mirror of
https://github.com/kritiksoman/GIMP-ML
synced 2024-11-19 21:25:29 +00:00
172 lines
4.7 KiB
Python
Executable File
172 lines
4.7 KiB
Python
Executable File
import os
|
|
baseLoc = os.path.dirname(os.path.realpath(__file__))+'/'
|
|
|
|
|
|
from gimpfu import *
|
|
import sys
|
|
|
|
sys.path.extend([baseLoc+'gimpenv/lib/python2.7',baseLoc+'gimpenv/lib/python2.7/site-packages',baseLoc+'gimpenv/lib/python2.7/site-packages/setuptools',baseLoc+'face-parsing.PyTorch'])
|
|
|
|
|
|
from model import BiSeNet
|
|
from PIL import Image
|
|
import torch
|
|
from torchvision import transforms, datasets
|
|
import numpy as np
|
|
|
|
colors = np.array([[0,0,0],
|
|
[204,0,0],
|
|
[0,255,255],
|
|
[51,255,255],
|
|
[51,51,255],
|
|
[204,0,204],
|
|
[204,204,0],
|
|
[102,51,0],
|
|
[255,0,0],
|
|
[0,204,204],
|
|
[76,153,0],
|
|
[102,204,0],
|
|
[255,255,0],
|
|
[0,0,153],
|
|
[255,153,51],
|
|
[0,51,0],
|
|
[0,204,0],
|
|
[0,0,204],
|
|
[255,51,153]])
|
|
colors = colors.astype(np.uint8)
|
|
|
|
def getlabelmat(mask,idx):
|
|
x=np.zeros((mask.shape[0],mask.shape[1],3))
|
|
x[mask==idx,0]=colors[idx][0]
|
|
x[mask==idx,1]=colors[idx][1]
|
|
x[mask==idx,2]=colors[idx][2]
|
|
return x
|
|
|
|
def colorMask(mask):
|
|
x=np.zeros((mask.shape[0],mask.shape[1],3))
|
|
for idx in range(19):
|
|
x=x+getlabelmat(mask,idx)
|
|
return np.uint8(x)
|
|
|
|
def getface(input_image):
|
|
save_pth = baseLoc+'face-parsing.PyTorch/79999_iter.pth'
|
|
input_image = Image.fromarray(input_image)
|
|
|
|
n_classes = 19
|
|
net = BiSeNet(n_classes=n_classes)
|
|
if torch.cuda.is_available():
|
|
net.cuda()
|
|
net.load_state_dict(torch.load(save_pth))
|
|
else:
|
|
net.load_state_dict(torch.load(save_pth, map_location=lambda storage, loc: storage))
|
|
|
|
|
|
net.eval()
|
|
|
|
|
|
to_tensor = transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
|
])
|
|
|
|
|
|
with torch.no_grad():
|
|
img = input_image.resize((512, 512), Image.BILINEAR)
|
|
img = to_tensor(img)
|
|
img = torch.unsqueeze(img, 0)
|
|
if torch.cuda.is_available():
|
|
img = img.cuda()
|
|
out = net(img)[0]
|
|
if torch.cuda.is_available():
|
|
parsing = out.squeeze(0).cpu().numpy().argmax(0)
|
|
else:
|
|
parsing = out.squeeze(0).numpy().argmax(0)
|
|
|
|
parsing = Image.fromarray(np.uint8(parsing))
|
|
parsing = parsing.resize(input_image.size)
|
|
parsing = np.array(parsing)
|
|
|
|
return parsing
|
|
|
|
def getSeg(input_image):
|
|
model = torch.load(baseLoc+'deeplabv3+model.pt')
|
|
model.eval()
|
|
preprocess = transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
|
])
|
|
|
|
input_image = Image.fromarray(input_image)
|
|
|
|
input_tensor = preprocess(input_image)
|
|
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
|
|
|
|
# move the input and model to GPU for speed if available
|
|
if torch.cuda.is_available():
|
|
input_batch = input_batch.to('cuda')
|
|
model.to('cuda')
|
|
|
|
with torch.no_grad():
|
|
output = model(input_batch)['out'][0]
|
|
output_predictions = output.argmax(0)
|
|
|
|
|
|
# create a color pallette, selecting a color for each class
|
|
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
|
|
colors = torch.as_tensor([i for i in range(21)])[:, None] * palette
|
|
colors = (colors % 255).numpy().astype("uint8")
|
|
|
|
r = Image.fromarray(output_predictions.byte().cpu().numpy()).resize(input_image.size)
|
|
|
|
tmp = np.array(r)
|
|
tmp2 = 10*np.repeat(tmp[:, :, np.newaxis], 3, axis=2)
|
|
|
|
return tmp2
|
|
|
|
def channelData(layer):#convert gimp image to numpy
|
|
region=layer.get_pixel_rgn(0, 0, layer.width,layer.height)
|
|
pixChars=region[:,:] # Take whole layer
|
|
bpp=region.bpp
|
|
return np.frombuffer(pixChars,dtype=np.uint8).reshape(layer.height,layer.width,bpp)
|
|
|
|
def createResultLayer(image,name,result):
|
|
rlBytes=np.uint8(result).tobytes();
|
|
rl=gimp.Layer(image,name,image.width,image.height,0,100,NORMAL_MODE)
|
|
region=rl.get_pixel_rgn(0, 0, rl.width,rl.height,True)
|
|
region[:,:]=rlBytes
|
|
image.add_layer(rl,0)
|
|
gimp.displays_flush()
|
|
|
|
def faceparse(img, layer) :
|
|
if torch.cuda.is_available():
|
|
gimp.progress_init("(Using GPU) Running face parse for " + layer.name + "...")
|
|
else:
|
|
gimp.progress_init("(Using CPU) Running face parse for " + layer.name + "...")
|
|
|
|
imgmat = channelData(layer)
|
|
if imgmat.shape[2] == 4: # get rid of alpha channel
|
|
imgmat = imgmat[:,:,0:3]
|
|
cpy=getface(imgmat)
|
|
cpy = colorMask(cpy)
|
|
createResultLayer(img,'new_output',cpy)
|
|
|
|
|
|
|
|
|
|
register(
|
|
"faceparse",
|
|
"faceparse",
|
|
"Running face parse.",
|
|
"Kritik Soman",
|
|
"Your",
|
|
"2020",
|
|
"faceparse...",
|
|
"*", # Alternately use RGB, RGB*, GRAY*, INDEXED etc.
|
|
[ (PF_IMAGE, "image", "Input image", None),
|
|
(PF_DRAWABLE, "drawable", "Input drawable", None),
|
|
],
|
|
[],
|
|
faceparse, menu="<Image>/Layer/GIML-ML")
|
|
|
|
main()
|