GPT-Brain/modules/gpt_util.py

42 lines
1.2 KiB
Python

import openai
import numpy as np
# this function compare similarity between two vectors.
# The higher value the dot product have, the more alike between these vectors
def similarity(v1, v2):
return np.dot(v1, v2)
# return a list of vectors
def embedding(content, engine='text-embedding-ada-002'):
response = openai.Embedding.create(input=content, engine=engine)
vector = response['data'][0]['embedding']
return vector
def search_chunks(text, data, count=1):
vector = embedding(text)
points = []
for item in data:
# compare search terms with brain-data
point = similarity(vector, item['vector'])
points.append({
'content': item['content'],
'point': point
})
# sort points base on decendent order
ordered = sorted(points, key=lambda d: d['point'], reverse=True)
return ordered[0:count]
def gpt3(prompt, model, temp, max_tokens, top_p, freq_penl, pres_penl):
response = openai.Completion.create(
model= model,
prompt=prompt,
temperature=temp,
max_tokens=max_tokens,
top_p=top_p,
frequency_penalty=freq_penl,
presence_penalty=pres_penl
)
text = response['choices'][0]['text'].strip()
return text