Import cpp-btree library into 3rdparty section.

Repo: https://github.com/JGRennison/cpp-btree
Commmit: 6cabdb40fcbb7e12e6d499f92b898f6ec80ae0f1

Remove test program, build scripts, etc.
pull/11/head
Jonathan G Rennison 8 years ago
parent 8a2f9311a9
commit b4cfb1adbc

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

@ -0,0 +1,45 @@
This library is a C++ template library and, as such, there is no
library to build and install. Copy the .h files and use them!
See http://code.google.com/p/cpp-btree/wiki/UsageInstructions for
details.
----
To build and run the provided tests, however, you will need to install
CMake, the Google C++ Test framework, and the Google flags package.
Download and install CMake from http://www.cmake.org
Download and build the GoogleTest framework from
http://code.google.com/p/googletest
Download and install gflags from https://code.google.com/p/gflags
Set GTEST_ROOT to the directory where GTEST was built.
Set GFLAGS_ROOT to the directory prefix where GFLAGS is installed.
export GTEST_ROOT=/path/for/gtest-x.y
export GFLAGS_ROOT=/opt
cmake . -Dbuild_tests=ON
For example, to build on a Unix system with the clang++ compiler,
export GTEST_ROOT=$(HOME)/src/googletest
export GFLAGS_ROOT=/opt
cmake . -G "Unix Makefiles" -Dbuild_tests=ON -DCMAKE_CXX_COMPILER=clang++
----
Note that this is a modified version of the original at http://code.google.com/p/cpp-btree
Changes include:
- Changing size_type from ssize_t to size_t
- Adding cbegin, cend, crbegin, crend.
- Adding key_comp
- Adding move constructors/assignment.
- No longer #define NDEBUG if unset, this can clash with other headers, test for BTREE_DEBUG being defined instead
CMakeLists-pthreads-fix.txt is a modified copy of CMakeLists.txt which includes -lpthreads when building the tests/benchmarks.
Using this instead fixes compilation on some platforms.

File diff suppressed because it is too large Load Diff

@ -0,0 +1,357 @@
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef UTIL_BTREE_BTREE_CONTAINER_H__
#define UTIL_BTREE_BTREE_CONTAINER_H__
#include <iosfwd>
#include <utility>
#include "btree.h"
namespace btree {
// A common base class for btree_set, btree_map, btree_multiset and
// btree_multimap.
template <typename Tree>
class btree_container {
typedef btree_container<Tree> self_type;
public:
typedef typename Tree::params_type params_type;
typedef typename Tree::key_type key_type;
typedef typename Tree::value_type value_type;
typedef typename Tree::key_compare key_compare;
typedef typename Tree::allocator_type allocator_type;
typedef typename Tree::pointer pointer;
typedef typename Tree::const_pointer const_pointer;
typedef typename Tree::reference reference;
typedef typename Tree::const_reference const_reference;
typedef typename Tree::size_type size_type;
typedef typename Tree::difference_type difference_type;
typedef typename Tree::iterator iterator;
typedef typename Tree::const_iterator const_iterator;
typedef typename Tree::reverse_iterator reverse_iterator;
typedef typename Tree::const_reverse_iterator const_reverse_iterator;
public:
// Default constructor.
btree_container(const key_compare &comp, const allocator_type &alloc)
: tree_(comp, alloc) {
}
// Copy constructor.
btree_container(const self_type &x)
: tree_(x.tree_) {
}
// Iterator routines.
iterator begin() { return tree_.begin(); }
const_iterator begin() const { return tree_.begin(); }
iterator end() { return tree_.end(); }
const_iterator end() const { return tree_.end(); }
reverse_iterator rbegin() { return tree_.rbegin(); }
const_reverse_iterator rbegin() const { return tree_.rbegin(); }
reverse_iterator rend() { return tree_.rend(); }
const_reverse_iterator rend() const { return tree_.rend(); }
// Const iterator routines.
const_iterator cbegin() const { return begin(); }
const_iterator cend() const { return end(); }
const_reverse_iterator crbegin() const { return rbegin(); }
const_reverse_iterator crend() const { return rend(); }
// Lookup routines.
iterator lower_bound(const key_type &key) {
return tree_.lower_bound(key);
}
const_iterator lower_bound(const key_type &key) const {
return tree_.lower_bound(key);
}
iterator upper_bound(const key_type &key) {
return tree_.upper_bound(key);
}
const_iterator upper_bound(const key_type &key) const {
return tree_.upper_bound(key);
}
std::pair<iterator,iterator> equal_range(const key_type &key) {
return tree_.equal_range(key);
}
std::pair<const_iterator,const_iterator> equal_range(const key_type &key) const {
return tree_.equal_range(key);
}
// Utility routines.
void clear() {
tree_.clear();
}
void swap(self_type &x) {
tree_.swap(x.tree_);
}
void dump(std::ostream &os) const {
tree_.dump(os);
}
void verify() const {
tree_.verify();
}
// Size routines.
size_type size() const { return tree_.size(); }
size_type max_size() const { return tree_.max_size(); }
bool empty() const { return tree_.empty(); }
size_type height() const { return tree_.height(); }
size_type internal_nodes() const { return tree_.internal_nodes(); }
size_type leaf_nodes() const { return tree_.leaf_nodes(); }
size_type nodes() const { return tree_.nodes(); }
size_type bytes_used() const { return tree_.bytes_used(); }
static double average_bytes_per_value() {
return Tree::average_bytes_per_value();
}
double fullness() const { return tree_.fullness(); }
double overhead() const { return tree_.overhead(); }
bool operator==(const self_type& x) const {
if (size() != x.size()) {
return false;
}
for (const_iterator i = begin(), xi = x.begin(); i != end(); ++i, ++xi) {
if (*i != *xi) {
return false;
}
}
return true;
}
bool operator!=(const self_type& other) const {
return !operator==(other);
}
// Functor retrieval
key_compare key_comp() const { return tree_.key_comp(); }
protected:
Tree tree_;
};
template <typename T>
inline std::ostream& operator<<(std::ostream &os, const btree_container<T> &b) {
b.dump(os);
return os;
}
// A common base class for btree_set and safe_btree_set.
template <typename Tree>
class btree_unique_container : public btree_container<Tree> {
typedef btree_unique_container<Tree> self_type;
typedef btree_container<Tree> super_type;
public:
typedef typename Tree::key_type key_type;
typedef typename Tree::value_type value_type;
typedef typename Tree::size_type size_type;
typedef typename Tree::key_compare key_compare;
typedef typename Tree::allocator_type allocator_type;
typedef typename Tree::iterator iterator;
typedef typename Tree::const_iterator const_iterator;
public:
// Default constructor.
btree_unique_container(const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(comp, alloc) {
}
// Copy constructor.
btree_unique_container(const self_type &x)
: super_type(x) {
}
// Range constructor.
template <class InputIterator>
btree_unique_container(InputIterator b, InputIterator e,
const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(comp, alloc) {
insert(b, e);
}
// Lookup routines.
iterator find(const key_type &key) {
return this->tree_.find_unique(key);
}
const_iterator find(const key_type &key) const {
return this->tree_.find_unique(key);
}
size_type count(const key_type &key) const {
return this->tree_.count_unique(key);
}
// Insertion routines.
std::pair<iterator,bool> insert(const value_type &x) {
return this->tree_.insert_unique(x);
}
iterator insert(iterator position, const value_type &x) {
return this->tree_.insert_unique(position, x);
}
template <typename InputIterator>
void insert(InputIterator b, InputIterator e) {
this->tree_.insert_unique(b, e);
}
// Deletion routines.
int erase(const key_type &key) {
return this->tree_.erase_unique(key);
}
// Erase the specified iterator from the btree. The iterator must be valid
// (i.e. not equal to end()). Return an iterator pointing to the node after
// the one that was erased (or end() if none exists).
iterator erase(const iterator &iter) {
return this->tree_.erase(iter);
}
void erase(const iterator &first, const iterator &last) {
this->tree_.erase(first, last);
}
};
// A common base class for btree_map and safe_btree_map.
template <typename Tree>
class btree_map_container : public btree_unique_container<Tree> {
typedef btree_map_container<Tree> self_type;
typedef btree_unique_container<Tree> super_type;
public:
typedef typename Tree::key_type key_type;
typedef typename Tree::data_type data_type;
typedef typename Tree::value_type value_type;
typedef typename Tree::mapped_type mapped_type;
typedef typename Tree::key_compare key_compare;
typedef typename Tree::allocator_type allocator_type;
private:
// A pointer-like object which only generates its value when
// dereferenced. Used by operator[] to avoid constructing an empty data_type
// if the key already exists in the map.
struct generate_value {
generate_value(const key_type &k)
: key(k) {
}
value_type operator*() const {
return std::make_pair(key, data_type());
}
const key_type &key;
};
public:
// Default constructor.
btree_map_container(const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(comp, alloc) {
}
// Copy constructor.
btree_map_container(const self_type &x)
: super_type(x) {
}
// Range constructor.
template <class InputIterator>
btree_map_container(InputIterator b, InputIterator e,
const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(b, e, comp, alloc) {
}
// Insertion routines.
data_type& operator[](const key_type &key) {
return this->tree_.insert_unique(key, generate_value(key)).first->second;
}
};
// A common base class for btree_multiset and btree_multimap.
template <typename Tree>
class btree_multi_container : public btree_container<Tree> {
typedef btree_multi_container<Tree> self_type;
typedef btree_container<Tree> super_type;
public:
typedef typename Tree::key_type key_type;
typedef typename Tree::value_type value_type;
typedef typename Tree::size_type size_type;
typedef typename Tree::key_compare key_compare;
typedef typename Tree::allocator_type allocator_type;
typedef typename Tree::iterator iterator;
typedef typename Tree::const_iterator const_iterator;
public:
// Default constructor.
btree_multi_container(const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(comp, alloc) {
}
// Copy constructor.
btree_multi_container(const self_type &x)
: super_type(x) {
}
// Range constructor.
template <class InputIterator>
btree_multi_container(InputIterator b, InputIterator e,
const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(comp, alloc) {
insert(b, e);
}
// Lookup routines.
iterator find(const key_type &key) {
return this->tree_.find_multi(key);
}
const_iterator find(const key_type &key) const {
return this->tree_.find_multi(key);
}
size_type count(const key_type &key) const {
return this->tree_.count_multi(key);
}
// Insertion routines.
iterator insert(const value_type &x) {
return this->tree_.insert_multi(x);
}
iterator insert(iterator position, const value_type &x) {
return this->tree_.insert_multi(position, x);
}
template <typename InputIterator>
void insert(InputIterator b, InputIterator e) {
this->tree_.insert_multi(b, e);
}
// Deletion routines.
int erase(const key_type &key) {
return this->tree_.erase_multi(key);
}
// Erase the specified iterator from the btree. The iterator must be valid
// (i.e. not equal to end()). Return an iterator pointing to the node after
// the one that was erased (or end() if none exists).
iterator erase(const iterator &iter) {
return this->tree_.erase(iter);
}
void erase(const iterator &first, const iterator &last) {
this->tree_.erase(first, last);
}
};
} // namespace btree
#endif // UTIL_BTREE_BTREE_CONTAINER_H__

@ -0,0 +1,154 @@
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// A btree_map<> implements the STL unique sorted associative container
// interface and the pair associative container interface (a.k.a map<>) using a
// btree. A btree_multimap<> implements the STL multiple sorted associative
// container interface and the pair associtive container interface (a.k.a
// multimap<>) using a btree. See btree.h for details of the btree
// implementation and caveats.
#ifndef UTIL_BTREE_BTREE_MAP_H__
#define UTIL_BTREE_BTREE_MAP_H__
#include <algorithm>
#include <functional>
#include <memory>
#include <string>
#include <utility>
#include "btree.h"
#include "btree_container.h"
namespace btree {
// The btree_map class is needed mainly for its constructors.
template <typename Key, typename Value,
typename Compare = std::less<Key>,
typename Alloc = std::allocator<std::pair<const Key, Value> >,
int TargetNodeSize = 256>
class btree_map : public btree_map_container<
btree<btree_map_params<Key, Value, Compare, Alloc, TargetNodeSize> > > {
typedef btree_map<Key, Value, Compare, Alloc, TargetNodeSize> self_type;
typedef btree_map_params<
Key, Value, Compare, Alloc, TargetNodeSize> params_type;
typedef btree<params_type> btree_type;
typedef btree_map_container<btree_type> super_type;
public:
typedef typename btree_type::key_compare key_compare;
typedef typename btree_type::allocator_type allocator_type;
public:
// Default constructor.
btree_map(const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(comp, alloc) {
}
// Copy constructor.
btree_map(const self_type &x)
: super_type(x) {
}
// Move constructor.
btree_map(self_type &&x)
: super_type() {
this->swap(x);
}
// Copy/move assignment
self_type& operator=(self_type x) {
this->swap(x);
return *this;
}
// Range constructor.
template <class InputIterator>
btree_map(InputIterator b, InputIterator e,
const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(b, e, comp, alloc) {
}
};
template <typename K, typename V, typename C, typename A, int N>
inline void swap(btree_map<K, V, C, A, N> &x,
btree_map<K, V, C, A, N> &y) {
x.swap(y);
}
// The btree_multimap class is needed mainly for its constructors.
template <typename Key, typename Value,
typename Compare = std::less<Key>,
typename Alloc = std::allocator<std::pair<const Key, Value> >,
int TargetNodeSize = 256>
class btree_multimap : public btree_multi_container<
btree<btree_map_params<Key, Value, Compare, Alloc, TargetNodeSize> > > {
typedef btree_multimap<Key, Value, Compare, Alloc, TargetNodeSize> self_type;
typedef btree_map_params<
Key, Value, Compare, Alloc, TargetNodeSize> params_type;
typedef btree<params_type> btree_type;
typedef btree_multi_container<btree_type> super_type;
public:
typedef typename btree_type::key_compare key_compare;
typedef typename btree_type::allocator_type allocator_type;
typedef typename btree_type::data_type data_type;
typedef typename btree_type::mapped_type mapped_type;
public:
// Default constructor.
btree_multimap(const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(comp, alloc) {
}
// Copy constructor.
btree_multimap(const self_type &x)
: super_type(x) {
}
// Move constructor.
btree_multimap(self_type &&x)
: super_type() {
this->swap(x);
}
// Copy/move assignment
self_type& operator=(self_type x) {
this->swap(x);
return *this;
}
// Range constructor.
template <class InputIterator>
btree_multimap(InputIterator b, InputIterator e,
const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(b, e, comp, alloc) {
}
};
template <typename K, typename V, typename C, typename A, int N>
inline void swap(btree_multimap<K, V, C, A, N> &x,
btree_multimap<K, V, C, A, N> &y) {
x.swap(y);
}
} // namespace btree
#endif // UTIL_BTREE_BTREE_MAP_H__

@ -0,0 +1,145 @@
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// A btree_set<> implements the STL unique sorted associative container
// interface (a.k.a set<>) using a btree. A btree_multiset<> implements the STL
// multiple sorted associative container interface (a.k.a multiset<>) using a
// btree. See btree.h for details of the btree implementation and caveats.
#ifndef UTIL_BTREE_BTREE_SET_H__
#define UTIL_BTREE_BTREE_SET_H__
#include <functional>
#include <memory>
#include <string>
#include "btree.h"
#include "btree_container.h"
namespace btree {
// The btree_set class is needed mainly for its constructors.
template <typename Key,
typename Compare = std::less<Key>,
typename Alloc = std::allocator<Key>,
int TargetNodeSize = 256>
class btree_set : public btree_unique_container<
btree<btree_set_params<Key, Compare, Alloc, TargetNodeSize> > > {
typedef btree_set<Key, Compare, Alloc, TargetNodeSize> self_type;
typedef btree_set_params<Key, Compare, Alloc, TargetNodeSize> params_type;
typedef btree<params_type> btree_type;
typedef btree_unique_container<btree_type> super_type;
public:
typedef typename btree_type::key_compare key_compare;
typedef typename btree_type::allocator_type allocator_type;
public:
// Default constructor.
btree_set(const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(comp, alloc) {
}
// Copy constructor.
btree_set(const self_type &x)
: super_type(x) {
}
// Move constructor.
btree_set(self_type &&x)
: super_type() {
this->swap(x);
}
// Copy/move assignment
self_type& operator=(self_type x) {
this->swap(x);
return *this;
}
// Range constructor.
template <class InputIterator>
btree_set(InputIterator b, InputIterator e,
const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(b, e, comp, alloc) {
}
};
template <typename K, typename C, typename A, int N>
inline void swap(btree_set<K, C, A, N> &x, btree_set<K, C, A, N> &y) {
x.swap(y);
}
// The btree_multiset class is needed mainly for its constructors.
template <typename Key,
typename Compare = std::less<Key>,
typename Alloc = std::allocator<Key>,
int TargetNodeSize = 256>
class btree_multiset : public btree_multi_container<
btree<btree_set_params<Key, Compare, Alloc, TargetNodeSize> > > {
typedef btree_multiset<Key, Compare, Alloc, TargetNodeSize> self_type;
typedef btree_set_params<Key, Compare, Alloc, TargetNodeSize> params_type;
typedef btree<params_type> btree_type;
typedef btree_multi_container<btree_type> super_type;
public:
typedef typename btree_type::key_compare key_compare;
typedef typename btree_type::allocator_type allocator_type;
public:
// Default constructor.
btree_multiset(const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(comp, alloc) {
}
// Copy constructor.
btree_multiset(const self_type &x)
: super_type(x) {
}
// Move constructor.
btree_multiset(self_type &&x)
: super_type() {
this->swap(x);
}
// Copy/move assignment
self_type& operator=(self_type x) {
this->swap(x);
return *this;
}
// Range constructor.
template <class InputIterator>
btree_multiset(InputIterator b, InputIterator e,
const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(b, e, comp, alloc) {
}
};
template <typename K, typename C, typename A, int N>
inline void swap(btree_multiset<K, C, A, N> &x,
btree_multiset<K, C, A, N> &y) {
x.swap(y);
}
} // namespace btree
#endif // UTIL_BTREE_BTREE_SET_H__

@ -0,0 +1,395 @@
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// A safe_btree<> wraps around a btree<> and removes the caveat that insertion
// and deletion invalidate iterators. A safe_btree<> maintains a generation
// number that is incremented on every mutation. A safe_btree<>::iterator keeps
// a pointer to the safe_btree<> it came from, the generation of the tree when
// it was last validated and the key the underlying btree<>::iterator points
// to. If an iterator is accessed and its generation differs from the tree
// generation it is revalidated.
//
// References and pointers returned by safe_btree iterators are not safe.
//
// See the incorrect usage examples mentioned in safe_btree_set.h and
// safe_btree_map.h.
#ifndef UTIL_BTREE_SAFE_BTREE_H__
#define UTIL_BTREE_SAFE_BTREE_H__
#include <stddef.h>
#include <iosfwd>
#include <utility>
#include "btree.h"
namespace btree {
template <typename Tree, typename Iterator>
class safe_btree_iterator {
public:
typedef typename Iterator::key_type key_type;
typedef typename Iterator::value_type value_type;
typedef typename Iterator::size_type size_type;
typedef typename Iterator::difference_type difference_type;
typedef typename Iterator::pointer pointer;
typedef typename Iterator::reference reference;
typedef typename Iterator::const_pointer const_pointer;
typedef typename Iterator::const_reference const_reference;
typedef typename Iterator::iterator_category iterator_category;
typedef typename Tree::iterator iterator;
typedef typename Tree::const_iterator const_iterator;
typedef safe_btree_iterator<Tree, Iterator> self_type;
void update() const {
if (iter_ != tree_->internal_btree()->end()) {
// A positive generation indicates a valid key.
generation_ = tree_->generation();
key_ = iter_.key();
} else {
// Use a negative generation to indicate iter_ points to end().
generation_ = -tree_->generation();
}
}
public:
safe_btree_iterator()
: generation_(0),
key_(),
iter_(),
tree_(NULL) {
}
safe_btree_iterator(const iterator &x)
: generation_(x.generation()),
key_(x.key()),
iter_(x.iter()),
tree_(x.tree()) {
}
safe_btree_iterator(Tree *tree, const Iterator &iter)
: generation_(),
key_(),
iter_(iter),
tree_(tree) {
update();
}
Tree* tree() const { return tree_; }
int64_t generation() const { return generation_; }
Iterator* mutable_iter() const {
if (generation_ != tree_->generation()) {
if (generation_ > 0) {
// This does the wrong thing for a multi{set,map}. If my iter was
// pointing to the 2nd of 2 values with the same key, then this will
// reset it to point to the first. This is why we don't provide a
// safe_btree_multi{set,map}.
iter_ = tree_->internal_btree()->lower_bound(key_);
update();
} else if (-generation_ != tree_->generation()) {
iter_ = tree_->internal_btree()->end();
generation_ = -tree_->generation();
}
}
return &iter_;
}
const Iterator& iter() const {
return *mutable_iter();
}
// Equality/inequality operators.
bool operator==(const const_iterator &x) const {
return iter() == x.iter();
}
bool operator!=(const const_iterator &x) const {
return iter() != x.iter();
}
// Accessors for the key/value the iterator is pointing at.
const key_type& key() const {
return key_;
}
// This reference value is potentially invalidated by any non-const
// method on the tree; it is NOT safe.
reference operator*() const {
assert(generation_ > 0);
return iter().operator*();
}
// This pointer value is potentially invalidated by any non-const
// method on the tree; it is NOT safe.
pointer operator->() const {
assert(generation_ > 0);
return iter().operator->();
}
// Increment/decrement operators.
self_type& operator++() {
++(*mutable_iter());
update();
return *this;
}
self_type& operator--() {
--(*mutable_iter());
update();
return *this;
}
self_type operator++(int) {
self_type tmp = *this;
++*this;
return tmp;
}
self_type operator--(int) {
self_type tmp = *this;
--*this;
return tmp;
}
private:
// The generation of the tree when "iter" was updated.
mutable int64_t generation_;
// The key the iterator points to.
mutable key_type key_;
// The underlying iterator.
mutable Iterator iter_;
// The tree the iterator is associated with.
Tree *tree_;
};
template <typename Params>
class safe_btree {
typedef safe_btree<Params> self_type;
typedef btree<Params> btree_type;
typedef typename btree_type::iterator tree_iterator;
typedef typename btree_type::const_iterator tree_const_iterator;
public:
typedef typename btree_type::params_type params_type;
typedef typename btree_type::key_type key_type;
typedef typename btree_type::data_type data_type;
typedef typename btree_type::mapped_type mapped_type;
typedef typename btree_type::value_type value_type;
typedef typename btree_type::key_compare key_compare;
typedef typename btree_type::allocator_type allocator_type;
typedef typename btree_type::pointer pointer;
typedef typename btree_type::const_pointer const_pointer;
typedef typename btree_type::reference reference;
typedef typename btree_type::const_reference const_reference;
typedef typename btree_type::size_type size_type;
typedef typename btree_type::difference_type difference_type;
typedef safe_btree_iterator<self_type, tree_iterator> iterator;
typedef safe_btree_iterator<
const self_type, tree_const_iterator> const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
public:
// Default constructor.
safe_btree(const key_compare &comp, const allocator_type &alloc)
: tree_(comp, alloc),
generation_(1) {
}
// Copy constructor.
safe_btree(const self_type &x)
: tree_(x.tree_),
generation_(1) {
}
iterator begin() {
return iterator(this, tree_.begin());
}
const_iterator begin() const {
return const_iterator(this, tree_.begin());
}
iterator end() {
return iterator(this, tree_.end());
}
const_iterator end() const {
return const_iterator(this, tree_.end());
}
reverse_iterator rbegin() {
return reverse_iterator(end());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() {
return reverse_iterator(begin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Lookup routines.
iterator lower_bound(const key_type &key) {
return iterator(this, tree_.lower_bound(key));
}
const_iterator lower_bound(const key_type &key) const {
return const_iterator(this, tree_.lower_bound(key));
}
iterator upper_bound(const key_type &key) {
return iterator(this, tree_.upper_bound(key));
}
const_iterator upper_bound(const key_type &key) const {
return const_iterator(this, tree_.upper_bound(key));
}
std::pair<iterator, iterator> equal_range(const key_type &key) {
std::pair<tree_iterator, tree_iterator> p = tree_.equal_range(key);
return std::make_pair(iterator(this, p.first),
iterator(this, p.second));
}
std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const {
std::pair<tree_const_iterator, tree_const_iterator> p = tree_.equal_range(key);
return std::make_pair(const_iterator(this, p.first),
const_iterator(this, p.second));
}
iterator find_unique(const key_type &key) {
return iterator(this, tree_.find_unique(key));
}
const_iterator find_unique(const key_type &key) const {
return const_iterator(this, tree_.find_unique(key));
}
iterator find_multi(const key_type &key) {
return iterator(this, tree_.find_multi(key));
}
const_iterator find_multi(const key_type &key) const {
return const_iterator(this, tree_.find_multi(key));
}
size_type count_unique(const key_type &key) const {
return tree_.count_unique(key);
}
size_type count_multi(const key_type &key) const {
return tree_.count_multi(key);
}
// Insertion routines.
template <typename ValuePointer>
std::pair<iterator, bool> insert_unique(const key_type &key, ValuePointer value) {
std::pair<tree_iterator, bool> p = tree_.insert_unique(key, value);
generation_ += p.second;
return std::make_pair(iterator(this, p.first), p.second);
}
std::pair<iterator, bool> insert_unique(const value_type &v) {
std::pair<tree_iterator, bool> p = tree_.insert_unique(v);
generation_ += p.second;
return std::make_pair(iterator(this, p.first), p.second);
}
iterator insert_unique(iterator position, const value_type &v) {
tree_iterator tree_pos = position.iter();
++generation_;
return iterator(this, tree_.insert_unique(tree_pos, v));
}
template <typename InputIterator>
void insert_unique(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert_unique(*b);
}
}
iterator insert_multi(const value_type &v) {
++generation_;
return iterator(this, tree_.insert_multi(v));
}
iterator insert_multi(iterator position, const value_type &v) {
tree_iterator tree_pos = position.iter();
++generation_;
return iterator(this, tree_.insert_multi(tree_pos, v));
}
template <typename InputIterator>
void insert_multi(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert_multi(*b);
}
}
self_type& operator=(const self_type &x) {
if (&x == this) {
// Don't copy onto ourselves.
return *this;
}
++generation_;
tree_ = x.tree_;
return *this;
}
// Deletion routines.
void erase(const iterator &begin, const iterator &end) {
tree_.erase(begin.iter(), end.iter());
++generation_;
}
// Erase the specified iterator from the btree. The iterator must be valid
// (i.e. not equal to end()). Return an iterator pointing to the node after
// the one that was erased (or end() if none exists).
iterator erase(iterator iter) {
tree_iterator res = tree_.erase(iter.iter());
++generation_;
return iterator(this, res);
}
int erase_unique(const key_type &key) {
int res = tree_.erase_unique(key);
generation_ += res;
return res;
}
int erase_multi(const key_type &key) {
int res = tree_.erase_multi(key);
generation_ += res;
return res;
}
// Access to the underlying btree.
btree_type* internal_btree() { return &tree_; }
const btree_type* internal_btree() const { return &tree_; }
// Utility routines.
void clear() {
++generation_;
tree_.clear();
}
void swap(self_type &x) {
++generation_;
++x.generation_;
tree_.swap(x.tree_);
}
void dump(std::ostream &os) const {
tree_.dump(os);
}
void verify() const {
tree_.verify();
}
int64_t generation() const {
return generation_;
}
key_compare key_comp() const { return tree_.key_comp(); }
// Size routines.
size_type size() const { return tree_.size(); }
size_type max_size() const { return tree_.max_size(); }
bool empty() const { return tree_.empty(); }
size_type height() const { return tree_.height(); }
size_type internal_nodes() const { return tree_.internal_nodes(); }
size_type leaf_nodes() const { return tree_.leaf_nodes(); }
size_type nodes() const { return tree_.nodes(); }
size_type bytes_used() const { return tree_.bytes_used(); }
static double average_bytes_per_value() {
return btree_type::average_bytes_per_value();
}
double fullness() const { return tree_.fullness(); }
double overhead() const { return tree_.overhead(); }
private:
btree_type tree_;
int64_t generation_;
};
} // namespace btree
#endif // UTIL_BTREE_SAFE_BTREE_H__

@ -0,0 +1,101 @@
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// The safe_btree_map<> is like btree_map<> except that it removes the caveat
// about insertion and deletion invalidating existing iterators at a small cost
// in making iterators larger and slower.
//
// Revalidation occurs whenever an iterator is accessed. References
// and pointers returned by safe_btree_map<> iterators are not stable,
// they are potentially invalidated by any non-const method on the map.
//
// BEGIN INCORRECT EXAMPLE
// for (auto i = safe_map->begin(); i != safe_map->end(); ++i) {
// const T *value = &i->second; // DO NOT DO THIS
// [code that modifies safe_map and uses value];
// }
// END INCORRECT EXAMPLE
#ifndef UTIL_BTREE_SAFE_BTREE_MAP_H__
#define UTIL_BTREE_SAFE_BTREE_MAP_H__
#include <functional>
#include <memory>
#include <utility>
#include "btree_container.h"
#include "btree_map.h"
#include "safe_btree.h"
namespace btree {
// The safe_btree_map class is needed mainly for its constructors.
template <typename Key, typename Value,
typename Compare = std::less<Key>,
typename Alloc = std::allocator<std::pair<const Key, Value> >,
int TargetNodeSize = 256>
class safe_btree_map : public btree_map_container<
safe_btree<btree_map_params<Key, Value, Compare, Alloc, TargetNodeSize> > > {
typedef safe_btree_map<Key, Value, Compare, Alloc, TargetNodeSize> self_type;
typedef btree_map_params<
Key, Value, Compare, Alloc, TargetNodeSize> params_type;
typedef safe_btree<params_type> btree_type;
typedef btree_map_container<btree_type> super_type;
public:
typedef typename btree_type::key_compare key_compare;
typedef typename btree_type::allocator_type allocator_type;
public:
// Default constructor.
safe_btree_map(const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(comp, alloc) {
}
// Copy constructor.
safe_btree_map(const self_type &x)
: super_type(x) {
}
// Move constructor.
safe_btree_map(self_type &&x)
: super_type() {
this->swap(x);
}
// Copy/move assignment
self_type& operator=(self_type x) {
this->swap(x);
return *this;
}
// Range constructor.
template <class InputIterator>
safe_btree_map(InputIterator b, InputIterator e,
const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(b, e, comp, alloc) {
}
};
template <typename K, typename V, typename C, typename A, int N>
inline void swap(safe_btree_map<K, V, C, A, N> &x,
safe_btree_map<K, V, C, A, N> &y) {
x.swap(y);
}
} // namespace btree
#endif // UTIL_BTREE_SAFE_BTREE_MAP_H__

@ -0,0 +1,100 @@
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// The safe_btree_set<> is like btree_set<> except that it removes the caveat
// about insertion and deletion invalidating existing iterators at a small cost
// in making iterators larger and slower.
//
// Revalidation occurs whenever an iterator is accessed. References
// and pointers returned by safe_btree_map<> iterators are not stable,
// they are potentially invalidated by any non-const method on the set.
//
// BEGIN INCORRECT EXAMPLE
// for (auto i = safe_set->begin(); i != safe_set->end(); ++i) {
// const T &value = *i; // DO NOT DO THIS
// [code that modifies safe_set and uses value];
// }
// END INCORRECT EXAMPLE
#ifndef UTIL_BTREE_SAFE_BTREE_SET_H__
#define UTIL_BTREE_SAFE_BTREE_SET_H__
#include <functional>
#include <memory>
#include "btree_container.h"
#include "btree_set.h"
#include "safe_btree.h"
namespace btree {
// The safe_btree_set class is needed mainly for its constructors.
template <typename Key,
typename Compare = std::less<Key>,
typename Alloc = std::allocator<Key>,
int TargetNodeSize = 256>
class safe_btree_set : public btree_unique_container<
safe_btree<btree_set_params<Key, Compare, Alloc, TargetNodeSize> > > {
typedef safe_btree_set<Key, Compare, Alloc, TargetNodeSize> self_type;
typedef btree_set_params<Key, Compare, Alloc, TargetNodeSize> params_type;
typedef safe_btree<params_type> btree_type;
typedef btree_unique_container<btree_type> super_type;
public:
typedef typename btree_type::key_compare key_compare;
typedef typename btree_type::allocator_type allocator_type;
public:
// Default constructor.
safe_btree_set(const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(comp, alloc) {
}
// Copy constructor.
safe_btree_set(const self_type &x)
: super_type(x) {
}
// Move constructor.
safe_btree_set(self_type &&x)
: super_type() {
this->swap(x);
}
// Copy/move assignment
self_type& operator=(self_type x) {
this->swap(x);
return *this;
}
// Range constructor.
template <class InputIterator>
safe_btree_set(InputIterator b, InputIterator e,
const key_compare &comp = key_compare(),
const allocator_type &alloc = allocator_type())
: super_type(b, e, comp, alloc) {
}
};
template <typename K, typename C, typename A, int N>
inline void swap(safe_btree_set<K, C, A, N> &x,
safe_btree_set<K, C, A, N> &y) {
x.swap(y);
}
} // namespace btree
#endif // UTIL_BTREE_SAFE_BTREE_SET_H__
Loading…
Cancel
Save