GIMP-ML/gimp-plugins/faceparse.py
2020-05-12 11:11:05 +05:30

170 lines
4.6 KiB
Python
Executable File

import os
baseLoc = os.path.dirname(os.path.realpath(__file__))+'/'
from gimpfu import *
import sys
sys.path.extend([baseLoc+'gimpenv/lib/python2.7',baseLoc+'gimpenv/lib/python2.7/site-packages',baseLoc+'gimpenv/lib/python2.7/site-packages/setuptools',baseLoc+'face-parsing.PyTorch'])
from model import BiSeNet
from PIL import Image
import torch
from torchvision import transforms, datasets
import numpy as np
colors = np.array([[0,0,0],
[204,0,0],
[0,255,255],
[51,255,255],
[51,51,255],
[204,0,204],
[204,204,0],
[102,51,0],
[255,0,0],
[0,204,204],
[76,153,0],
[102,204,0],
[255,255,0],
[0,0,153],
[255,153,51],
[0,51,0],
[0,204,0],
[0,0,204],
[255,51,153]])
colors = colors.astype(np.uint8)
def getlabelmat(mask,idx):
x=np.zeros((mask.shape[0],mask.shape[1],3))
x[mask==idx,0]=colors[idx][0]
x[mask==idx,1]=colors[idx][1]
x[mask==idx,2]=colors[idx][2]
return x
def colorMask(mask):
x=np.zeros((mask.shape[0],mask.shape[1],3))
for idx in range(19):
x=x+getlabelmat(mask,idx)
return np.uint8(x)
def getface(input_image):
save_pth = baseLoc+'face-parsing.PyTorch/79999_iter.pth'
input_image = Image.fromarray(input_image)
n_classes = 19
net = BiSeNet(n_classes=n_classes)
if torch.cuda.is_available():
net.cuda()
net.load_state_dict(torch.load(save_pth))
else:
net.load_state_dict(torch.load(save_pth, map_location=lambda storage, loc: storage))
net.eval()
to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
with torch.no_grad():
img = input_image.resize((512, 512), Image.BILINEAR)
img = to_tensor(img)
img = torch.unsqueeze(img, 0)
if torch.cuda.is_available():
img = img.cuda()
out = net(img)[0]
if torch.cuda.is_available():
parsing = out.squeeze(0).cpu().numpy().argmax(0)
else:
parsing = out.squeeze(0).numpy().argmax(0)
parsing = Image.fromarray(np.uint8(parsing))
parsing = parsing.resize(input_image.size)
parsing = np.array(parsing)
return parsing
def getSeg(input_image):
model = torch.load(baseLoc+'deeplabv3+model.pt')
model.eval()
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_image = Image.fromarray(input_image)
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)['out'][0]
output_predictions = output.argmax(0)
# create a color pallette, selecting a color for each class
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
colors = torch.as_tensor([i for i in range(21)])[:, None] * palette
colors = (colors % 255).numpy().astype("uint8")
r = Image.fromarray(output_predictions.byte().cpu().numpy()).resize(input_image.size)
tmp = np.array(r)
tmp2 = 10*np.repeat(tmp[:, :, np.newaxis], 3, axis=2)
return tmp2
def channelData(layer):#convert gimp image to numpy
region=layer.get_pixel_rgn(0, 0, layer.width,layer.height)
pixChars=region[:,:] # Take whole layer
bpp=region.bpp
return np.frombuffer(pixChars,dtype=np.uint8).reshape(layer.height,layer.width,bpp)
def createResultLayer(image,name,result):
rlBytes=np.uint8(result).tobytes();
rl=gimp.Layer(image,name,image.width,image.height,image.active_layer.type,100,NORMAL_MODE)
region=rl.get_pixel_rgn(0, 0, rl.width,rl.height,True)
region[:,:]=rlBytes
image.add_layer(rl,0)
gimp.displays_flush()
def faceparse(img, layer) :
if torch.cuda.is_available():
gimp.progress_init("(Using GPU) Running face parse for " + layer.name + "...")
else:
gimp.progress_init("(Using CPU) Running face parse for " + layer.name + "...")
imgmat = channelData(layer)
cpy=getface(imgmat)
cpy = colorMask(cpy)
createResultLayer(img,'new_output',cpy)
register(
"faceparse",
"faceparse",
"Running face parse.",
"Kritik Soman",
"Your",
"2020",
"faceparse...",
"*", # Alternately use RGB, RGB*, GRAY*, INDEXED etc.
[ (PF_IMAGE, "image", "Input image", None),
(PF_DRAWABLE, "drawable", "Input drawable", None),
],
[],
faceparse, menu="<Image>/Layer/GIML-ML")
main()