GPT-Brain/Seanium_Brain.py
2023-02-15 02:36:26 +11:00

199 lines
7.0 KiB
Python

import streamlit as st
from modules import utilities as util
from modules import model_data
import brain
import check_update
import time
import os
# activate session
if 'SESSION_TIME' not in st.session_state:
st.session_state['SESSION_TIME'] = time.strftime("%Y%m%d-%H%H%S")
st.set_page_config(
page_title='Seanium Brain'
)
util.remove_oldest_file('.user/log', 10)
model_options = ['text-davinci-003', 'text-curie-001', 'text-babbage-001', 'text-ada-001']
header = st.container()
body = st.container()
LOG_PATH = '.user/log'
PROMPT_PATH = '.user/prompt'
SESSION_TIME = st.session_state['SESSION_TIME']
CURRENT_LOG_FILE = f'{LOG_PATH}/log_{SESSION_TIME}.log'
BRAIN_MEMO = '.user/brain-memo.json'
def create_log():
if not os.path.exists(CURRENT_LOG_FILE):
util.write_file(f'Session {SESSION_TIME}\n\n', CURRENT_LOG_FILE)
return CURRENT_LOG_FILE
def log(content, delimiter=''):
log_file = create_log()
if delimiter != '':
delimiter = f'\n\n=============={delimiter}==============\n'
util.write_file(f'\n{delimiter + content}', log_file, 'a')
def clear_log():
log_file_name = f'log_{SESSION_TIME}.log'
for root, dirs, files in os.walk(LOG_PATH):
for file in files:
if not file == log_file_name:
os.remove(os.path.join(root, file))
def save_as():
# download log file
with open(CURRENT_LOG_FILE, 'rb') as f:
content = f.read()
st.download_button(
label="📥download log",
data=content,
file_name=f'log_{SESSION_TIME}.txt',
mime='text/plain'
)
def process_response(query, target_model, prompt_file: str, data: model_data.param):
# check if exclude model is not target model
file_name = util.get_file_name(prompt_file)
print(f'Processing {file_name}...')
with st.spinner(f'Thinking on {file_name}...'):
results = brain.run(query, target_model, prompt_file,
data.temp,
data.max_tokens,
data.top_p,
data.frequency_penalty,
data.present_penalty)
# displaying results
st.header(f'📃{file_name}')
st.info(f'{results}')
time.sleep(1)
log(results, delimiter=f'{file_name.upper()}')
# sidebar
with st.sidebar:
st.title('Settings')
prompt_files = util.scan_directory(PROMPT_PATH)
prompt_file_names = [util.get_file_name(file) for file in prompt_files]
prompt_dictionary = dict(zip(prompt_file_names, prompt_files))
# remove 'my-info' from prompt dictionary
prompt_dictionary.pop('my-info')
operation_options = list(prompt_dictionary.keys())
operations = st.multiselect('Operations', operation_options, default=util.read_json_at(BRAIN_MEMO, 'operations',
operation_options[0]))
last_question_model = util.read_json_at(BRAIN_MEMO, 'question_model', model_options[0])
# get index of last question model
question_model_index = util.get_index(model_options, last_question_model)
question_model = st.selectbox('Question Model', model_options, index=question_model_index)
operations_no_question = [op for op in operations if op != 'question']
other_models = []
replace_tokens = []
for operation in operations_no_question:
last_model = util.read_json_at(BRAIN_MEMO, f'{operation}_model', model_options[0])
# get index of last model
model_index = util.get_index(model_options, last_model)
model = st.selectbox(f'{operation} Model', model_options, index=model_index)
other_models.append(model)
temp = st.slider('Temperature', 0.0, 1.0, value=util.read_json_at(BRAIN_MEMO, 'temp', 0.1))
max_tokens = st.slider('Max Tokens', 850, 4500, value=util.read_json_at(BRAIN_MEMO, 'max_tokens', 1000))
with st.expander(label='Advanced Options'):
top_p = st.slider('Top_P', 0.0, 1.0, value=util.read_json_at(BRAIN_MEMO, 'top_p', 1.0))
freq_panl = st.slider('Frequency penalty', 0.0, 1.0,
value=util.read_json_at(BRAIN_MEMO, 'frequency_penalty', 0.0))
pres_panl = st.slider('Presence penalty', 0.0, 1.0, value=util.read_json_at(BRAIN_MEMO, 'present_penalty', 0.0))
chunk_size = st.slider('Chunk Size', 1500, 4500, value=util.read_json_at(BRAIN_MEMO, 'chunk_size', 4000))
chunk_count = st.slider('Answer Count', 1, 5, value=util.read_json_at(BRAIN_MEMO, 'chunk_count', 1))
param = model_data.param(temp=temp,
max_tokens=max_tokens,
top_p=top_p,
frequency_penalty=freq_panl,
present_penalty=pres_panl,
chunk_size=chunk_size,
chunk_count=chunk_count)
if st.button('Clear Log', on_click=clear_log):
st.success('Log Cleared')
with header:
st.title('🧠Seanium Brain')
st.text('This is my personal AI powered brain feeding my own Obsidian notes. Ask anything.')
def execute_brain(q):
# log question
log(f'\n\n\n\n[{str(time.ctime())}] - QUESTION: {q}')
if check_update.isUpdated():
st.success('Building Brain...')
# if brain-info is updated
brain.build(chunk_size)
st.success('Brain rebuild!')
time.sleep(2)
# thinking on answer
with st.spinner('Thinking on Answer'):
answer = brain.run_answer(q, question_model, temp, max_tokens, top_p, freq_panl, pres_panl,
chunk_count=chunk_count)
if util.contains(operations, 'question'):
# displaying results
st.header('💬Answer')
st.info(f'{answer}')
time.sleep(1)
log(answer, delimiter='ANSWER')
# thinking on other outputs
if len(operations_no_question) > 0:
for i in range(len(operations_no_question)):
prompt_path = prompt_dictionary[operations_no_question[i]]
other_model = other_models[i]
process_response(answer, other_model, prompt_path, param)
# convert param to dictionary
param_dict = vars(param)
# write param to json
for key in param_dict:
value = param_dict[key]
util.update_json(BRAIN_MEMO, key, value)
# write operation to json
util.update_json(BRAIN_MEMO, 'operations', operations)
# write question model to json
util.update_json(BRAIN_MEMO, 'question_model', question_model)
# write other models to json
for i in range(len(operations_no_question)):
util.update_json(BRAIN_MEMO, f'{operations_no_question[i]}_model', other_models[i])
# main
with body:
question = st.text_area('Ask Brain: ')
col1, col2, col3, col4 = st.columns(4)
with col1:
send = st.button('📩Send')
with col2:
if os.path.exists(CURRENT_LOG_FILE):
save_as()
# execute brain calculation
if not question == '' and send:
execute_brain(question)