mirror of
https://github.com/JGRennison/OpenTTD-patches.git
synced 2024-11-17 21:25:40 +00:00
299 lines
8.3 KiB
C++
299 lines
8.3 KiB
C++
|
/** @file demands.cpp Definition of demand calculating link graph handler. */
|
||
|
|
||
|
#include "../stdafx.h"
|
||
|
#include "demands.h"
|
||
|
#include <list>
|
||
|
|
||
|
typedef std::list<NodeID> NodeList;
|
||
|
|
||
|
/**
|
||
|
* Scale various things according to symmetric/asymmetric distribution.
|
||
|
*/
|
||
|
class Scaler {
|
||
|
public:
|
||
|
/**
|
||
|
* Constructor.
|
||
|
*/
|
||
|
Scaler() : demand_per_node(0) {}
|
||
|
|
||
|
void SetDemands(LinkGraphJob &job, NodeID from, NodeID to, uint demand_forw);
|
||
|
|
||
|
protected:
|
||
|
uint demand_per_node; ///< Mean demand associated with each node.
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Scaler for symmetric distribution.
|
||
|
*/
|
||
|
class SymmetricScaler : public Scaler {
|
||
|
public:
|
||
|
/**
|
||
|
* Constructor.
|
||
|
* @param mod_size Size modifier to be used. Determines how much demands
|
||
|
* increase with the supply of the remote station.
|
||
|
*/
|
||
|
inline SymmetricScaler(uint mod_size) : mod_size(mod_size), supply_sum(0)
|
||
|
{}
|
||
|
|
||
|
/**
|
||
|
* Count a node's supply into the sum of supplies.
|
||
|
* @param node Node.
|
||
|
*/
|
||
|
inline void AddNode(const Node &node)
|
||
|
{
|
||
|
this->supply_sum += node.Supply();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Calculate the mean demand per node using the sum of supplies.
|
||
|
* @param num_demands Number of accepting nodes.
|
||
|
*/
|
||
|
inline void SetDemandPerNode(uint num_demands)
|
||
|
{
|
||
|
this->demand_per_node = max(this->supply_sum / num_demands, 1U);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Get the effective supply of one node towards another one. In symmetric
|
||
|
* distribution the supply of the other node is weighed in.
|
||
|
* @param from The supplying node.
|
||
|
* @param to The receiving node.
|
||
|
* @return Effective supply.
|
||
|
*/
|
||
|
inline uint EffectiveSupply(const Node &from, const Node &to)
|
||
|
{
|
||
|
return max(from.Supply() * max(1U, to.Supply()) * this->mod_size / 100 / this->demand_per_node, 1U);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Check if there is any acceptance left for this node. In symmetric distribution
|
||
|
* nodes only accept anything if they also supply something. So if
|
||
|
* undelivered_supply == 0 at the node there isn't any demand left either.
|
||
|
* @param to Node to be checked.
|
||
|
* @return If demand is left.
|
||
|
*/
|
||
|
inline bool HasDemandLeft(const Node &to)
|
||
|
{
|
||
|
return (to.Supply() == 0 || to.UndeliveredSupply() > 0) && to.Demand() > 0;
|
||
|
}
|
||
|
|
||
|
void SetDemands(LinkGraphJob &job, NodeID from, NodeID to, uint demand_forw);
|
||
|
|
||
|
private:
|
||
|
uint mod_size; ///< Size modifier. Determines how much demands increase with the supply of the remote station.
|
||
|
uint supply_sum; ///< Sum of all supplies in the component.
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* A scaler for asymmetric distribution.
|
||
|
*/
|
||
|
class AsymmetricScaler : public Scaler {
|
||
|
public:
|
||
|
/**
|
||
|
* Constructor.
|
||
|
*/
|
||
|
inline AsymmetricScaler() : demand_sum(0) {}
|
||
|
|
||
|
/**
|
||
|
* Count a node's demand into the sum of demands.
|
||
|
* @param node The node to be counted.
|
||
|
*/
|
||
|
inline void AddNode(const Node &node)
|
||
|
{
|
||
|
this->demand_sum += node.Demand();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Calculate the mean demand per node using the sum of demands.
|
||
|
* @param num_demands Number of accepting nodes.
|
||
|
*/
|
||
|
inline void SetDemandPerNode(uint num_demands)
|
||
|
{
|
||
|
this->demand_per_node = max(this->demand_sum / num_demands, (uint)1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Get the effective supply of one node towards another one. In asymmetric
|
||
|
* distribution the demand of the other node is weighed in.
|
||
|
* @param from The supplying node.
|
||
|
* @param to The receiving node.
|
||
|
*/
|
||
|
inline uint EffectiveSupply(const Node &from, const Node &to)
|
||
|
{
|
||
|
return max(from.Supply() * to.Demand() / this->demand_per_node, (uint)1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Check if there is any acceptance left for this node. In asymmetric distribution
|
||
|
* nodes always accept as long as their demand > 0.
|
||
|
* @param to The node to be checked.
|
||
|
* @param to_anno Unused.
|
||
|
*/
|
||
|
inline bool HasDemandLeft(const Node &to) { return to.Demand() > 0; }
|
||
|
|
||
|
private:
|
||
|
uint demand_sum; ///< Sum of all demands in the component.
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set the demands between two nodes using the given base demand. In symmetric mode
|
||
|
* this sets demands in both directions.
|
||
|
* @param job The link graph job.
|
||
|
* @param from_id The supplying node.
|
||
|
* @þaram to_id The receiving node.
|
||
|
* @param demand_forw Demand calculated for the "forward" direction.
|
||
|
*/
|
||
|
void SymmetricScaler::SetDemands(LinkGraphJob &job, NodeID from_id, NodeID to_id, uint demand_forw)
|
||
|
{
|
||
|
if (job[from_id].Demand() > 0) {
|
||
|
uint demand_back = demand_forw * this->mod_size / 100;
|
||
|
uint undelivered = job[to_id].UndeliveredSupply();
|
||
|
if (demand_back > undelivered) {
|
||
|
demand_back = undelivered;
|
||
|
demand_forw = max(1U, demand_back * 100 / this->mod_size);
|
||
|
}
|
||
|
this->Scaler::SetDemands(job, to_id, from_id, demand_back);
|
||
|
}
|
||
|
|
||
|
this->Scaler::SetDemands(job, from_id, to_id, demand_forw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the demands between two nodes using the given base demand. In asymmetric mode
|
||
|
* this only sets demand in the "forward" direction.
|
||
|
* @param job The link graph job.
|
||
|
* @param from_id The supplying node.
|
||
|
* @þaram to_id The receiving node.
|
||
|
* @param demand_forw Demand calculated for the "forward" direction.
|
||
|
*/
|
||
|
inline void Scaler::SetDemands(LinkGraphJob &job, NodeID from_id, NodeID to_id, uint demand_forw)
|
||
|
{
|
||
|
job[from_id].DeliverSupply(to_id, demand_forw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Do the actual demand calculation, called from constructor.
|
||
|
* @param job Job to calculate the demands for.
|
||
|
* @tparam Tscaler Scaler to be used for scaling demands.
|
||
|
*/
|
||
|
template<class Tscaler>
|
||
|
void DemandCalculator::CalcDemand(LinkGraphJob &job, Tscaler scaler)
|
||
|
{
|
||
|
NodeList supplies;
|
||
|
NodeList demands;
|
||
|
uint num_supplies = 0;
|
||
|
uint num_demands = 0;
|
||
|
|
||
|
for (NodeID node = 0; node < job.Size(); node++) {
|
||
|
scaler.AddNode(job[node]);
|
||
|
if (job[node].Supply() > 0) {
|
||
|
supplies.push_back(node);
|
||
|
num_supplies++;
|
||
|
}
|
||
|
if (job[node].Demand() > 0) {
|
||
|
demands.push_back(node);
|
||
|
num_demands++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (num_supplies == 0 || num_demands == 0) return;
|
||
|
|
||
|
/* Mean acceptance attributed to each node. If the distribution is
|
||
|
* symmetric this is relative to remote supply, otherwise it is
|
||
|
* relative to remote demand. */
|
||
|
scaler.SetDemandPerNode(num_demands);
|
||
|
uint chance = 0;
|
||
|
|
||
|
while (!supplies.empty() && !demands.empty()) {
|
||
|
NodeID from_id = supplies.front();
|
||
|
supplies.pop_front();
|
||
|
|
||
|
for (uint i = 0; i < num_demands; ++i) {
|
||
|
assert(!demands.empty());
|
||
|
NodeID to_id = demands.front();
|
||
|
demands.pop_front();
|
||
|
if (from_id == to_id) {
|
||
|
/* Only one node with supply and demand left */
|
||
|
if (demands.empty() && supplies.empty()) return;
|
||
|
|
||
|
demands.push_back(to_id);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
int32 supply = scaler.EffectiveSupply(job[from_id], job[to_id]);
|
||
|
assert(supply > 0);
|
||
|
|
||
|
/* Scale the distance by mod_dist around max_distance */
|
||
|
int32 distance = this->max_distance - (this->max_distance -
|
||
|
(int32)job[from_id][to_id].Distance()) * this->mod_dist / 100;
|
||
|
|
||
|
/* Scale the accuracy by distance around accuracy / 2 */
|
||
|
int32 divisor = this->accuracy * (this->mod_dist - 50) / 100 +
|
||
|
this->accuracy * distance / this->max_distance + 1;
|
||
|
|
||
|
assert(divisor > 0);
|
||
|
|
||
|
uint demand_forw = 0;
|
||
|
if (divisor <= supply) {
|
||
|
/* At first only distribute demand if
|
||
|
* effective supply / accuracy divisor >= 1
|
||
|
* Others are too small or too far away to be considered. */
|
||
|
demand_forw = supply / divisor;
|
||
|
} else if (++chance > this->accuracy * num_demands * num_supplies) {
|
||
|
/* After some trying, if there is still supply left, distribute
|
||
|
* demand also to other nodes. */
|
||
|
demand_forw = 1;
|
||
|
}
|
||
|
|
||
|
demand_forw = min(demand_forw, job[from_id].UndeliveredSupply());
|
||
|
|
||
|
scaler.SetDemands(job, from_id, to_id, demand_forw);
|
||
|
|
||
|
if (scaler.HasDemandLeft(job[to_id])) {
|
||
|
demands.push_back(to_id);
|
||
|
} else {
|
||
|
num_demands--;
|
||
|
}
|
||
|
|
||
|
if (job[from_id].UndeliveredSupply() == 0) break;
|
||
|
}
|
||
|
|
||
|
if (job[from_id].UndeliveredSupply() != 0) {
|
||
|
supplies.push_back(from_id);
|
||
|
} else {
|
||
|
num_supplies--;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Create the DemandCalculator and immediately do the calculation.
|
||
|
* @param job Job to calculate the demands for.
|
||
|
*/
|
||
|
DemandCalculator::DemandCalculator(LinkGraphJob &job) :
|
||
|
max_distance(MapSizeX() + MapSizeY() - 2)
|
||
|
{
|
||
|
const LinkGraphSettings &settings = job.Settings();
|
||
|
CargoID cargo = job.Cargo();
|
||
|
|
||
|
this->accuracy = settings.accuracy;
|
||
|
this->mod_dist = settings.demand_distance;
|
||
|
if (this->mod_dist > 100) {
|
||
|
/* Increase effect of mod_dist > 100 */
|
||
|
int over100 = this->mod_dist - 100;
|
||
|
this->mod_dist = 100 + over100 * over100;
|
||
|
}
|
||
|
|
||
|
switch (settings.GetDistributionType(cargo)) {
|
||
|
case DT_SYMMETRIC:
|
||
|
this->CalcDemand<SymmetricScaler>(job, SymmetricScaler(settings.demand_size));
|
||
|
break;
|
||
|
case DT_ASYMMETRIC:
|
||
|
this->CalcDemand<AsymmetricScaler>(job, AsymmetricScaler());
|
||
|
break;
|
||
|
default:
|
||
|
/* Nothing to do. */
|
||
|
break;
|
||
|
}
|
||
|
}
|