2019-02-18 13:16:03 +00:00
|
|
|
/*
|
|
|
|
* This file is part of OpenTTD.
|
|
|
|
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
|
|
|
|
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/** @file kdtree.hpp K-d tree template specialised for 2-dimensional Manhattan geometry */
|
|
|
|
|
|
|
|
#ifndef KDTREE_HPP
|
|
|
|
#define KDTREE_HPP
|
|
|
|
|
|
|
|
#include "../stdafx.h"
|
|
|
|
#include <vector>
|
|
|
|
#include <algorithm>
|
|
|
|
#include <limits>
|
|
|
|
|
|
|
|
/**
|
|
|
|
* K-dimensional tree, specialised for 2-dimensional space.
|
|
|
|
* This is not intended as a primary storage of data, but as an index into existing data.
|
|
|
|
* Usually the type stored by this tree should be an index into an existing array.
|
|
|
|
*
|
|
|
|
* This implementation assumes Manhattan distances are used.
|
|
|
|
*
|
|
|
|
* Be careful when using this in game code, depending on usage pattern, the tree shape may
|
|
|
|
* end up different for different clients in multiplayer, causing iteration order to differ
|
|
|
|
* and possibly having elements returned in different order. The using code should be designed
|
|
|
|
* to produce the same result regardless of iteration order.
|
|
|
|
*
|
|
|
|
* The element type T must be less-than comparable for FindNearest to work.
|
|
|
|
*
|
|
|
|
* @tparam T Type stored in the tree, should be cheap to copy.
|
|
|
|
* @tparam TxyFunc Functor type to extract coordinate from a T value and dimension index (0 or 1).
|
|
|
|
* @tparam CoordT Type of coordinate values extracted via TxyFunc.
|
|
|
|
* @tparam DistT Type to use for representing distance values.
|
|
|
|
*/
|
|
|
|
template <typename T, typename TxyFunc, typename CoordT, typename DistT>
|
|
|
|
class Kdtree {
|
|
|
|
/** Type of a node in the tree */
|
|
|
|
struct node {
|
|
|
|
T element; ///< Element stored at node
|
|
|
|
size_t left; ///< Index of node to the left, INVALID_NODE if none
|
|
|
|
size_t right; ///< Index of node to the right, INVALID_NODE if none
|
|
|
|
|
|
|
|
node(T element) : element(element), left(INVALID_NODE), right(INVALID_NODE) { }
|
|
|
|
};
|
|
|
|
|
|
|
|
static const size_t INVALID_NODE = SIZE_MAX; ///< Index value indicating no-such-node
|
|
|
|
|
|
|
|
std::vector<node> nodes; ///< Pool of all nodes in the tree
|
|
|
|
std::vector<size_t> free_list; ///< List of dead indices in the nodes vector
|
|
|
|
size_t root; ///< Index of root node
|
|
|
|
TxyFunc xyfunc; ///< Functor to extract a coordinate from an element
|
|
|
|
size_t unbalanced; ///< Number approximating how unbalanced the tree might be
|
|
|
|
|
|
|
|
/** Create one new node in the tree, return its index in the pool */
|
|
|
|
size_t AddNode(const T &element)
|
|
|
|
{
|
|
|
|
if (this->free_list.size() == 0) {
|
|
|
|
this->nodes.emplace_back(element);
|
|
|
|
return this->nodes.size() - 1;
|
|
|
|
} else {
|
|
|
|
size_t newidx = this->free_list.back();
|
|
|
|
this->free_list.pop_back();
|
|
|
|
this->nodes[newidx] = node{ element };
|
|
|
|
return newidx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Find a coordinate value to split a range of elements at */
|
|
|
|
template <typename It>
|
|
|
|
CoordT SelectSplitCoord(It begin, It end, int level)
|
|
|
|
{
|
|
|
|
It mid = begin + (end - begin) / 2;
|
|
|
|
std::nth_element(begin, mid, end, [&](T a, T b) { return this->xyfunc(a, level % 2) < this->xyfunc(b, level % 2); });
|
|
|
|
return this->xyfunc(*mid, level % 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Construct a subtree from elements between begin and end iterators, return index of root */
|
|
|
|
template <typename It>
|
|
|
|
size_t BuildSubtree(It begin, It end, int level)
|
|
|
|
{
|
|
|
|
ptrdiff_t count = end - begin;
|
|
|
|
|
|
|
|
if (count == 0) {
|
|
|
|
return INVALID_NODE;
|
|
|
|
} else if (count == 1) {
|
|
|
|
return this->AddNode(*begin);
|
|
|
|
} else if (count > 1) {
|
|
|
|
CoordT split_coord = SelectSplitCoord(begin, end, level);
|
|
|
|
It split = std::partition(begin, end, [&](T v) { return this->xyfunc(v, level % 2) < split_coord; });
|
|
|
|
size_t newidx = this->AddNode(*split);
|
|
|
|
this->nodes[newidx].left = this->BuildSubtree(begin, split, level + 1);
|
|
|
|
this->nodes[newidx].right = this->BuildSubtree(split + 1, end, level + 1);
|
|
|
|
return newidx;
|
|
|
|
} else {
|
|
|
|
NOT_REACHED();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Rebuild the tree with all existing elements, optionally adding or removing one more */
|
|
|
|
bool Rebuild(const T *include_element, const T *exclude_element)
|
|
|
|
{
|
|
|
|
size_t initial_count = this->Count();
|
|
|
|
if (initial_count < 8) return false; // arbitrary value for "not worth rebalancing"
|
|
|
|
|
|
|
|
T root_element = this->nodes[this->root].element;
|
|
|
|
std::vector<T> elements = this->FreeSubtree(this->root);
|
|
|
|
elements.push_back(root_element);
|
|
|
|
|
2019-04-10 21:07:06 +00:00
|
|
|
if (include_element != nullptr) {
|
2019-02-18 13:16:03 +00:00
|
|
|
elements.push_back(*include_element);
|
|
|
|
initial_count++;
|
|
|
|
}
|
2019-04-10 21:07:06 +00:00
|
|
|
if (exclude_element != nullptr) {
|
2019-02-18 13:16:03 +00:00
|
|
|
typename std::vector<T>::iterator removed = std::remove(elements.begin(), elements.end(), *exclude_element);
|
|
|
|
elements.erase(removed, elements.end());
|
|
|
|
initial_count--;
|
|
|
|
}
|
|
|
|
|
|
|
|
this->Build(elements.begin(), elements.end());
|
|
|
|
assert(initial_count == this->Count());
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Insert one element in the tree somewhere below node_idx */
|
|
|
|
void InsertRecursive(const T &element, size_t node_idx, int level)
|
|
|
|
{
|
|
|
|
/* Dimension index of current level */
|
|
|
|
int dim = level % 2;
|
|
|
|
/* Node reference */
|
|
|
|
node &n = this->nodes[node_idx];
|
|
|
|
|
|
|
|
/* Coordinate of element splitting at this node */
|
|
|
|
CoordT nc = this->xyfunc(n.element, dim);
|
|
|
|
/* Coordinate of the new element */
|
|
|
|
CoordT ec = this->xyfunc(element, dim);
|
|
|
|
/* Which side to insert on */
|
|
|
|
size_t &next = (ec < nc) ? n.left : n.right;
|
|
|
|
|
|
|
|
if (next == INVALID_NODE) {
|
|
|
|
/* New leaf */
|
|
|
|
size_t newidx = this->AddNode(element);
|
|
|
|
/* Vector may have been reallocated at this point, n and next are invalid */
|
|
|
|
node &nn = this->nodes[node_idx];
|
|
|
|
if (ec < nc) nn.left = newidx; else nn.right = newidx;
|
|
|
|
} else {
|
|
|
|
this->InsertRecursive(element, next, level + 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Free all children of the given node
|
|
|
|
* @return Collection of elements that were removed from tree.
|
|
|
|
*/
|
|
|
|
std::vector<T> FreeSubtree(size_t node_idx)
|
|
|
|
{
|
|
|
|
std::vector<T> subtree_elements;
|
|
|
|
node &n = this->nodes[node_idx];
|
|
|
|
|
|
|
|
/* We'll be appending items to the free_list, get index of our first item */
|
|
|
|
size_t first_free = this->free_list.size();
|
|
|
|
/* Prepare the descent with our children */
|
|
|
|
if (n.left != INVALID_NODE) this->free_list.push_back(n.left);
|
|
|
|
if (n.right != INVALID_NODE) this->free_list.push_back(n.right);
|
|
|
|
n.left = n.right = INVALID_NODE;
|
|
|
|
|
|
|
|
/* Recursively free the nodes being collected */
|
|
|
|
for (size_t i = first_free; i < this->free_list.size(); i++) {
|
|
|
|
node &fn = this->nodes[this->free_list[i]];
|
|
|
|
subtree_elements.push_back(fn.element);
|
|
|
|
if (fn.left != INVALID_NODE) this->free_list.push_back(fn.left);
|
|
|
|
if (fn.right != INVALID_NODE) this->free_list.push_back(fn.right);
|
|
|
|
fn.left = fn.right = INVALID_NODE;
|
|
|
|
}
|
|
|
|
|
|
|
|
return subtree_elements;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Find and remove one element from the tree.
|
|
|
|
* @param element The element to search for
|
|
|
|
* @param node_idx Sub-tree to search in
|
|
|
|
* @param level Current depth in the tree
|
|
|
|
* @return New root node index of the sub-tree processed
|
|
|
|
*/
|
|
|
|
size_t RemoveRecursive(const T &element, size_t node_idx, int level)
|
|
|
|
{
|
|
|
|
/* Node reference */
|
|
|
|
node &n = this->nodes[node_idx];
|
|
|
|
|
|
|
|
if (n.element == element) {
|
|
|
|
/* Remove this one */
|
|
|
|
this->free_list.push_back(node_idx);
|
|
|
|
if (n.left == INVALID_NODE && n.right == INVALID_NODE) {
|
|
|
|
/* Simple case, leaf, new child node for parent is "none" */
|
|
|
|
return INVALID_NODE;
|
|
|
|
} else {
|
|
|
|
/* Complex case, rebuild the sub-tree */
|
|
|
|
std::vector<T> subtree_elements = this->FreeSubtree(node_idx);
|
|
|
|
return this->BuildSubtree(subtree_elements.begin(), subtree_elements.end(), level);;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Search in a sub-tree */
|
|
|
|
/* Dimension index of current level */
|
|
|
|
int dim = level % 2;
|
|
|
|
/* Coordinate of element splitting at this node */
|
|
|
|
CoordT nc = this->xyfunc(n.element, dim);
|
|
|
|
/* Coordinate of the element being removed */
|
|
|
|
CoordT ec = this->xyfunc(element, dim);
|
|
|
|
/* Which side to remove from */
|
|
|
|
size_t next = (ec < nc) ? n.left : n.right;
|
|
|
|
assert(next != INVALID_NODE); // node must exist somewhere and must be found before a leaf is reached
|
|
|
|
/* Descend */
|
|
|
|
size_t new_branch = this->RemoveRecursive(element, next, level + 1);
|
|
|
|
if (new_branch != next) {
|
|
|
|
/* Vector may have been reallocated at this point, n and next are invalid */
|
|
|
|
node &nn = this->nodes[node_idx];
|
|
|
|
if (ec < nc) nn.left = new_branch; else nn.right = new_branch;
|
|
|
|
}
|
|
|
|
return node_idx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
DistT ManhattanDistance(const T &element, CoordT x, CoordT y) const
|
|
|
|
{
|
|
|
|
return abs((DistT)this->xyfunc(element, 0) - (DistT)x) + abs((DistT)this->xyfunc(element, 1) - (DistT)y);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** A data element and its distance to a searched-for point */
|
|
|
|
using node_distance = std::pair<T, DistT>;
|
|
|
|
/** Ordering function for node_distance objects, elements with equal distance are ordered by less-than comparison */
|
|
|
|
static node_distance SelectNearestNodeDistance(const node_distance &a, const node_distance &b)
|
|
|
|
{
|
|
|
|
if (a.second < b.second) return a;
|
|
|
|
if (b.second < a.second) return b;
|
|
|
|
if (a.first < b.first) return a;
|
|
|
|
if (b.first < a.first) return b;
|
|
|
|
NOT_REACHED(); // a.first == b.first: same element must not be inserted twice
|
|
|
|
}
|
|
|
|
/** Search a sub-tree for the element nearest to a given point */
|
|
|
|
node_distance FindNearestRecursive(CoordT xy[2], size_t node_idx, int level) const
|
|
|
|
{
|
|
|
|
/* Dimension index of current level */
|
|
|
|
int dim = level % 2;
|
|
|
|
/* Node reference */
|
|
|
|
const node &n = this->nodes[node_idx];
|
|
|
|
|
|
|
|
/* Coordinate of element splitting at this node */
|
|
|
|
CoordT c = this->xyfunc(n.element, dim);
|
|
|
|
/* This node's distance to target */
|
|
|
|
DistT thisdist = ManhattanDistance(n.element, xy[0], xy[1]);
|
|
|
|
/* Assume this node is the best choice for now */
|
|
|
|
node_distance best = std::make_pair(n.element, thisdist);
|
|
|
|
|
|
|
|
/* Next node to visit */
|
|
|
|
size_t next = (xy[dim] < c) ? n.left : n.right;
|
|
|
|
if (next != INVALID_NODE) {
|
|
|
|
/* Check if there is a better node down the tree */
|
|
|
|
best = SelectNearestNodeDistance(best, this->FindNearestRecursive(xy, next, level + 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if the distance from current best is worse than distance from target to splitting line,
|
|
|
|
* if it is we also need to check the other side of the split. */
|
|
|
|
size_t opposite = (xy[dim] >= c) ? n.left : n.right; // reverse of above
|
|
|
|
if (opposite != INVALID_NODE && best.second >= abs((int)xy[dim] - (int)c)) {
|
|
|
|
node_distance other_candidate = this->FindNearestRecursive(xy, opposite, level + 1);
|
|
|
|
best = SelectNearestNodeDistance(best, other_candidate);
|
|
|
|
}
|
|
|
|
|
|
|
|
return best;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Outputter>
|
|
|
|
void FindContainedRecursive(CoordT p1[2], CoordT p2[2], size_t node_idx, int level, Outputter outputter) const
|
|
|
|
{
|
|
|
|
/* Dimension index of current level */
|
|
|
|
int dim = level % 2;
|
|
|
|
/* Node reference */
|
|
|
|
const node &n = this->nodes[node_idx];
|
|
|
|
|
|
|
|
/* Coordinate of element splitting at this node */
|
|
|
|
CoordT ec = this->xyfunc(n.element, dim);
|
|
|
|
/* Opposite coordinate of element */
|
|
|
|
CoordT oc = this->xyfunc(n.element, 1 - dim);
|
|
|
|
|
|
|
|
/* Test if this element is within rectangle */
|
|
|
|
if (ec >= p1[dim] && ec < p2[dim] && oc >= p1[1 - dim] && oc < p2[1 - dim]) outputter(n.element);
|
|
|
|
|
|
|
|
/* Recurse left if part of rectangle is left of split */
|
|
|
|
if (p1[dim] < ec && n.left != INVALID_NODE) this->FindContainedRecursive(p1, p2, n.left, level + 1, outputter);
|
|
|
|
|
|
|
|
/* Recurse right if part of rectangle is right of split */
|
|
|
|
if (p2[dim] > ec && n.right != INVALID_NODE) this->FindContainedRecursive(p1, p2, n.right, level + 1, outputter);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Debugging function, counts number of occurrences of an element regardless of its correct position in the tree */
|
|
|
|
size_t CountValue(const T &element, size_t node_idx) const
|
|
|
|
{
|
|
|
|
if (node_idx == INVALID_NODE) return 0;
|
|
|
|
const node &n = this->nodes[node_idx];
|
|
|
|
return CountValue(element, n.left) + CountValue(element, n.right) + ((n.element == element) ? 1 : 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void IncrementUnbalanced(size_t amount = 1)
|
|
|
|
{
|
|
|
|
this->unbalanced += amount;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Check if the entire tree is in need of rebuilding */
|
|
|
|
bool IsUnbalanced()
|
|
|
|
{
|
|
|
|
size_t count = this->Count();
|
|
|
|
if (count < 8) return false;
|
|
|
|
return this->unbalanced > this->Count() / 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Verify that the invariant is true for a sub-tree, assert if not */
|
|
|
|
void CheckInvariant(size_t node_idx, int level, CoordT min_x, CoordT max_x, CoordT min_y, CoordT max_y)
|
|
|
|
{
|
|
|
|
if (node_idx == INVALID_NODE) return;
|
|
|
|
|
|
|
|
const node &n = this->nodes[node_idx];
|
|
|
|
CoordT cx = this->xyfunc(n.element, 0);
|
|
|
|
CoordT cy = this->xyfunc(n.element, 1);
|
|
|
|
|
|
|
|
assert(cx >= min_x);
|
|
|
|
assert(cx < max_x);
|
|
|
|
assert(cy >= min_y);
|
|
|
|
assert(cy < max_y);
|
|
|
|
|
|
|
|
if (level % 2 == 0) {
|
|
|
|
// split in dimension 0 = x
|
|
|
|
CheckInvariant(n.left, level + 1, min_x, cx, min_y, max_y);
|
|
|
|
CheckInvariant(n.right, level + 1, cx, max_x, min_y, max_y);
|
|
|
|
} else {
|
|
|
|
// split in dimension 1 = y
|
|
|
|
CheckInvariant(n.left, level + 1, min_x, max_x, min_y, cy);
|
|
|
|
CheckInvariant(n.right, level + 1, min_x, max_x, cy, max_y);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Verify the invariant for the entire tree, does nothing unless KDTREE_DEBUG is defined */
|
|
|
|
void CheckInvariant()
|
|
|
|
{
|
|
|
|
#ifdef KDTREE_DEBUG
|
|
|
|
CheckInvariant(this->root, 0, std::numeric_limits<CoordT>::min(), std::numeric_limits<CoordT>::max(), std::numeric_limits<CoordT>::min(), std::numeric_limits<CoordT>::max());
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
/** Construct a new Kdtree with the given xyfunc */
|
|
|
|
Kdtree(TxyFunc xyfunc) : root(INVALID_NODE), xyfunc(xyfunc), unbalanced(0) { }
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Clear and rebuild the tree from a new sequence of elements,
|
|
|
|
* @tparam It Iterator type for element sequence.
|
|
|
|
* @param begin First element in sequence.
|
|
|
|
* @param end One past last element in sequence.
|
|
|
|
*/
|
|
|
|
template <typename It>
|
|
|
|
void Build(It begin, It end)
|
|
|
|
{
|
|
|
|
this->nodes.clear();
|
|
|
|
this->free_list.clear();
|
|
|
|
this->unbalanced = 0;
|
|
|
|
if (begin == end) return;
|
|
|
|
this->nodes.reserve(end - begin);
|
|
|
|
|
|
|
|
this->root = this->BuildSubtree(begin, end, 0);
|
|
|
|
CheckInvariant();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Reconstruct the tree with the same elements, letting it be fully balanced.
|
|
|
|
*/
|
|
|
|
void Rebuild()
|
|
|
|
{
|
2019-04-10 21:07:06 +00:00
|
|
|
this->Rebuild(nullptr, nullptr);
|
2019-02-18 13:16:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Insert a single element in the tree.
|
|
|
|
* Repeatedly inserting single elements may cause the tree to become unbalanced.
|
|
|
|
* Undefined behaviour if the element already exists in the tree.
|
|
|
|
*/
|
|
|
|
void Insert(const T &element)
|
|
|
|
{
|
|
|
|
if (this->Count() == 0) {
|
|
|
|
this->root = this->AddNode(element);
|
|
|
|
} else {
|
2019-04-10 21:07:06 +00:00
|
|
|
if (!this->IsUnbalanced() || !this->Rebuild(&element, nullptr)) {
|
2019-02-18 13:16:03 +00:00
|
|
|
this->InsertRecursive(element, this->root, 0);
|
|
|
|
this->IncrementUnbalanced();
|
|
|
|
}
|
|
|
|
CheckInvariant();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Remove a single element from the tree, if it exists.
|
|
|
|
* Since elements are stored in interior nodes as well as leaf nodes, removing one may
|
|
|
|
* require a larger sub-tree to be re-built. Because of this, worst case run time is
|
|
|
|
* as bad as a full tree rebuild.
|
|
|
|
*/
|
|
|
|
void Remove(const T &element)
|
|
|
|
{
|
|
|
|
size_t count = this->Count();
|
|
|
|
if (count == 0) return;
|
2019-04-10 21:07:06 +00:00
|
|
|
if (!this->IsUnbalanced() || !this->Rebuild(nullptr, &element)) {
|
2019-02-18 13:16:03 +00:00
|
|
|
/* If the removed element is the root node, this modifies this->root */
|
|
|
|
this->root = this->RemoveRecursive(element, this->root, 0);
|
|
|
|
this->IncrementUnbalanced();
|
|
|
|
}
|
|
|
|
CheckInvariant();
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Get number of elements stored in tree */
|
|
|
|
size_t Count() const
|
|
|
|
{
|
|
|
|
assert(this->free_list.size() <= this->nodes.size());
|
|
|
|
return this->nodes.size() - this->free_list.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Find the element closest to given coordinate, in Manhattan distance.
|
|
|
|
* For multiple elements with the same distance, the one comparing smaller with
|
|
|
|
* a less-than comparison is chosen.
|
|
|
|
*/
|
|
|
|
T FindNearest(CoordT x, CoordT y) const
|
|
|
|
{
|
|
|
|
assert(this->Count() > 0);
|
|
|
|
|
|
|
|
CoordT xy[2] = { x, y };
|
|
|
|
return this->FindNearestRecursive(xy, this->root, 0).first;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Find all items contained within the given rectangle.
|
|
|
|
* @note Start coordinates are inclusive, end coordinates are exclusive. x1<x2 && y1<y2 is a precondition.
|
|
|
|
* @param x1 Start first coordinate, points found are greater or equals to this.
|
|
|
|
* @param y1 Start second coordinate, points found are greater or equals to this.
|
|
|
|
* @param x2 End first coordinate, points found are less than this.
|
|
|
|
* @param y2 End second coordinate, points found are less than this.
|
|
|
|
* @param outputter Callback used to return values from the search.
|
|
|
|
*/
|
|
|
|
template <typename Outputter>
|
|
|
|
void FindContained(CoordT x1, CoordT y1, CoordT x2, CoordT y2, Outputter outputter) const
|
|
|
|
{
|
|
|
|
assert(x1 < x2);
|
|
|
|
assert(y1 < y2);
|
|
|
|
|
|
|
|
if (this->Count() == 0) return;
|
|
|
|
|
|
|
|
CoordT p1[2] = { x1, y1 };
|
|
|
|
CoordT p2[2] = { x2, y2 };
|
|
|
|
this->FindContainedRecursive(p1, p2, this->root, 0, outputter);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Find all items contained within the given rectangle.
|
|
|
|
* @note End coordinates are exclusive, x1<x2 && y1<y2 is a precondition.
|
|
|
|
*/
|
|
|
|
std::vector<T> FindContained(CoordT x1, CoordT y1, CoordT x2, CoordT y2) const
|
|
|
|
{
|
|
|
|
std::vector<T> result;
|
|
|
|
this->FindContained(x1, y1, x2, y2, [&result](T e) {result.push_back(e); });
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif
|