(svn r11527) -Codechange: Split the bitmath functions of to their own files

This commit is contained in:
skidd13 2007-11-26 17:50:22 +00:00
parent f56579e0d9
commit 057ae477b5
10 changed files with 348 additions and 299 deletions

View File

@ -197,6 +197,9 @@
<File <File
RelativePath=".\..\src\console_cmds.cpp"> RelativePath=".\..\src\console_cmds.cpp">
</File> </File>
<File
RelativePath=".\..\src\core\bitmath_func.cpp">
</File>
<File <File
RelativePath=".\..\src\core\random_func.cpp"> RelativePath=".\..\src\core\random_func.cpp">
</File> </File>
@ -426,6 +429,9 @@
<File <File
RelativePath=".\..\src\console.h"> RelativePath=".\..\src\console.h">
</File> </File>
<File
RelativePath=".\..\src\core\bitmath_func.hpp">
</File>
<File <File
RelativePath=".\..\src\core\math_func.hpp"> RelativePath=".\..\src\core\math_func.hpp">
</File> </File>

View File

@ -495,6 +495,10 @@
RelativePath=".\..\src\console_cmds.cpp" RelativePath=".\..\src\console_cmds.cpp"
> >
</File> </File>
<File
RelativePath=".\..\src\core\bitmath_func.cpp"
>
</File>
<File <File
RelativePath=".\..\src\core\random_func.cpp" RelativePath=".\..\src\core\random_func.cpp"
> >
@ -799,6 +803,10 @@
RelativePath=".\..\src\console.h" RelativePath=".\..\src\console.h"
> >
</File> </File>
<File
RelativePath=".\..\src\core\bitmath_func.hpp"
>
</File>
<File <File
RelativePath=".\..\src\core\math_func.hpp" RelativePath=".\..\src\core\math_func.hpp"
> >

View File

@ -492,6 +492,10 @@
RelativePath=".\..\src\console_cmds.cpp" RelativePath=".\..\src\console_cmds.cpp"
> >
</File> </File>
<File
RelativePath=".\..\src\core\bitmath_func.cpp"
>
</File>
<File <File
RelativePath=".\..\src\core\random_func.cpp" RelativePath=".\..\src\core\random_func.cpp"
> >
@ -796,6 +800,10 @@
RelativePath=".\..\src\console.h" RelativePath=".\..\src\console.h"
> >
</File> </File>
<File
RelativePath=".\..\src\core\bitmath_func.hpp"
>
</File>
<File <File
RelativePath=".\..\src\core\math_func.hpp" RelativePath=".\..\src\core\math_func.hpp"
> >

View File

@ -10,6 +10,7 @@ cargotype.cpp
command.cpp command.cpp
console.cpp console.cpp
console_cmds.cpp console_cmds.cpp
core/bitmath_func.cpp
core/random_func.cpp core/random_func.cpp
currency.cpp currency.cpp
date.cpp date.cpp
@ -108,6 +109,7 @@ cargopacket.h
cargotype.h cargotype.h
command.h command.h
console.h console.h
core/bitmath_func.hpp
core/math_func.hpp core/math_func.hpp
core/random_func.hpp core/random_func.hpp
currency.h currency.h

45
src/core/bitmath_func.cpp Normal file
View File

@ -0,0 +1,45 @@
/* $Id$ */
/** @file bitmath_func.cpp */
#include "../stdafx.h"
#include "bitmath_func.hpp"
const uint8 _ffb_64[64] = {
0, 0, 1, 0, 2, 0, 1, 0,
3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0,
3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0,
3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0,
3, 0, 1, 0, 2, 0, 1, 0,
};
/**
* Search the first set bit in a 32 bit variable.
*
* This algorithm is a static implementation of a log
* conguence search algorithm. It checks the first half
* if there is a bit set search there further. And this
* way further. If no bit is set return 0.
*
* @param x The value to search
* @param The position of the first bit set
*/
uint8 FindFirstBit(uint32 x)
{
if (x == 0) return 0;
/* The macro FIND_FIRST_BIT is better to use when your x is
not more than 128. */
uint8 pos = 0;
if ((x & 0x0000ffff) == 0) { x >>= 16; pos += 16; }
if ((x & 0x000000ff) == 0) { x >>= 8; pos += 8; }
if ((x & 0x0000000f) == 0) { x >>= 4; pos += 4; }
if ((x & 0x00000003) == 0) { x >>= 2; pos += 2; }
if ((x & 0x00000001) == 0) { pos += 1; }
return pos;
}

278
src/core/bitmath_func.hpp Normal file
View File

@ -0,0 +1,278 @@
/* $Id$ */
/** @file bitmath_func.hpp */
#ifndef BITMATH_FUNC_HPP
#define BITMATH_FUNC_HPP
/**
* Fetch n bits from x, started at bit s.
*
* This function can be used to fetch n bits from the value x. The
* s value set the startposition to read. The startposition is
* count from the LSB and starts at 0. The result starts at a
* LSB, as this isn't just an and-bitmask but also some
* bit-shifting operations. GB(0xFF, 2, 1) will so
* return 0x01 (0000 0001) instead of
* 0x04 (0000 0100).
*
* @param x The value to read some bits.
* @param s The startposition to read some bits.
* @param n The number of bits to read.
* @return The selected bits, aligned to a LSB.
*/
template<typename T> static inline uint GB(const T x, const uint8 s, const uint8 n)
{
return (x >> s) & ((1U << n) - 1);
}
/** Set n bits from x starting at bit s to d
*
* This function sets n bits from x which started as bit s to the value of
* d. The parameters x, s and n works the same as the parameters of
* #GB. The result is saved in x again. Unused bits in the window
* provided by n are set to 0 if the value of b isn't "big" enough.
* This is not a bug, its a feature.
*
* @note Parameter x must be a variable as the result is saved there.
* @note To avoid unexpecting results the value of b should not use more
* space as the provided space of n bits (log2)
* @param x The variable to change some bits
* @param s The startposition for the new bits
* @param n The size/window for the new bits
* @param d The actually new bits to save in the defined position.
* @return The new value of x
*/
template<typename T, typename U> static inline T SB(T& x, const uint8 s, const uint8 n, const U d)
{
x &= (T)(~(((1U << n) - 1) << s));
x |= (T)(d << s);
return x;
}
/** Add i to n bits of x starting at bit s.
*
* This add the value of i on n bits of x starting at bit s. The parameters x,
* s, i are similar to #GB besides x must be a variable as the result are
* saved there. An overflow does not affect the following bits of the given
* bit window and is simply ignored.
*
* @note Parameter x must be a variable as the result is saved there.
* @param x The variable to add some bits at some position
* @param s The startposition of the addition
* @param n The size/window for the addition
* @param i The value to add at the given startposition in the given window.
* @return The new value of x
*/
template<typename T, typename U> static inline T AB(T& x, const uint8 s, const uint8 n, const U i)
{
const T mask = (T)(((1U << n) - 1) << s);
x = (T)((x & ~mask) | ((x + (i << s)) & mask));
return x;
}
/**
* Checks if a bit in a value is set.
*
* This function checks if a bit inside a value is set or not.
* The y value specific the position of the bit, started at the
* LSB and count from 0.
*
* @param x The value to check
* @param y The position of the bit to check, started from the LSB
* @return True if the bit is set, false else.
*/
template<typename T> static inline bool HasBit(const T x, const uint8 y)
{
return (x & ((T)1U << y)) != 0;
}
/**
* Check several bits in a value.
*
* This macro checks if a value contains at least one bit of an other
* value.
*
* @param x The first value
* @param y The second value
* @return True if at least one bit is set in both values, false else.
*/
#define HASBITS(x, y) ((x) & (y))
/**
* Set a bit in a variable.
*
* This function sets a bit in a variable. The variable is changed
* and the value is also returned. Parameter y defines the bit and
* starts at the LSB with 0.
*
* @param x The variable to set a bit
* @param y The bit position to set
* @return The new value of the old value with the bit set
*/
template<typename T> static inline T SetBit(T& x, const uint8 y)
{
return x = (T)(x | (T)(1U << y));
}
/**
* Sets several bits in a variable.
*
* This macro sets several bits in a variable. The bits to set are provided
* by a value. The new value is also returned.
*
* @param x The variable to set some bits
* @param y The value with set bits for setting them in the variable
* @return The new value of x
*/
#define SETBITS(x, y) ((x) |= (y))
/**
* Clears a bit in a variable.
*
* This function clears a bit in a variable. The variable is
* changed and the value is also returned. Parameter y defines the bit
* to clear and starts at the LSB with 0.
*
* @param x The variable to clear the bit
* @param y The bit position to clear
* @return The new value of the old value with the bit cleared
*/
template<typename T> static inline T ClrBit(T& x, const uint8 y)
{
return x = (T)(x & ~((T)1U << y));
}
/**
* Clears several bits in a variable.
*
* This macro clears several bits in a variable. The bits to clear are
* provided by a value. The new value is also returned.
*
* @param x The variable to clear some bits
* @param y The value with set bits for clearing them in the variable
* @return The new value of x
*/
#define CLRBITS(x, y) ((x) &= ~(y))
/**
* Toggles a bit in a variable.
*
* This function toggles a bit in a variable. The variable is
* changed and the value is also returned. Parameter y defines the bit
* to toggle and starts at the LSB with 0.
*
* @param x The varliable to toggle the bit
* @param y The bit position to toggle
* @return The new value of the old value with the bit toggled
*/
template<typename T> static inline T ToggleBit(T& x, const uint8 y)
{
return x = (T)(x ^ (T)(1U << y));
}
/** Lookup table to check which bit is set in a 6 bit variable */
extern const uint8 _ffb_64[64];
/**
* Returns the first occure of a bit in a 6-bit value (from right).
*
* Returns the position of the first bit that is not zero, counted from the
* LSB. Ie, 110100 returns 2, 000001 returns 0, etc. When x == 0 returns
* 0.
*
* @param x The 6-bit value to check the first zero-bit
* @return The first position of a bit started from the LSB or 0 if x is 0.
*/
#define FIND_FIRST_BIT(x) _ffb_64[(x)]
/**
* Finds the position of the first bit in an integer.
*
* This function returns the position of the first bit set in the
* integer. It does only check the bits of the bitmask
* 0x3F3F (0011111100111111) and checks only the
* bits of the bitmask 0x3F00 if and only if the
* lower part 0x00FF is 0. This results the bits at 0x00C0 must
* be also zero to check the bits at 0x3F00.
*
* @param value The value to check the first bits
* @return The position of the first bit which is set
* @see FIND_FIRST_BIT
*/
static inline uint8 FindFirstBit2x64(const int value)
{
if ((value & 0xFF) == 0) {
return FIND_FIRST_BIT((value >> 8) & 0x3F) + 8;
} else {
return FIND_FIRST_BIT(value & 0x3F);
}
}
uint8 FindFirstBit(uint32 x);
/**
* Clear the first bit in an integer.
*
* This function returns a value where the first bit (from LSB)
* is cleared.
* So, 110100 returns 110000, 000001 returns 000000, etc.
*
* @param value The value to clear the first bit
* @return The new value with the first bit cleared
*/
template<typename T> static inline T KillFirstBit(T value)
{
return value &= (T)(value - 1);
}
/**
* Counts the number of set bits in a variable.
*
* @param value the value to count the number of bits in.
* @return the number of bits.
*/
template<typename T> static inline uint CountBits(T value)
{
uint num;
/* This loop is only called once for every bit set by clearing the lowest
* bit in each loop. The number of bits is therefore equal to the number of
* times the loop was called. It was found at the following website:
* http://graphics.stanford.edu/~seander/bithacks.html */
for (num = 0; value != 0; num++) {
value &= (T)(value - 1);
}
return num;
}
/**
* ROtate x Left by n
*
* @note Assumes a byte has 8 bits
* @param x The value which we want to rotate
* @param n The number how many we waht to rotate
* @return A bit rotated number
*/
template<typename T> static inline T ROL(const T x, const uint8 n)
{
return (T)(x << n | x >> (sizeof(x) * 8 - n));
}
/**
* ROtate x Right by n
*
* @note Assumes a byte has 8 bits
* @param x The value which we want to rotate
* @param n The number how many we waht to rotate
* @return A bit rotated number
*/
template<typename T> static inline T ROR(const T x, const uint8 n)
{
return (T)(x >> n | x << (sizeof(x) * 8 - n));
}
#endif /* BITMATH_FUNC_HPP */

View File

@ -105,8 +105,6 @@ void ChangeTownRating(Town *t, int add, int max);
uint GetTownRadiusGroup(const Town* t, TileIndex tile); uint GetTownRadiusGroup(const Town* t, TileIndex tile);
void ShowHighscoreTable(int difficulty, int8 rank); void ShowHighscoreTable(int difficulty, int8 rank);
int FindFirstBit(uint32 x);
void AfterLoadTown(); void AfterLoadTown();
void UpdatePatches(); void UpdatePatches();
void AskExitGame(); void AskExitGame();

View File

@ -5,176 +5,9 @@
#ifndef MACROS_H #ifndef MACROS_H
#define MACROS_H #define MACROS_H
#include "core/bitmath_func.hpp"
#include "core/math_func.hpp" #include "core/math_func.hpp"
/**
* Fetch n bits from x, started at bit s.
*
* This function can be used to fetch n bits from the value x. The
* s value set the startposition to read. The startposition is
* count from the LSB and starts at 0. The result starts at a
* LSB, as this isn't just an and-bitmask but also some
* bit-shifting operations. GB(0xFF, 2, 1) will so
* return 0x01 (0000 0001) instead of
* 0x04 (0000 0100).
*
* @param x The value to read some bits.
* @param s The startposition to read some bits.
* @param n The number of bits to read.
* @return The selected bits, aligned to a LSB.
*/
template<typename T> static inline uint GB(const T x, const uint8 s, const uint8 n)
{
return (x >> s) & ((1U << n) - 1);
}
/** Set n bits from x starting at bit s to d
*
* This function sets n bits from x which started as bit s to the value of
* d. The parameters x, s and n works the same as the parameters of
* #GB. The result is saved in x again. Unused bits in the window
* provided by n are set to 0 if the value of b isn't "big" enough.
* This is not a bug, its a feature.
*
* @note Parameter x must be a variable as the result is saved there.
* @note To avoid unexpecting results the value of b should not use more
* space as the provided space of n bits (log2)
* @param x The variable to change some bits
* @param s The startposition for the new bits
* @param n The size/window for the new bits
* @param d The actually new bits to save in the defined position.
* @return The new value of x
*/
template<typename T, typename U> static inline T SB(T& x, const uint8 s, const uint8 n, const U d)
{
x &= (T)(~(((1U << n) - 1) << s));
x |= (T)(d << s);
return x;
}
/** Add i to n bits of x starting at bit s.
*
* This add the value of i on n bits of x starting at bit s. The parameters x,
* s, i are similar to #GB besides x must be a variable as the result are
* saved there. An overflow does not affect the following bits of the given
* bit window and is simply ignored.
*
* @note Parameter x must be a variable as the result is saved there.
* @param x The variable to add some bits at some position
* @param s The startposition of the addition
* @param n The size/window for the addition
* @param i The value to add at the given startposition in the given window.
* @return The new value of x
*/
template<typename T, typename U> static inline T AB(T& x, const uint8 s, const uint8 n, const U i)
{
const T mask = (T)(((1U << n) - 1) << s);
x = (T)((x & ~mask) | ((x + (i << s)) & mask));
return x;
}
/**
* Checks if a bit in a value is set.
*
* This function checks if a bit inside a value is set or not.
* The y value specific the position of the bit, started at the
* LSB and count from 0.
*
* @param x The value to check
* @param y The position of the bit to check, started from the LSB
* @return True if the bit is set, false else.
*/
template<typename T> static inline bool HasBit(const T x, const uint8 y)
{
return (x & ((T)1U << y)) != 0;
}
/**
* Set a bit in a variable.
*
* This function sets a bit in a variable. The variable is changed
* and the value is also returned. Parameter y defines the bit and
* starts at the LSB with 0.
*
* @param x The variable to set a bit
* @param y The bit position to set
* @return The new value of the old value with the bit set
*/
template<typename T> static inline T SetBit(T& x, const uint8 y)
{
return x = (T)(x | (T)(1U << y));
}
/**
* Clears a bit in a variable.
*
* This function clears a bit in a variable. The variable is
* changed and the value is also returned. Parameter y defines the bit
* to clear and starts at the LSB with 0.
*
* @param x The variable to clear the bit
* @param y The bit position to clear
* @return The new value of the old value with the bit cleared
*/
template<typename T> static inline T ClrBit(T& x, const uint8 y)
{
return x = (T)(x & ~((T)1U << y));
}
/**
* Toggles a bit in a variable.
*
* This function toggles a bit in a variable. The variable is
* changed and the value is also returned. Parameter y defines the bit
* to toggle and starts at the LSB with 0.
*
* @param x The varliable to toggle the bit
* @param y The bit position to toggle
* @return The new value of the old value with the bit toggled
*/
template<typename T> static inline T ToggleBit(T& x, const uint8 y)
{
return x = (T)(x ^ (T)(1U << y));
}
/* checking more bits. Maybe unneccessary, but easy to use */
/**
* Check several bits in a value.
*
* This macro checks if a value contains at least one bit of an other
* value.
*
* @param x The first value
* @param y The second value
* @return True if at least one bit is set in both values, false else.
*/
#define HASBITS(x, y) ((x) & (y))
/**
* Sets several bits in a variable.
*
* This macro sets several bits in a variable. The bits to set are provided
* by a value. The new value is also returned.
*
* @param x The variable to set some bits
* @param y The value with set bits for setting them in the variable
* @return The new value of x
*/
#define SETBITS(x, y) ((x) |= (y))
/**
* Clears several bits in a variable.
*
* This macro clears several bits in a variable. The bits to clear are
* provided by a value. The new value is also returned.
*
* @param x The variable to clear some bits
* @param y The value with set bits for clearing them in the variable
* @return The new value of x
*/
#define CLRBITS(x, y) ((x) &= ~(y))
#define GENERAL_SPRITE_COLOR(color) ((color) + PALETTE_RECOLOR_START) #define GENERAL_SPRITE_COLOR(color) ((color) + PALETTE_RECOLOR_START)
#define PLAYER_SPRITE_COLOR(owner) (GENERAL_SPRITE_COLOR(_player_colors[owner])) #define PLAYER_SPRITE_COLOR(owner) (GENERAL_SPRITE_COLOR(_player_colors[owner]))
@ -187,80 +20,6 @@ template<typename T> static inline T ToggleBit(T& x, const uint8 y)
*/ */
#define IS_CUSTOM_SPRITE(sprite) ((sprite) >= SPR_SIGNALS_BASE) #define IS_CUSTOM_SPRITE(sprite) ((sprite) >= SPR_SIGNALS_BASE)
extern const byte _ffb_64[64];
/**
* Returns the first occure of a bit in a 6-bit value (from right).
*
* Returns the position of the first bit that is not zero, counted from the
* LSB. Ie, 110100 returns 2, 000001 returns 0, etc. When x == 0 returns
* 0.
*
* @param x The 6-bit value to check the first zero-bit
* @return The first position of a bit started from the LSB or 0 if x is 0.
*/
#define FIND_FIRST_BIT(x) _ffb_64[(x)]
/**
* Finds the position of the first bit in an integer.
*
* This function returns the position of the first bit set in the
* integer. It does only check the bits of the bitmask
* 0x3F3F (0011111100111111) and checks only the
* bits of the bitmask 0x3F00 if and only if the
* lower part 0x00FF is 0. This results the bits at 0x00C0 must
* be also zero to check the bits at 0x3F00.
*
* @param value The value to check the first bits
* @return The position of the first bit which is set
* @see FIND_FIRST_BIT
*/
static inline int FindFirstBit2x64(int value)
{
if ((value & 0xFF) == 0) {
return FIND_FIRST_BIT((value >> 8) & 0x3F) + 8;
} else {
return FIND_FIRST_BIT(value & 0x3F);
}
}
/**
* Clear the first bit in an integer.
*
* This function returns a value where the first bit (from LSB)
* is cleared.
* So, 110100 returns 110000, 000001 returns 000000, etc.
*
* @param value The value to clear the first bit
* @return The new value with the first bit cleared
*/
template<typename T> static inline T KillFirstBit(T value)
{
return value &= (T)(value - 1);
}
/**
* Counts the number of set bits in a variable.
*
* @param value the value to count the number of bits in.
* @return the number of bits.
*/
template<typename T> static inline uint CountBits(T value)
{
uint num;
/* This loop is only called once for every bit set by clearing the lowest
* bit in each loop. The number of bits is therefore equal to the number of
* times the loop was called. It was found at the following website:
* http://graphics.stanford.edu/~seander/bithacks.html */
for (num = 0; value != 0; num++) {
value &= (T)(value - 1);
}
return num;
}
#define for_each_bit(_i, _b) \ #define for_each_bit(_i, _b) \
for (_i = 0; _b != 0; _i++, _b >>= 1) \ for (_i = 0; _b != 0; _i++, _b >>= 1) \
@ -282,32 +41,6 @@ static inline uint16 ReadLE16Unaligned(const void* x)
} }
/**
* ROtate x Left by n
*
* @note Assumes a byte has 8 bits
* @param x The value which we want to rotate
* @param n The number how many we waht to rotate
* @return A bit rotated number
*/
template<typename T> static inline T ROL(const T x, const uint8 n)
{
return (T)(x << n | x >> (sizeof(x) * 8 - n));
}
/**
* ROtate x Right by n
*
* @note Assumes a byte has 8 bits
* @param x The value which we want to rotate
* @param n The number how many we waht to rotate
* @return A bit rotated number
*/
template<typename T> static inline T ROR(const T x, const uint8 n)
{
return (T)(x >> n | x << (sizeof(x) * 8 - n));
}
/** return the largest value that can be entered in a variable. /** return the largest value that can be entered in a variable.
*/ */
#define MAX_UVALUE(type) ((type)~(type)0) #define MAX_UVALUE(type) ((type)~(type)0)

View File

@ -205,24 +205,6 @@ void InitializeLandscapeVariables(bool only_constants)
} }
int FindFirstBit(uint32 value)
{
/* The macro FIND_FIRST_BIT is better to use when your value is
not more than 128. */
byte i = 0;
if (value == 0) return 0;
if ((value & 0x0000ffff) == 0) { value >>= 16; i += 16; }
if ((value & 0x000000ff) == 0) { value >>= 8; i += 8; }
if ((value & 0x0000000f) == 0) { value >>= 4; i += 4; }
if ((value & 0x00000003) == 0) { value >>= 2; i += 2; }
if ((value & 0x00000001) == 0) { i += 1; }
return i;
}
static void Save_NAME() static void Save_NAME()
{ {
int i; int i;

View File

@ -230,17 +230,6 @@ static uint SkipToEndOfTunnel(TrackPathFinder* tpf, TileIndex tile, DiagDirectio
return flotr.tile; return flotr.tile;
} }
const byte _ffb_64[64] = {
0, 0, 1, 0, 2, 0, 1, 0,
3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0,
3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0,
3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0,
3, 0, 1, 0, 2, 0, 1, 0,
};
static void TPFMode1(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction); static void TPFMode1(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction);
/** Most code of the "Normal" case of TPF Mode 1; for signals special tricks /** Most code of the "Normal" case of TPF Mode 1; for signals special tricks