(svn r20680) -Codechange: Remove the now useless union and struct wrappers around the binary heap data.

This commit is contained in:
alberth 2010-08-29 13:34:08 +00:00
parent 17c4783571
commit 86723c54cb
2 changed files with 45 additions and 49 deletions

View File

@ -25,8 +25,8 @@
/* To make our life easy, we make the next define /* To make our life easy, we make the next define
* Because Binary Heaps works with array from 1 to n, * Because Binary Heaps works with array from 1 to n,
* and C with array from 0 to n-1, and we don't like typing * and C with array from 0 to n-1, and we don't like typing
* q->data.binaryheap.elements[i - 1] every time, we use this define. */ * q->elements[i - 1] every time, we use this define. */
#define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i) - 1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i) - 1) & BINARY_HEAP_BLOCKSIZE_MASK] #define BIN_HEAP_ARR(i) q->elements[((i) - 1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i) - 1) & BINARY_HEAP_BLOCKSIZE_MASK]
static void BinaryHeap_Clear(Queue *q, bool free_values) static void BinaryHeap_Clear(Queue *q, bool free_values)
{ {
@ -34,8 +34,8 @@ static void BinaryHeap_Clear(Queue *q, bool free_values)
uint i; uint i;
uint j; uint j;
for (i = 0; i < q->data.binaryheap.blocks; i++) { for (i = 0; i < q->blocks; i++) {
if (q->data.binaryheap.elements[i] == NULL) { if (q->elements[i] == NULL) {
/* No more allocated blocks */ /* No more allocated blocks */
break; break;
} }
@ -43,21 +43,21 @@ static void BinaryHeap_Clear(Queue *q, bool free_values)
if (free_values) { if (free_values) {
for (j = 0; j < (1 << BINARY_HEAP_BLOCKSIZE_BITS); j++) { for (j = 0; j < (1 << BINARY_HEAP_BLOCKSIZE_BITS); j++) {
/* For every element in the block */ /* For every element in the block */
if ((q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i && if ((q->size >> BINARY_HEAP_BLOCKSIZE_BITS) == i &&
(q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j) { (q->size & BINARY_HEAP_BLOCKSIZE_MASK) == j) {
break; // We're past the last element break; // We're past the last element
} }
free(q->data.binaryheap.elements[i][j].item); free(q->elements[i][j].item);
} }
} }
if (i != 0) { if (i != 0) {
/* Leave the first block of memory alone */ /* Leave the first block of memory alone */
free(q->data.binaryheap.elements[i]); free(q->elements[i]);
q->data.binaryheap.elements[i] = NULL; q->elements[i] = NULL;
} }
} }
q->data.binaryheap.size = 0; q->size = 0;
q->data.binaryheap.blocks = 1; q->blocks = 1;
} }
static void BinaryHeap_Free(Queue *q, bool free_values) static void BinaryHeap_Free(Queue *q, bool free_values)
@ -65,36 +65,36 @@ static void BinaryHeap_Free(Queue *q, bool free_values)
uint i; uint i;
q->clear(q, free_values); q->clear(q, free_values);
for (i = 0; i < q->data.binaryheap.blocks; i++) { for (i = 0; i < q->blocks; i++) {
if (q->data.binaryheap.elements[i] == NULL) break; if (q->elements[i] == NULL) break;
free(q->data.binaryheap.elements[i]); free(q->elements[i]);
} }
free(q->data.binaryheap.elements); free(q->elements);
} }
static bool BinaryHeap_Push(Queue *q, void *item, int priority) static bool BinaryHeap_Push(Queue *q, void *item, int priority)
{ {
#ifdef QUEUE_DEBUG #ifdef QUEUE_DEBUG
printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size); printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->size);
#endif #endif
if (q->data.binaryheap.size == q->data.binaryheap.max_size) return false; if (q->size == q->max_size) return false;
assert(q->data.binaryheap.size < q->data.binaryheap.max_size); assert(q->size < q->max_size);
if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) { if (q->elements[q->size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
/* The currently allocated blocks are full, allocate a new one */ /* The currently allocated blocks are full, allocate a new one */
assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0); assert((q->size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE); q->elements[q->size >> BINARY_HEAP_BLOCKSIZE_BITS] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE);
q->data.binaryheap.blocks++; q->blocks++;
#ifdef QUEUE_DEBUG #ifdef QUEUE_DEBUG
printf("[BinaryHeap] Increasing size of elements to %d nodes\n", q->data.binaryheap.blocks * BINARY_HEAP_BLOCKSIZE); printf("[BinaryHeap] Increasing size of elements to %d nodes\n", q->blocks * BINARY_HEAP_BLOCKSIZE);
#endif #endif
} }
/* Add the item at the end of the array */ /* Add the item at the end of the array */
BIN_HEAP_ARR(q->data.binaryheap.size + 1).priority = priority; BIN_HEAP_ARR(q->size + 1).priority = priority;
BIN_HEAP_ARR(q->data.binaryheap.size + 1).item = item; BIN_HEAP_ARR(q->size + 1).item = item;
q->data.binaryheap.size++; q->size++;
/* Now we are going to check where it belongs. As long as the parent is /* Now we are going to check where it belongs. As long as the parent is
* bigger, we switch with the parent */ * bigger, we switch with the parent */
@ -103,7 +103,7 @@ static bool BinaryHeap_Push(Queue *q, void *item, int priority)
int i; int i;
int j; int j;
i = q->data.binaryheap.size; i = q->size;
while (i > 1) { while (i > 1) {
/* Get the parent of this object (divide by 2) */ /* Get the parent of this object (divide by 2) */
j = i / 2; j = i / 2;
@ -128,20 +128,20 @@ static bool BinaryHeap_Delete(Queue *q, void *item, int priority)
uint i = 0; uint i = 0;
#ifdef QUEUE_DEBUG #ifdef QUEUE_DEBUG
printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size); printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->size);
#endif #endif
/* First, we try to find the item.. */ /* First, we try to find the item.. */
do { do {
if (BIN_HEAP_ARR(i + 1).item == item) break; if (BIN_HEAP_ARR(i + 1).item == item) break;
i++; i++;
} while (i < q->data.binaryheap.size); } while (i < q->size);
/* We did not find the item, so we return false */ /* We did not find the item, so we return false */
if (i == q->data.binaryheap.size) return false; if (i == q->size) return false;
/* Now we put the last item over the current item while decreasing the size of the elements */ /* Now we put the last item over the current item while decreasing the size of the elements */
q->data.binaryheap.size--; q->size--;
BIN_HEAP_ARR(i + 1) = BIN_HEAP_ARR(q->data.binaryheap.size + 1); BIN_HEAP_ARR(i + 1) = BIN_HEAP_ARR(q->size + 1);
/* Now the only thing we have to do, is resort it.. /* Now the only thing we have to do, is resort it..
* On place i there is the item to be sorted.. let's start there */ * On place i there is the item to be sorted.. let's start there */
@ -156,14 +156,14 @@ static bool BinaryHeap_Delete(Queue *q, void *item, int priority)
for (;;) { for (;;) {
j = i; j = i;
/* Check if we have 2 childs */ /* Check if we have 2 childs */
if (2 * j + 1 <= q->data.binaryheap.size) { if (2 * j + 1 <= q->size) {
/* Is this child smaller than the parent? */ /* Is this child smaller than the parent? */
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j; if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j;
/* Yes, we _need_ to use i here, not j, because we want to have the smallest child /* Yes, we _need_ to use i here, not j, because we want to have the smallest child
* This way we get that straight away! */ * This way we get that straight away! */
if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2 * j + 1).priority) i = 2 * j + 1; if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2 * j + 1).priority) i = 2 * j + 1;
/* Do we have one child? */ /* Do we have one child? */
} else if (2 * j <= q->data.binaryheap.size) { } else if (2 * j <= q->size) {
if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j; if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j;
} }
@ -187,10 +187,10 @@ static void *BinaryHeap_Pop(Queue *q)
void *result; void *result;
#ifdef QUEUE_DEBUG #ifdef QUEUE_DEBUG
printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size); printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->size);
#endif #endif
if (q->data.binaryheap.size == 0) return NULL; if (q->size == 0) return NULL;
/* The best item is always on top, so give that as result */ /* The best item is always on top, so give that as result */
result = BIN_HEAP_ARR(1).item; result = BIN_HEAP_ARR(1).item;
@ -208,13 +208,13 @@ void init_BinaryHeap(Queue *q, uint max_size)
q->del = BinaryHeap_Delete; q->del = BinaryHeap_Delete;
q->clear = BinaryHeap_Clear; q->clear = BinaryHeap_Clear;
q->free = BinaryHeap_Free; q->free = BinaryHeap_Free;
q->data.binaryheap.max_size = max_size; q->max_size = max_size;
q->data.binaryheap.size = 0; q->size = 0;
/* We malloc memory in block of BINARY_HEAP_BLOCKSIZE /* We malloc memory in block of BINARY_HEAP_BLOCKSIZE
* It autosizes when it runs out of memory */ * It autosizes when it runs out of memory */
q->data.binaryheap.elements = CallocT<BinaryHeapNode*>((max_size - 1) / BINARY_HEAP_BLOCKSIZE + 1); q->elements = CallocT<BinaryHeapNode*>((max_size - 1) / BINARY_HEAP_BLOCKSIZE + 1);
q->data.binaryheap.elements[0] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE); q->elements[0] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE);
q->data.binaryheap.blocks = 1; q->blocks = 1;
#ifdef QUEUE_DEBUG #ifdef QUEUE_DEBUG
printf("[BinaryHeap] Initial size of elements is %d nodes\n", BINARY_HEAP_BLOCKSIZE); printf("[BinaryHeap] Initial size of elements is %d nodes\n", BINARY_HEAP_BLOCKSIZE);
#endif #endif

View File

@ -60,14 +60,10 @@ struct Queue {
*/ */
Queue_FreeProc *free; Queue_FreeProc *free;
union { uint max_size;
struct { uint size;
uint max_size; uint blocks; ///< The amount of blocks for which space is reserved in elements
uint size; BinaryHeapNode **elements;
uint blocks; ///< The amount of blocks for which space is reserved in elements
BinaryHeapNode **elements;
} binaryheap;
} data;
}; };