OpenTTD-patches/src/rail.h

256 lines
8.5 KiB
C
Raw Normal View History

/* $Id$ */
/** @file rail.h */
#ifndef RAIL_H
#define RAIL_H
#include "rail_type.h"
#include "track_type.h"
#include "vehicle_type.h"
#include "gfx_type.h"
#include "core/bitmath_func.hpp"
#include "economy_func.h"
#include "tile_cmd.h"
enum RailTypeFlag {
RTF_CATENARY = 0, ///< Set if the rail type should have catenary drawn
};
enum RailTypeFlags {
RTFB_NONE = 0,
RTFB_CATENARY = 1 << RTF_CATENARY,
};
DECLARE_ENUM_AS_BIT_SET(RailTypeFlags);
/** This struct contains all the info that is needed to draw and construct tracks.
*/
struct RailtypeInfo {
/** Struct containing the main sprites. @note not all sprites are listed, but only
* the ones used directly in the code */
struct {
SpriteID track_y; ///< single piece of rail in Y direction, with ground
SpriteID track_ns; ///< two pieces of rail in North and South corner (East-West direction)
SpriteID ground; ///< ground sprite for a 3-way switch
SpriteID single_y; ///< single piece of rail in Y direction, without ground
SpriteID single_x; ///< single piece of rail in X direction
SpriteID single_n; ///< single piece of rail in the northern corner
SpriteID single_s; ///< single piece of rail in the southern corner
SpriteID single_e; ///< single piece of rail in the eastern corner
SpriteID single_w; ///< single piece of rail in the western corner
SpriteID crossing; ///< level crossing, rail in X direction
SpriteID tunnel; ///< tunnel sprites base
} base_sprites;
/** struct containing the sprites for the rail GUI. @note only sprites referred to
* directly in the code are listed */
struct {
SpriteID build_ns_rail; ///< button for building single rail in N-S direction
SpriteID build_x_rail; ///< button for building single rail in X direction
SpriteID build_ew_rail; ///< button for building single rail in E-W direction
SpriteID build_y_rail; ///< button for building single rail in Y direction
SpriteID auto_rail; ///< button for the autorail construction
SpriteID build_depot; ///< button for building depots
SpriteID build_tunnel; ///< button for building a tunnel
SpriteID convert_rail; ///< button for converting rail
} gui_sprites;
struct {
CursorID rail_ns; ///< Cursor for building rail in N-S direction
CursorID rail_swne; ///< Cursor for building rail in X direction
CursorID rail_ew; ///< Cursor for building rail in E-W direction
CursorID rail_nwse; ///< Cursor for building rail in Y direction
CursorID autorail; ///< Cursor for autorail tool
CursorID depot; ///< Cursor for building a depot
CursorID tunnel; ///< Cursor for building a tunnel
CursorID convert; ///< Cursor for converting track
} cursor;
struct {
StringID toolbar_caption;
} strings;
/** sprite number difference between a piece of track on a snowy ground and the corresponding one on normal ground */
SpriteID snow_offset;
/** bitmask to the OTHER railtypes on which an engine of THIS railtype generates power */
RailTypes powered_railtypes;
/** bitmask to the OTHER railtypes on which an engine of THIS railtype can physically travel */
RailTypes compatible_railtypes;
/**
* Offset between the current railtype and normal rail. This means that:<p>
* 1) All the sprites in a railset MUST be in the same order. This order
* is determined by normal rail. Check sprites 1005 and following for this order<p>
* 2) The position where the railtype is loaded must always be the same, otherwise
* the offset will fail.
* @note: Something more flexible might be desirable in the future.
*/
SpriteID total_offset;
/**
* Bridge offset
*/
SpriteID bridge_offset;
/**
* Offset to add to ground sprite when drawing custom waypoints / stations
*/
byte custom_ground_offset;
/**
* Multiplier for curve maximum speed advantage
*/
byte curve_speed;
/**
* Bit mask of rail type flags
*/
RailTypeFlags flags;
};
/**
* Returns a pointer to the Railtype information for a given railtype
* @param railtype the rail type which the information is requested for
* @return The pointer to the RailtypeInfo
*/
static inline const RailtypeInfo *GetRailTypeInfo(RailType railtype)
{
extern RailtypeInfo _railtypes[RAILTYPE_END];
assert(railtype < RAILTYPE_END);
return &_railtypes[railtype];
}
/**
* Checks if an engine of the given RailType can drive on a tile with a given
* RailType. This would normally just be an equality check, but for electric
* rails (which also support non-electric engines).
* @return Whether the engine can drive on this tile.
* @param enginetype The RailType of the engine we are considering.
* @param tiletype The RailType of the tile we are considering.
*/
static inline bool IsCompatibleRail(RailType enginetype, RailType tiletype)
{
return HasBit(GetRailTypeInfo(enginetype)->compatible_railtypes, tiletype);
}
/**
* Checks if an engine of the given RailType got power on a tile with a given
* RailType. This would normally just be an equality check, but for electric
* rails (which also support non-electric engines).
* @return Whether the engine got power on this tile.
* @param enginetype The RailType of the engine we are considering.
* @param tiletype The RailType of the tile we are considering.
*/
static inline bool HasPowerOnRail(RailType enginetype, RailType tiletype)
{
return HasBit(GetRailTypeInfo(enginetype)->powered_railtypes, tiletype);
}
extern int _railtype_cost_multiplier[RAILTYPE_END];
extern const int _default_railtype_cost_multiplier[RAILTYPE_END];
/**
* Returns the cost of building the specified railtype.
* @param railtype The railtype being built.
* @return The cost multiplier.
*/
static inline Money RailBuildCost(RailType railtype)
{
assert(railtype < RAILTYPE_END);
return (_price.build_rail * _railtype_cost_multiplier[railtype]) >> 3;
}
/**
* Calculates the cost of rail conversion
* @param from The railtype we are converting from
* @param to The railtype we are converting to
* @return Cost per TrackBit
*/
static inline Money RailConvertCost(RailType from, RailType to)
{
/* rail -> el. rail
* calculate the price as 5 / 4 of (cost build el. rail) - (cost build rail)
* (the price of workers to get to place is that 1/4)
*/
if (HasPowerOnRail(from, to)) {
return ((RailBuildCost(to) - RailBuildCost(from)) * 5) >> 2;
}
/* el. rail -> rail
* calculate the price as 1 / 4 of (cost build el. rail) - (cost build rail)
* (the price of workers is 1 / 4 + price of copper sold to a recycle center)
*/
if (HasPowerOnRail(to, from)) {
return (RailBuildCost(from) - RailBuildCost(to)) >> 2;
}
/* make the price the same as remove + build new type */
return RailBuildCost(to) + _price.remove_rail;
}
void *UpdateTrainPowerProc(Vehicle *v, void *data);
void DrawTrainDepotSprite(int x, int y, int image, RailType railtype);
void DrawDefaultWaypointSprite(int x, int y, RailType railtype);
void *EnsureNoTrainOnTrackProc(Vehicle *v, void *data);
int TicksToLeaveDepot(const Vehicle *v);
/**
* Test if a rail type has catenary
* @param rt Rail type to test
*/
static inline bool HasCatenary(RailType rt)
{
return HasBit(GetRailTypeInfo(rt)->flags, RTF_CATENARY);
}
/**
* Draws overhead wires and pylons for electric railways.
* @param ti The TileInfo struct of the tile being drawn
* @see DrawCatenaryRailway
*/
void DrawCatenary(const TileInfo *ti);
void DrawCatenaryOnTunnel(const TileInfo *ti);
Foundation GetRailFoundation(Slope tileh, TrackBits bits);
int32 SettingsDisableElrail(int32 p1); ///< _patches.disable_elrail callback
/**
* Finds out if a Player has a certain railtype available
* @param p Player in question
* @param railtype requested RailType
* @return true if player has requested RailType available
*/
bool HasRailtypeAvail(const PlayerID p, const RailType railtype);
/**
* Validate functions for rail building.
* @param rail the railtype to check.
* @return true if the current player may build the rail.
*/
bool ValParamRailtype(const RailType rail);
/**
* Returns the "best" railtype a player can build.
* As the AI doesn't know what the BEST one is, we have our own priority list
* here. When adding new railtypes, modify this function
* @param p the player "in action"
* @return The "best" railtype a player has available
*/
RailType GetBestRailtype(const PlayerID p);
/**
* Get the rail types the given player can build.
* @param p the player to get the rail types for.
* @return the rail types.
*/
RailTypes GetPlayerRailtypes(const PlayerID p);
#endif /* RAIL_H */