mirror of
https://github.com/sean1832/GPT-Brain
synced 2024-11-18 21:25:53 +00:00
143 lines
7.6 KiB
Python
143 lines
7.6 KiB
Python
import os
|
|
import time
|
|
|
|
import streamlit as st
|
|
|
|
import modules.INFO as INFO
|
|
import modules as mod
|
|
import GPT
|
|
import modules.utilities as util
|
|
import streamlit_toolkit.tools as st_tool
|
|
|
|
if 'SESSION_TIME' not in st.session_state:
|
|
st.session_state['SESSION_TIME'] = time.strftime("%Y%m%d-%H%H%S")
|
|
|
|
SESSION_TIME = st.session_state['SESSION_TIME']
|
|
SESSION_LANG = st.session_state['SESSION_LANGUAGE']
|
|
|
|
PROMPT_PATH = f'.user/prompt/{SESSION_LANG}'
|
|
CURRENT_LOG_FILE = f'{INFO.LOG_PATH}/log_{SESSION_TIME}.log'
|
|
|
|
util.remove_oldest_file(INFO.LOG_PATH, 10)
|
|
|
|
header = st.container()
|
|
body = st.container()
|
|
|
|
# sidebar
|
|
with st.sidebar:
|
|
_ = mod.language.set_language()
|
|
st.title(_('Settings'))
|
|
mod.language.select_language()
|
|
|
|
prompt_files = util.scan_directory(PROMPT_PATH)
|
|
prompt_file_names = [util.get_file_name(file) for file in prompt_files]
|
|
prompt_dictionary = dict(zip(prompt_file_names, prompt_files))
|
|
# remove 'my-info' from prompt dictionary
|
|
prompt_dictionary.pop(_('my-info'))
|
|
|
|
operation_options = list(prompt_dictionary.keys())
|
|
operations = st.multiselect(_('Operations'),
|
|
operation_options,
|
|
default=util.read_json_at(INFO.BRAIN_MEMO, f'operations_{SESSION_LANG}',
|
|
operation_options[0]),
|
|
help=_('Combinations of operations to perform.'))
|
|
|
|
last_question_model = util.read_json_at(INFO.BRAIN_MEMO, 'question_model', INFO.MODELS_OPTIONS[0])
|
|
# get index of last question model
|
|
question_model_index = util.get_index(INFO.MODELS_OPTIONS, last_question_model)
|
|
question_model = st.selectbox(_('Question Model'), INFO.MODELS_OPTIONS, index=question_model_index,
|
|
help=_('Model used for answering user question.'))
|
|
|
|
operations_no_question = [op for op in operations if op != _('question')]
|
|
other_models = []
|
|
replace_tokens = []
|
|
for operation in operations_no_question:
|
|
last_model = util.read_json_at(INFO.BRAIN_MEMO, f'{operation}_model', INFO.MODELS_OPTIONS[0])
|
|
# get index of last model
|
|
model_index = util.get_index(INFO.MODELS_OPTIONS, last_model)
|
|
model = st.selectbox(f"{operation} " + _('Model'), INFO.MODELS_OPTIONS, index=model_index)
|
|
other_models.append(model)
|
|
|
|
temp = st.slider(_('Temperature'), 0.0, 1.0, value=util.read_json_at(INFO.BRAIN_MEMO, 'temp', 0.1),
|
|
help=_('What sampling temperature to use, between 0 and 1. Higher values like 0.8 will make the '
|
|
'output more random, while lower values like 0.2 will make it more focused and '
|
|
'deterministic. \n\nIt is generally recommend altering this or `top_p` but not both.'))
|
|
max_tokens = st.slider(_('Max Tokens'), 850, 4096, value=util.read_json_at(INFO.BRAIN_MEMO, 'max_tokens', 1000),
|
|
help=_("The maximum number of tokens to generate in the completion.\n\nThe token count of "
|
|
"your prompt plus `max_tokens` cannot exceed the model's context length. Most "
|
|
"models have a context length of 2048 tokens (except for the newest models, "
|
|
"which support 4096)."))
|
|
|
|
with st.expander(label=_('Advanced Options')):
|
|
top_p = st.slider(_('Top_P'), 0.0, 1.0, value=util.read_json_at(INFO.BRAIN_MEMO, 'top_p', 1.0),
|
|
help=_("An alternative to sampling with temperature, called nucleus sampling, where the "
|
|
"model considers the results of the tokens with top_p probability mass. So 0.1 means "
|
|
"only the tokens comprising the top 10% probability mass are considered.\n\n"
|
|
"It is generally recommend altering this or `temperature` but not both."))
|
|
freq_panl = st.slider(_('Frequency penalty'), 0.0, 2.0,
|
|
value=util.read_json_at(INFO.BRAIN_MEMO, 'frequency_penalty', 0.0),
|
|
help=_("Larger the number increasing the model's likelihood to talk about new topics. "
|
|
"Penalize new tokens based on whether they appear in the text so far."
|
|
"\n\n[See more information about frequency and presence penalties.]"
|
|
"(https://platform.openai.com/docs/api-reference/parameter-details)"))
|
|
pres_panl = st.slider(_('Presence penalty'), 0.0, 1.0,
|
|
value=util.read_json_at(INFO.BRAIN_MEMO, 'present_penalty', 0.0),
|
|
help=_("Decreasing the model's likelihood to repeat the same line verbatim. Penalize "
|
|
"new tokens based on their existing frequency in the text so far."
|
|
"\n\n[See more information about frequency and presence penalties.]"
|
|
"(https://platform.openai.com/docs/api-reference/parameter-details)"))
|
|
|
|
chunk_size = st.slider(_('Chunk size'), 1500, 4500,
|
|
value=util.read_json_at(INFO.BRAIN_MEMO, 'chunk_size', 4000),
|
|
help=_("The number of tokens to consider at each step. The larger this is, the more "
|
|
"context the model has to work with, but the slower generation and expensive "
|
|
"will it be."))
|
|
chunk_count = st.slider(_('Answer count'), 1, 5, value=util.read_json_at(INFO.BRAIN_MEMO, 'chunk_count', 1),
|
|
help=_("The number of answers to generate. The model will continue to iteratively "
|
|
"generating answers until it reaches the answer count."))
|
|
|
|
param = GPT.model.param(temp=temp,
|
|
max_tokens=max_tokens,
|
|
top_p=top_p,
|
|
frequency_penalty=freq_panl,
|
|
present_penalty=pres_panl,
|
|
chunk_size=chunk_size,
|
|
chunk_count=chunk_count)
|
|
|
|
op = GPT.model.Operation(operations=operations,
|
|
operations_no_question=operations_no_question)
|
|
|
|
models = GPT.model.Model(question_model=question_model,
|
|
other_models=other_models)
|
|
|
|
if st.button(_('Clear Log'), on_click=st_tool.clear_log):
|
|
st.success(_('Log Cleared'))
|
|
|
|
# info
|
|
st.markdown('---')
|
|
st.markdown(f"# {util.read_json_at(INFO.MANIFEST, 'name')}")
|
|
st.markdown(_('Version') + f": {util.read_json_at(INFO.MANIFEST, 'version')}")
|
|
st.markdown(_('Author') + f": {util.read_json_at(INFO.MANIFEST, 'author')}")
|
|
st.markdown("[" + _('Report bugs') + "]" + f"({util.read_json_at(INFO.MANIFEST, 'bugs')})")
|
|
st.markdown("[" + _('Github Repo') + "]" + f"({util.read_json_at(INFO.MANIFEST, 'homepage')})")
|
|
|
|
with header:
|
|
st.title(_('🧠GPT-Brain'))
|
|
st.text(_('This is my personal AI powered brain feeding my own Obsidian notes. Ask anything.'))
|
|
|
|
st_tool.message(_("This is a beta version. Please [🪲report bugs](") +
|
|
util.read_json_at(INFO.MANIFEST, 'bugs') + _(") if you find any."))
|
|
|
|
# main
|
|
with body:
|
|
question = st.text_area(_('Ask Brain: '))
|
|
col1, col2, col3, col4 = st.columns(4)
|
|
with col1:
|
|
send = st.button(_('📩Send'))
|
|
with col2:
|
|
if os.path.exists(INFO.CURRENT_LOG_FILE):
|
|
st_tool.download_as()
|
|
# execute brain calculation
|
|
if not question == '' and send:
|
|
st_tool.execute_brain(question, param, op, models, prompt_dictionary, SESSION_LANG)
|