his new place */
_queue[hole - 1] = tmp;
}

@ -1,14 +0,0 @@
/* $Id$ */
class Fibonacci_Heap extends AILibrary {
function GetAuthor() { return "OpenTTD NoAI Developers Team"; }
function GetName() { return "Fibonacci Heap"; }
function GetShortName() { return "QUFH"; }
function GetDescription() { return "An implementation of a Fibonacci Heap"; }
function GetVersion() { return 1; }
function GetDate() { return "2008-08-22"; }
function CreateInstance() { return "Fibonacci_Heap"; }
function GetCategory() { return "Queue"; }
}
RegisterLibrary(Fibonacci_Heap());

@ -1,204 +0,0 @@
/* $Id$ */
/**
* Fibonacci heap.
* This heap is heavily optimized for the Insert and Pop functions.
* Peek and Pop always return the current lowest value in the list.
* Insert is implemented as a lazy insert, as it will simply add the new
* node to the root list. Sort is done on every Pop operation.
*/
class Fibonacci_Heap {
_min = null;
_min_index = 0;
_min_priority = 0;
_count = 0;
_root_list = null;
/**
* Create a new fibonacci heap.
* http://en.wikipedia.org/wiki/Fibonacci_heap
*/
constructor() {
_count = 0;
_min = Node();
_min.priority = 0x7FFFFFFF;
_min_index = 0;
_min_priority = 0x7FFFFFFF;
_root_list = [];
}
/**
* Insert a new entry in the heap.
* The complexity of this operation is O(1).
* @param item The item to add to the list.
* @param priority The priority this item has.
*/
function Insert(item, priority);
/**
* Pop the first entry of the list.
* This is always the item with the lowest priority.
* The complexity of this operation is O(ln n).
* @return The item of the entry with the lowest priority.
*/
function Pop();
/**
* Peek the first entry of the list.
* This is always the item with the lowest priority.
* The complexity of this operation is O(1).
* @return The item of the entry with the lowest priority.
*/
function Peek();
/**
* Get the amount of current items in the list.
* The complexity of this operation is O(1).
* @return The amount of items currently in the list.
*/
function Count();
/**
* Check if an item exists in the list.
* The complexity of this operation is O(n).
* @param item The item to check for.
* @return True if the item is already in the list.
*/
function Exists(item);
};
function Fibonacci_Heap::Insert(item, priority) {
/* Create a new node instance to add to the heap. */
local node = Node();
/* Changing params is faster than using constructor values */
node.item = item;
node.priority = priority;
/* Update the reference to the minimum node if this node has a
* smaller priority. */
if (_min_priority > priority) {
_min = node;
_min_index = _root_list.len();
_min_priority = priority;
}
_root_list.append(node);
_count++;
}
function Fibonacci_Heap::Pop() {
if (_count == 0) return null;
/* Bring variables from the class scope to this scope explicitly to
* optimize variable lookups by Squirrel. */
local z = _min;
local tmp_root_list = _root_list;
/* If there are any children, bring them all to the root level. */
tmp_root_list.extend(z.child);
/* Remove the minimum node from the rootList. */
tmp_root_list.remove(_min_index);
local root_cache = {};
/* Now we decrease the number of nodes on the root level by
* merging nodes which have the same degree. The node with
* the lowest priority value will become the parent. */
foreach(x in tmp_root_list) {
local y;
/* See if we encountered a node with the same degree already. */
while (y = root_cache.rawdelete(x.degree)) {
/* Check the priorities. */
if (x.priority > y.priority) {
local tmp = x;
x = y;
y = tmp;
}
/* Make y a child of x. */
x.child.append(y);
x.degree++;
}
root_cache[x.degree] <- x;
}
/* The root_cache contains all the nodes which will form the
* new rootList. We reset the priority to the maximum number
* for a 32 signed integer to find a new minumum. */
tmp_root_list.resize(root_cache.len());
local i = 0;
local tmp_min_priority = 0x7FFFFFFF;
/* Now we need to find the new minimum among the root nodes. */
foreach (val in root_cache) {
if (val.priority < tmp_min_priority) {
_min = val;
_min_index = i;
tmp_min_priority = val.priority;
}
tmp_root_list[i++] = val;
}
/* Update global variables. */
_min_priority = tmp_min_priority;
_count--;
return z.item;
}
function Fibonacci_Heap::Peek() {
if (_count == 0) return null;
return _min.item;
}
function Fibonacci_Heap::Count() {
return _count;
}
function Fibonacci_Heap::Exists(item) {
return ExistsIn(_root_list, item);
}
/**
* Auxilary function to search through the whole heap.
* @param list The list of nodes to look through.
* @param item The item to search for.
* @return True if the item is found, false otherwise.
*/
function Fibonacci_Heap::ExistsIn(list, item) {
foreach (val in list) {
if (val.item == item) {
return true;
}
foreach (c in val.child) {
if (ExistsIn(c, item)) {
return true;
}
}
}
/* No luck, item doesn't exists in the tree rooted under list. */
return false;
}
/**
* Basic class the fibonacci heap is composed of.
*/
class Fibonacci_Heap.Node {
degree = null;
child = null;
item = null;
priority = null;
constructor() {
child = [];
degree = 0;
}
};

@ -1,14 +0,0 @@
/* $Id$ */
class Priority_Queue extends AILibrary {
function GetAuthor() { return "OpenTTD NoAI Developers Team"; }
function GetName() { return "Priority Queue"; }
function GetShortName() { return "QUPQ"; }
function GetDescription() { return "An implementation of a Priority Queue"; }
function GetVersion() { return 2; }
function GetDate() { return "2008-06-10"; }
function CreateInstance() { return "Priority_Queue"; }
function GetCategory() { return "Queue"; }
}
RegisterLibrary(Priority_Queue());

@ -1,115 +0,0 @@
/* $Id$ */
/**
* Priority Queue.
* Peek and Pop always return the current lowest value in the list.
* Sort is done on insertion only.
*/
class Priority_Queue
{
_queue = null;
_count = 0;
constructor()
{
_count = 0;
_queue = [];
}
/**
* Insert a new entry in the list.
* The complexity of this operation is O(n).
* @param item The item to add to the list.
* @param priority The priority this item has.
*/
function Insert(item, priority);
/**
* Pop the first entry of the list.
* This is always the item with the lowest priority.
* The complexity of this operation is O(1).
* @return The item of the entry with the lowest priority.
*/
function Pop();
/**
* Peek the first entry of the list.
* This is always the item with the lowest priority.
* The complexity of this operation is O(1).
* @return The item of the entry with the lowest priority.
*/
function Peek();
/**
* Get the amount of current items in the list.
* The complexity of this operation is O(1).
* @return The amount of items currently in the list.
*/
function Count();
/**
* Check if an item exists in the list.
* The complexity of this operation is O(n).
* @param item The item to check for.
* @return True if the item is already in the list.
*/
function Exists(item);
};
function Priority_Queue::Insert(item, priority)
{
/* Append dummy entry */
_queue.append(0);
_count++;
local i;
/* Find the point of insertion */
for (i = _count - 2; i >= 0; i--) {
if (priority > _queue[i][1]) {
/* All items bigger move one place to the right */
_queue[i + 1] = _queue[i];
} else if (item == _queue[i][0]) {
/* Same item, ignore insertion */
return false;
} else {
/* Found place to insert at */
break;
}
}
/* Insert new pair */
_queue[i + 1] = [item, priority];
return true;
}
function Priority_Queue::Pop()
{
if (_count == 0) return null;
local node = _queue.pop();
_count--;
return node[0];
}
function Priority_Queue::Peek()
{
if (_count == 0) return null;
return _queue[_count - 1][0];
}
function Priority_Queue::Count()
{
return _count;
}
function Priority_Queue::Exists(item)
{
/* Brute-force find the item (there is no faster way, as we don't have the priority number) */
foreach (node in _queue) {
if (node[0] == item) return true;
}
return false;
}

@ -1,16 +0,0 @@
/* $Id$ */
class WrightAI extends AIInfo {
function GetAuthor() { return "OpenTTD NoAI Developers Team"; }
function GetName() { return "WrightAI"; }
function GetShortName() { return "WRAI"; }
function GetDescription() { return "A simple AI that tries to beat you with only aircrafts"; }
function GetVersion() { return 2; }
function GetDate() { return "2008-02-24"; }
function CreateInstance() { return "WrightAI"; }
function GetSettings() {
AddSetting({name = "min_town_size", description = "The minimal size of towns to work on", min_value = 100, max_value = 1000, easy_value = 500, medium_value = 400, hard_value = 300, custom_value = 500, flags = 0});
}
}
RegisterAI(WrightAI());

@ -1,387 +0,0 @@
/* $Id$ */
class WrightAI extends AIController {
name = null;
towns_used = null;
route_1 = null;
route_2 = null;
distance_of_route = {};
vehicle_to_depot = {};
delay_build_airport_route = 1000;
passenger_cargo_id = -1;
function Start();
constructor() {
this.towns_used = AIList();
this.route_1 = AIList();
this.route_2 = AIList();
local list = AICargoList();
for (local i = list.Begin(); list.HasNext(); i = list.Next()) {
if (AICargo.HasCargoClass(i, AICargo.CC_PASSENGERS)) {
this.passenger_cargo_id = i;
break;
}
}
}
};
/**
* Check if we have enough money (via loan and on bank).
*/
function WrightAI::HasMoney(money)
{
if (AICompany.GetBankBalance(AICompany.COMPANY_SELF) + (AICompany.GetMaxLoanAmount() - AICompany.GetLoanAmount()) > money) return true;
return false;
}
/**
* Get the amount of money requested, loan if needed.
*/
function WrightAI::GetMoney(money)
{
if (!this.HasMoney(money)) return;
if (AICompany.GetBankBalance(AICompany.COMPANY_SELF) > money) return;
local loan = money - AICompany.GetBankBalance(AICompany.COMPANY_SELF) + AICompany.GetLoanInterval() + AICompany.GetLoanAmount();
loan = loan - loan % AICompany.GetLoanInterval();
AILog.Info("Need a loan to get " + money + ": " + loan);
AICompany.SetLoanAmount(loan);
}
/**
* Build an airport route. Find 2 cities that are big enough and try to build airport in both cities.
* Then we can build an aircraft and make some money.
*/
function WrightAI::BuildAirportRoute()
{
local airport_type = (AIAirport.AirportAvailable(AIAirport.AT_SMALL) ? AIAirport.AT_SMALL : AIAirport.AT_LARGE);
/* Get enough money to work with */
this.GetMoney(150000);
AILog.Info("Trying to build an airport route");
local tile_1 = this.FindSuitableAirportSpot(airport_type, 0);
if (tile_1 < 0) return -1;
local tile_2 = this.FindSuitableAirportSpot(airport_type, tile_1);
if (tile_2 < 0) {
this.towns_used.RemoveValue(tile_1);
return -2;
}
/* Build the airports for real */
if (!AIAirport.BuildAirport(tile_1, airport_type, true)) {
AILog.Error("Although the testing told us we could build 2 airports, it still failed on the first airport at tile " + tile_1 + ".");
this.towns_used.RemoveValue(tile_1);
this.towns_used.RemoveValue(tile_2);
return -3;
}
if (!AIAirport.BuildAirport(tile_2, airport_type, true)) {
AILog.Error("Although the testing told us we could build 2 airports, it still failed on the second airport at tile " + tile_2 + ".");
AIAirport.RemoveAirport(tile_1);
this.towns_used.RemoveValue(tile_1);
this.towns_used.RemoveValue(tile_2);
return -4;
}
local ret = this.BuildAircraft(tile_1, tile_2);
if (ret < 0) {
AIAirport.RemoveAirport(tile_1);
AIAirport.RemoveAirport(tile_2);
this.towns_used.RemoveValue(tile_1);
this.towns_used.RemoveValue(tile_2);
return ret;
}
AILog.Info("Done building a route");
return ret;
}
/**
* Build an aircraft with orders from tile_1 to tile_2.
* The best available aircraft of that time will be bought.
*/
function WrightAI::BuildAircraft(tile_1, tile_2)
{
/* Build an aircraft */
local hangar = AIAirport.GetHangarOfAirport(tile_1);
local engine = null;
local engine_list = AIEngineList(AIVehicle.VT_AIR);
/* When bank balance < 300000, buy cheaper planes */
local balance = AICompany.GetBankBalance(AICompany.COMPANY_SELF);
engine_list.Valuate(AIEngine.GetPrice);
engine_list.KeepBelowValue(balance < 300000 ? 50000 : (balance < 1000000 ? 300000 : 1000000));
engine_list.Valuate(AIEngine.GetCargoType);
engine_list.KeepValue(this.passenger_cargo_id);
engine_list.Valuate(AIEngine.GetCapacity);
engine_list.KeepTop(1);
engine = engine_list.Begin();
if (!AIEngine.IsValidEngine(engine)) {
AILog.Error("Couldn't find a suitable engine");
return -5;
}
local vehicle = AIVehicle.BuildVehicle(hangar, engine);
if (!AIVehicle.IsValidVehicle(vehicle)) {
AILog.Error("Couldn't build the aircraft");
return -6;
}
/* Send him on his way */
AIOrder.AppendOrder(vehicle, tile_1, AIOrder.AIOF_NONE);
AIOrder.AppendOrder(vehicle, tile_2, AIOrder.AIOF_NONE);
AIVehicle.StartStopVehicle(vehicle);
this.distance_of_route.rawset(vehicle, AIMap.DistanceManhattan(tile_1, tile_2));
this.route_1.AddItem(vehicle, tile_1);
this.route_2.AddItem(vehicle, tile_2);
AILog.Info("Done building an aircraft");
return 0;
}
/**
* Find a suitable spot for an airport, walking all towns hoping to find one.
* When a town is used, it is marked as such and not re-used.
*/
function WrightAI::FindSuitableAirportSpot(airport_type, center_tile)
{
local airport_x, airport_y, airport_rad;
airport_x = AIAirport.GetAirportWidth(airport_type);
airport_y = AIAirport.GetAirportHeight(airport_type);
airport_rad = AIAirport.GetAirportCoverageRadius(airport_type);
local town_list = AITownList();
/* Remove all the towns we already used */
town_list.RemoveList(this.towns_used);
town_list.Valuate(AITown.GetPopulation);
town_list.KeepAboveValue(GetSetting("min_town_size"));
/* Keep the best 10, if we can't find 2 stations in there, just leave it anyway */
town_list.KeepTop(10);
town_list.Valuate(AIBase.RandItem);
/* Now find 2 suitable towns */
for (local town = town_list.Begin(); town_list.HasNext(); town = town_list.Next()) {
/* Don't make this a CPU hog */
Sleep(1);
local tile = AITown.GetLocation(town);
/* Create a 30x30 grid around the core of the town and see if we can find a spot for a small airport */
local list = AITileList();
/* XXX -- We assume we are more than 15 tiles away from the border! */
list.AddRectangle(tile - AIMap.GetTileIndex(15, 15), tile + AIMap.GetTileIndex(15, 15));
list.Valuate(AITile.IsBuildableRectangle, airport_x, airport_y);
list.KeepValue(1);
if (center_tile != 0) {
/* If we have a tile defined, we don't want to be within 25 tiles of this tile */
list.Valuate(AITile.GetDistanceSquareToTile, center_tile);
list.KeepAboveValue(625);
}
/* Sort on acceptance, remove places that don't have acceptance */
list.Valuate(AITile.GetCargoAcceptance, this.passenger_cargo_id, airport_x, airport_y, airport_rad);
list.RemoveBelowValue(10);
/* Couldn't find a suitable place for this town, skip to the next */
if (list.Count() == 0) continue;
/* Walk all the tiles and see if we can build the airport at all */
{
local test = AITestMode();
local good_tile = 0;
for (tile = list.Begin(); list.HasNext(); tile = list.Next()) {
Sleep(1);
if (!AIAirport.BuildAirport(tile, airport_type, true)) continue;
good_tile = tile;
break;
}
/* Did we found a place to build the airport on? */
if (good_tile == 0) continue;
}
AILog.Info("Found a good spot for an airport in town " + town + " at tile " + tile);
/* Make the town as used, so we don't use it again */
this.towns_used.AddItem(town, tile);
return tile;
}
AILog.Info("Couldn't find a suitable town to build an airport in");
return -1;
}
function WrightAI::ManageAirRoutes()
{
local list = AIVehicleList();
list.Valuate(AIVehicle.GetAge);
/* Give the plane at least 2 years to make a difference */
list.KeepAboveValue(365 * 2);
list.Valuate(AIVehicle.GetProfitLastYear);
for (local i = list.Begin(); list.HasNext(); i = list.Next()) {
local profit = list.GetValue(i);
/* Profit last year and this year bad? Let's sell the vehicle */
if (profit < 10000 && AIVehicle.GetProfitThisYear(i) < 10000) {
/* Send the vehicle to depot if we didn't do so yet */
if (!vehicle_to_depot.rawin(i) || vehicle_to_depot.rawget(i) != true) {
AILog.Info("Sending " + i + " to depot as profit is: " + profit + " / " + AIVehicle.GetProfitThisYear(i));
AIVehicle.SendVehicleToDepot(i);
vehicle_to_depot.rawset(i, true);
}
}
/* Try to sell it over and over till it really is in the depot */
if (vehicle_to_depot.rawin(i) && vehicle_to_depot.rawget(i) == true) {
if (AIVehicle.SellVehicle(i)) {
AILog.Info("Selling " + i + " as it finally is in a depot.");
/* Check if we are the last one serving those airports; else sell the airports */
local list2 = AIVehicleList_Station(AIStation.GetStationID(this.route_1.GetValue(i)));
if (list2.Count() == 0) this.SellAirports(i);
vehicle_to_depot.rawdelete(i);
}
}
}
/* Don't try to add planes when we are short on cash */
if (!this.HasMoney(50000)) return;
list = AIStationList(AIStation.STATION_AIRPORT);
list.Valuate(AIStation.GetCargoWaiting, this.passenger_cargo_id);
list.KeepAboveValue(250);
for (local i = list.Begin(); list.HasNext(); i = list.Next()) {
local list2 = AIVehicleList_Station(i);
/* No vehicles going to this station, abort and sell */
if (list2.Count() == 0) {
this.SellAirports(i);
continue;
};
/* Find the first vehicle that is going to this station */
local v = list2.Begin();
local dist = this.distance_of_route.rawget(v);
list2.Valuate(AIVehicle.GetAge);
list2.KeepBelowValue(dist);
/* Do not build a new vehicle if we bought a new one in the last DISTANCE days */
if (list2.Count() != 0) continue;
AILog.Info("Station " + i + " (" + AIStation.GetLocation(i) + ") has too many cargo, adding a new vehicle for the route.");
/* Make sure we have enough money */
this.GetMoney(50000);
return this.BuildAircraft(this.route_1.GetValue(v), this.route_2.GetValue(v));
}
}
/**
* Sells the airports from route index i
* Removes towns from towns_used list too
*/
function WrightAI::SellAirports(i) {
/* Remove the airports */
AILog.Info("Removing airports as nobody serves them anymore.");
AIAirport.RemoveAirport(this.route_1.GetValue(i));
AIAirport.RemoveAirport(this.route_2.GetValue(i));
/* Free the towns_used entries */
this.towns_used.RemoveValue(this.route_1.GetValue(i));
this.towns_used.RemoveValue(this.route_2.GetValue(i));
/* Remove the route */
this.route_1.RemoveItem(i);
this.route_2.RemoveItem(i);
}
function WrightAI::HandleEvents()
{
while (AIEventController.IsEventWaiting()) {
local e = AIEventController.GetNextEvent();
switch (e.GetEventType()) {
case AIEvent.AI_ET_VEHICLE_CRASHED: {
local ec = AIEventVehicleCrashed.Convert(e);
local v = ec.GetVehicleID();
AILog.Info("We have a crashed vehicle (" + v + "), buying a new one as replacement");
this.BuildAircraft(this.route_1.GetValue(v), this.route_2.GetValue(v));
this.route_1.RemoveItem(v);
this.route_2.RemoveItem(v);
} break;
default:
break;
}
}
}
function WrightAI::Start()
{
if (this.passenger_cargo_id == -1) {
AILog.Error("WrightAI could not find the passenger cargo");
return;
}
/* Give the boy a name */
if (!AICompany.SetName("WrightAI")) {
local i = 2;
while (!AICompany.SetName("WrightAI #" + i)) {
i++;
}
}
this.name = AICompany.GetName(AICompany.COMPANY_SELF);
/* Say hello to the user */
AILog.Info("Welcome to WrightAI. I will be building airports all day long.");
AILog.Info(" - Minimum Town Size: " + GetSetting("min_town_size"));
/* We start with almost no loan, and we take a loan when we want to build something */
AICompany.SetLoanAmount(AICompany.GetLoanInterval());
/* We need our local ticker, as GetTick() will skip ticks */
local ticker = 0;
/* Determine time we may sleep */
local sleepingtime = 100;
if (this.delay_build_airport_route < sleepingtime)
sleepingtime = this.delay_build_airport_route;
/* Let's go on for ever */
while (true) {
/* Once in a while, with enough money, try to build something */
if ((ticker % this.delay_build_airport_route == 0 || ticker == 0) && this.HasMoney(100000)) {
local ret = this.BuildAirportRoute();
if (ret == -1 && ticker != 0) {
/* No more route found, delay even more before trying to find an other */
this.delay_build_airport_route = 10000;
}
else if (ret < 0 && ticker == 0) {
/* The AI failed to build a first airport and is deemed */
AICompany.SetName("Failed " + this.name);
AILog.Error("Failed to build first airport route, now giving up building. Repaying loan. Have a nice day!");
AICompany.SetLoanAmount(0);
return;
}
}
/* Manage the routes once in a while */
if (ticker % 2000 == 0) {
this.ManageAirRoutes();
}
/* Try to get ride of our loan once in a while */
if (ticker % 5000 == 0) {
AICompany.SetLoanAmount(0);
}
/* Check for events once in a while */
if (ticker % 100 == 0) {
this.HandleEvents();
}
/* Make sure we do not create infinite loops */
Sleep(sleepingtime);
ticker += sleepingtime;
}
}
Loading…
Cancel
Save