mirror of
https://github.com/sean1832/GPT-Brain
synced 2024-11-18 21:25:53 +00:00
42 lines
1.2 KiB
Python
42 lines
1.2 KiB
Python
import openai
|
|
import numpy as np
|
|
|
|
# this function compare similarity between two vectors.
|
|
# The higher value the dot product have, the more alike between these vectors
|
|
def similarity(v1, v2):
|
|
return np.dot(v1, v2)
|
|
|
|
# return a list of vectors
|
|
def embedding(content, engine='text-embedding-ada-002'):
|
|
response = openai.Embedding.create(input=content, engine=engine)
|
|
vector = response['data'][0]['embedding']
|
|
return vector
|
|
|
|
def search_chunks(text, data, count=1):
|
|
vector = embedding(text)
|
|
points = []
|
|
|
|
for item in data:
|
|
# compare search terms with brain-data
|
|
point = similarity(vector, item['vector'])
|
|
points.append({
|
|
'content': item['content'],
|
|
'point': point
|
|
})
|
|
# sort points base on decendent order
|
|
ordered = sorted(points, key=lambda d: d['point'], reverse=True)
|
|
|
|
return ordered[0:count]
|
|
|
|
def gpt3(prompt, model, temp, max_tokens, top_p, freq_penl, pres_penl):
|
|
response = openai.Completion.create(
|
|
model= model,
|
|
prompt=prompt,
|
|
temperature=temp,
|
|
max_tokens=max_tokens,
|
|
top_p=top_p,
|
|
frequency_penalty=freq_penl,
|
|
presence_penalty=pres_penl
|
|
)
|
|
text = response['choices'][0]['text'].strip()
|
|
return text |