(svn r19243) -Codechange: rename var's to fit better to common style (skidd13)

This commit is contained in:
yexo 2010-02-25 11:49:17 +00:00
parent 4b6c04585e
commit 55e5a38d15

View File

@ -33,23 +33,23 @@
template <class T> template <class T>
class CBinaryHeapT { class CBinaryHeapT {
private: private:
uint m_size; ///< Number of items in the heap uint items; ///< Number of items in the heap
uint m_max_size; ///< Maximum number of items the heap can hold uint capacity; ///< Maximum number of items the heap can hold
T **m_items; ///< The heap item pointers T **data; ///< The heap item pointers
public: public:
explicit CBinaryHeapT(uint max_items) explicit CBinaryHeapT(uint max_items)
: m_size(0) : items(0)
, m_max_size(max_items) , capacity(max_items)
{ {
m_items = MallocT<T*>(max_items + 1); data = MallocT<T*>(max_items + 1);
} }
~CBinaryHeapT() ~CBinaryHeapT()
{ {
Clear(); Clear();
free(m_items); free(data);
m_items = NULL; data = NULL;
} }
protected: protected:
@ -61,17 +61,17 @@ protected:
uint child = gap * 2; // first child is at [parent * 2] uint child = gap * 2; // first child is at [parent * 2]
/* while children are valid */ /* while children are valid */
while (child <= m_size) { while (child <= items) {
/* choose the smaller child */ /* choose the smaller child */
if (child < m_size && *m_items[child + 1] < *m_items[child]) if (child < items && *data[child + 1] < *data[child])
child++; child++;
/* is it smaller than our parent? */ /* is it smaller than our parent? */
if (!(*m_items[child] < *item)) { if (!(*data[child] < *item)) {
/* the smaller child is still bigger or same as parent => we are done */ /* the smaller child is still bigger or same as parent => we are done */
break; break;
} }
/* if smaller child is smaller than parent, it will become new parent */ /* if smaller child is smaller than parent, it will become new parent */
m_items[gap] = m_items[child]; data[gap] = data[child];
gap = child; gap = child;
/* where do we have our new children? */ /* where do we have our new children? */
child = gap * 2; child = gap * 2;
@ -89,13 +89,11 @@ protected:
while (gap > 1) { while (gap > 1) {
/* compare [gap] with its parent */ /* compare [gap] with its parent */
parent = gap / 2; parent = gap / 2;
if (!(*item <*data[parent])) {
if (!(*item <*m_items[parent])) {
/* we don't need to continue upstairs */ /* we don't need to continue upstairs */
break; break;
} }
data[gap] = data[parent];
m_items[gap] = m_items[parent];
gap = parent; gap = parent;
} }
return gap; return gap;
@ -104,27 +102,27 @@ protected:
public: public:
/** Return the number of items stored in the priority queue. /** Return the number of items stored in the priority queue.
* @return number of items in the queue */ * @return number of items in the queue */
FORCEINLINE uint Size() const {return m_size;}; FORCEINLINE uint Size() const { return items; }
/** Test if the priority queue is empty. /** Test if the priority queue is empty.
* @return true if empty */ * @return true if empty */
FORCEINLINE bool IsEmpty() const {return (m_size == 0);}; FORCEINLINE bool IsEmpty() const { return items == 0; }
/** Test if the priority queue is full. /** Test if the priority queue is full.
* @return true if full. */ * @return true if full. */
FORCEINLINE bool IsFull() const {return (m_size >= m_max_size);}; FORCEINLINE bool IsFull() const { return items >= capacity; }
/** Find the smallest item in the priority queue. /** Find the smallest item in the priority queue.
* Return the smallest item, or throw assert if empty. */ * Return the smallest item, or throw assert if empty. */
FORCEINLINE T *Begin() FORCEINLINE T *Begin()
{ {
assert(!IsEmpty()); assert(!IsEmpty());
return m_items[1]; return data[1];
} }
FORCEINLINE T *End() FORCEINLINE T *End()
{ {
return m_items[1 + m_size]; return data[1 + items];
} }
/** Insert new item into the priority queue, maintaining heap order. /** Insert new item into the priority queue, maintaining heap order.
@ -132,13 +130,13 @@ public:
FORCEINLINE void Push(T *new_item) FORCEINLINE void Push(T *new_item)
{ {
if (IsFull()) { if (IsFull()) {
m_max_size *= 2; capacity *= 2;
m_items = ReallocT<T*>(m_items, m_max_size + 1); data = ReallocT<T*>(data, capacity + 1);
} }
/* make place for new item */ /* make place for new item */
uint gap = HeapifyUp(++m_size, new_item); uint gap = HeapifyUp(++items, new_item);
m_items[gap] = new_item; data[gap] = new_item;
CheckConsistency(); CheckConsistency();
} }
@ -149,34 +147,34 @@ public:
T *first = Begin(); T *first = Begin();
m_size--; items--;
/* at index 1 we have a gap now */ /* at index 1 we have a gap now */
T *last = End(); T *last = End();
uint gap = HeapifyDown(1, last); uint gap = HeapifyDown(1, last);
/* move last item to the proper place */ /* move last item to the proper place */
if (!IsEmpty()) m_items[gap] = last; if (!IsEmpty()) data[gap] = last;
CheckConsistency(); CheckConsistency();
return first; return first;
} }
/** Remove item specified by index */ /** Remove item specified by index */
FORCEINLINE void RemoveByIdx(uint idx) FORCEINLINE void RemoveByIdx(uint index)
{ {
if (idx < m_size) { if (index < items) {
assert(idx != 0); assert(index != 0);
m_size--; items--;
/* at position idx we have a gap now */ /* at position index we have a gap now */
T *last = End(); T *last = End();
/* Fix binary tree up and downwards */ /* Fix binary tree up and downwards */
uint gap = HeapifyUp(idx, last); uint gap = HeapifyUp(index, last);
gap = HeapifyDown(gap, last); gap = HeapifyDown(gap, last);
/* move last item to the proper place */ /* move last item to the proper place */
if (!IsEmpty()) m_items[gap] = last; if (!IsEmpty()) data[gap] = last;
} else { } else {
assert(idx == m_size); assert(index == items);
m_size--; items--;
} }
CheckConsistency(); CheckConsistency();
} }
@ -185,9 +183,9 @@ public:
FORCEINLINE uint FindLinear(const T& item) const FORCEINLINE uint FindLinear(const T& item) const
{ {
if (IsEmpty()) return 0; if (IsEmpty()) return 0;
for (T **ppI = m_items + 1, **ppLast = ppI + m_size; ppI <= ppLast; ppI++) { for (T **ppI = data + 1, **ppLast = ppI + items; ppI <= ppLast; ppI++) {
if (*ppI == &item) { if (*ppI == &item) {
return ppI - m_items; return ppI - data;
} }
} }
return 0; return 0;
@ -195,16 +193,16 @@ public:
/** Make the priority queue empty. /** Make the priority queue empty.
* All remaining items will remain untouched. */ * All remaining items will remain untouched. */
FORCEINLINE void Clear() {m_size = 0;} FORCEINLINE void Clear() { items = 0; }
/** verifies the heap consistency (added during first YAPF debug phase) */ /** verifies the heap consistency (added during first YAPF debug phase) */
FORCEINLINE void CheckConsistency() FORCEINLINE void CheckConsistency()
{ {
/* enable it if you suspect binary heap doesn't work well */ /* enable it if you suspect binary heap doesn't work well */
#if 0 #if 0
for (uint child = 2; child <= m_size; child++) { for (uint child = 2; child <= items; child++) {
uint parent = child / 2; uint parent = child / 2;
assert(!(*m_items[child] < *m_items[parent])); assert(!(*data[child] < *data[parent]));
} }
#endif #endif
} }