OpenTTD-patches/src/linkgraph/linkgraph.cpp

255 lines
7.8 KiB
C++
Raw Normal View History

/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file linkgraph.cpp Definition of link graph classes used for cargo distribution. */
#include "../stdafx.h"
#include "../core/pool_func.hpp"
#include "linkgraph.h"
/* Initialize the link-graph-pool */
LinkGraphPool _link_graph_pool("LinkGraph");
INSTANTIATE_POOL_METHODS(LinkGraph)
/**
* Create a node or clear it.
* @param st ID of the associated station.
* @param demand Demand for cargo at the station.
*/
inline void LinkGraph::BaseNode::Init(StationID st, uint demand)
{
this->supply = 0;
this->demand = demand;
this->station = st;
this->last_update = INVALID_DATE;
}
/**
* Create an edge.
* @param distance Length of the link as manhattan distance.
*/
inline void LinkGraph::BaseEdge::Init(uint distance)
{
this->distance = distance;
this->capacity = 0;
this->usage = 0;
this->last_update = INVALID_DATE;
this->next_edge = INVALID_NODE;
}
void LinkGraph::Compress()
{
this->last_compression = (_date + this->last_compression) / 2;
for (NodeID node1 = 0; node1 < this->Size(); ++node1) {
this->nodes[node1].supply /= 2;
for (NodeID node2 = 0; node2 < this->Size(); ++node2) {
BaseEdge &edge = this->edges[node1][node2];
if (edge.capacity > 0) {
edge.capacity = max(1U, edge.capacity / 2);
edge.usage /= 2;
}
}
}
}
/**
* Merge a link graph with another one.
* @param other LinkGraph to be merged into this one.
*/
void LinkGraph::Merge(LinkGraph *other)
{
Date age = _date - this->last_compression + 1;
Date other_age = _date - other->last_compression + 1;
NodeID first = this->Size();
for (NodeID node1 = 0; node1 < other->Size(); ++node1) {
Station *st = Station::Get(other->nodes[node1].station);
NodeID new_node = this->AddNode(st);
this->nodes[new_node].supply = LinkGraph::Scale(other->nodes[node1].supply, age, other_age);
st->goods[this->cargo].link_graph = this->index;
st->goods[this->cargo].node = new_node;
for (NodeID node2 = 0; node2 < node1; ++node2) {
BaseEdge &forward = this->edges[new_node][first + node2];
BaseEdge &backward = this->edges[first + node2][new_node];
forward = other->edges[node1][node2];
backward = other->edges[node2][node1];
forward.capacity = LinkGraph::Scale(forward.capacity, age, other_age);
forward.usage = LinkGraph::Scale(forward.usage, age, other_age);
if (forward.next_edge != INVALID_NODE) forward.next_edge += first;
backward.capacity = LinkGraph::Scale(backward.capacity, age, other_age);
backward.usage = LinkGraph::Scale(backward.usage, age, other_age);
if (backward.next_edge != INVALID_NODE) backward.next_edge += first;
}
BaseEdge &new_start = this->edges[new_node][new_node];
new_start = other->edges[node1][node1];
if (new_start.next_edge != INVALID_NODE) new_start.next_edge += first;
}
delete other;
}
/**
* Remove a node from the link graph by overwriting it with the last node.
* @param id ID of the node to be removed.
*/
void LinkGraph::RemoveNode(NodeID id)
{
assert(id < this->Size());
NodeID last_node = this->Size() - 1;
for (NodeID i = 0; i <= last_node; ++i) {
(*this)[i].RemoveEdge(id);
BaseEdge *node_edges = this->edges[i];
NodeID prev = i;
NodeID next = node_edges[i].next_edge;
while (next != INVALID_NODE) {
if (next == last_node) {
node_edges[prev].next_edge = id;
break;
}
prev = next;
next = node_edges[prev].next_edge;
}
node_edges[id] = node_edges[last_node];
}
Station::Get(this->nodes[last_node].station)->goods[this->cargo].node = id;
this->nodes.Erase(this->nodes.Get(id));
this->edges.EraseColumn(id);
/* Not doing EraseRow here, as having the extra invalid row doesn't hurt
* and removing it would trigger a lot of memmove. The data has already
* been copied around in the loop above. */
}
/**
* Add a node to the component and create empty edges associated with it. Set
* the station's last_component to this component. Calculate the distances to all
* other nodes. The distances to _all_ nodes are important as the demand
* calculator relies on their availability.
* @param st New node's station.
* @return New node's ID.
*/
NodeID LinkGraph::AddNode(const Station *st)
{
const GoodsEntry &good = st->goods[this->cargo];
NodeID new_node = this->Size();
this->nodes.Append();
/* Avoid reducing the height of the matrix as that is expensive and we
* most likely will increase it again later which is again expensive. */
this->edges.Resize(new_node + 1U,
max(new_node + 1U, this->edges.Height()));
this->nodes[new_node].Init(st->index,
HasBit(good.acceptance_pickup, GoodsEntry::GES_ACCEPTANCE));
BaseEdge *new_edges = this->edges[new_node];
/* Reset the first edge starting at the new node */
new_edges[new_node].next_edge = INVALID_NODE;
for (NodeID i = 0; i <= new_node; ++i) {
uint distance = DistanceManhattan(st->xy, Station::Get(this->nodes[i].station)->xy);
new_edges[i].Init(distance);
this->edges[i][new_node].Init(distance);
}
return new_node;
}
/**
* Fill an edge with values from a link.
* @param to Destination node of the link.
* @param capacity Capacity of the link.
*/
void LinkGraph::Node::AddEdge(NodeID to, uint capacity, uint usage)
{
assert(this->index != to);
BaseEdge &edge = this->edges[to];
BaseEdge &first = this->edges[this->index];
edge.capacity = capacity;
edge.usage = usage == UINT_MAX ? 0 : usage;
edge.next_edge = first.next_edge;
first.next_edge = to;
edge.last_update = _date;
}
void LinkGraph::Node::UpdateEdge(NodeID to, uint capacity, uint usage)
{
assert(capacity > 0);
assert(usage <= capacity || usage == UINT_MAX);
if (this->edges[to].last_update == INVALID_DATE) {
this->AddEdge(to, capacity, usage);
} else {
(*this)[to].Update(capacity, usage);
}
}
/**
* Remove an outgoing edge from this node.
* @param to ID of destination node.
*/
void LinkGraph::Node::RemoveEdge(NodeID to)
{
if (this->index == to) return;
BaseEdge &edge = this->edges[to];
edge.capacity = 0;
edge.last_update = INVALID_DATE;
edge.usage = 0;
NodeID prev = this->index;
NodeID next = this->edges[this->index].next_edge;
while (next != INVALID_NODE) {
if (next == to) {
/* Will be removed, skip it. */
this->edges[prev].next_edge = edge.next_edge;
edge.next_edge = INVALID_NODE;
break;
} else {
prev = next;
next = this->edges[next].next_edge;
}
}
}
/**
* Create a new edge or update an existing one. If usage is UINT_MAX refresh
* the edge to have at least the given capacity, otherwise add the capacity.
* @param from Start node of the edge.
* @param to End node of the edge.
* @param capacity Capacity to be added/updated.
* @param usage Usage to be added or UINT_MAX.
*/
void LinkGraph::Edge::Update(uint capacity, uint usage)
{
assert(this->edge.capacity > 0);
if (usage == UINT_MAX) {
this->edge.capacity = max(this->edge.capacity, capacity);
} else {
assert(capacity >= usage);
this->edge.capacity += capacity;
this->edge.usage += usage;
}
this->edge.last_update = _date;
}
/**
* Resize the component and fill it with empty nodes and edges. Used when
* loading from save games. The component is expected to be empty before.
* @param size New size of the component.
*/
void LinkGraph::Init(uint size)
{
assert(this->Size() == 0);
this->edges.Resize(size, size);
this->nodes.Resize(size);
for (uint i = 0; i < size; ++i) {
this->nodes[i].Init();
BaseEdge *column = this->edges[i];
for (uint j = 0; j < size; ++j) column[j].Init();
}
}